
Autobiographic Agents in Dynamic Virtual Environments -
Performance Comparison for Different Memory Control Architectures

Wan Ching HO, Kerstin DAUTENHAHN, Chrystopher L. NEHANIV
Adaptive Systems Research Group

School of Computer Science, University of Hertfordshire
College Lane, Hatfield, Hertfordshire, AL10 9AB, UK

W.C.Ho, K.Dautenhahn, C.L.Nehaniv@herts.ac.uk

Abstract- In this paper, we extend our previous work
in investigating the performance of different autobio-
graphic memory control architectures which are devel-
oped based on a basic subsumption control architec-
ture for Artificial Life autonomous agents surviving in
a dynamic virtual environment. In our previous work
we showed how autonomous agents’ survival in a static
virtual environment can benefit from autobiographic
memory, with a kind of communication of experiences
in multi-agent experiments. In the current work we
extend the existing memory architecture by enhancing
its functionalities and introducing Long-term Autobio-
graphic Memory, which is derived from the inspiration
of human memory schema - categorical rules or scripts
that psychologists in human memory research believe
all humans possess to interpret the word. A large-scale
and dynamic virtual environment is created to compare
the performance of various types of agents with vari-
ous memory control architectures, and each agent’s be-
haviour is observed and analyzed together with lifespan
measurements. Results confirm our previous research
hypothesis that autobiographic memory can prove ben-
eficial – indicating increases in the lifespan of an au-
tonomous, autobiographic, minimal agent. Further-
more, the utility of combining Long-term Memory with
Short-term Memory is established. We finally discuss
the environmental factors influencing the performance
of each architecture and the areas for future work.

1 Introduction

Remembering past events certainly helps an animal or a hu-
man to learn from experience; therefore, for many years,
researchers in the fields of biology, artificial life and psy-
chology have been investigating how memory influences
the behaviour of both human and other animals. Our pre-
vious work has studied the length of autobiographic mem-
ory embedded in an artificial animal to improve its foraging
behaviour [Ho et al., 2003] and the effect of sharing mem-
ories with other agents surviving in the same environment
[Ho et al., 2004]. In this paper, we study the design space
of agent control architectures with autobiographic mem-
ory and aim to develop a more sophisticated memory con-
trol architecture which is generic and adaptive for a min-
imal Artificial Life agent. Autobiographic memory is a
specific kind of episodic memory, which in humans devel-
ops in childhood [Nelson, 1993]. Autobiographic agents
are agents which are embodied and situated in a particular
environment (including other agents), and which dynam-

ically reconstruct their individual history (autobiography)
during their lifespan, as defined in [Dautenhahn, 1996]. Au-
tobiographic memory is an important ingredient for so-
cially intelligent agents [Dautenhahn, 1999]. Moreover,
it is useful for synthesizing agents that can behave adap-
tively [Nehaniv and Dautenhahn, 1998a], and for designing
agents that apparently ‘have a life’ and thus appear believ-
able and acceptable to humans [Dautenhahn, 1998].

For many decades researchers in psychology have
widely studied schema theories which indicate the rep-
resentations and encoding processes of human memory
[Alba and Hasher, 1983]. As autobiographic memory is
part of the human long-term episodic memory, we apply
schema theories in designing autobiographic memory for
autonomous Artificial Life agents. Here, an important fea-
ture isevent reconstruction, which is reflected in the mem-
ory processes of selection and abstraction. A selection pro-
cess specifies that all incoming stimuli are selectively re-
membered for our memory representation, and the abstrac-
tion process denotes that the meaning of an event or a mes-
sage is stored without entirely refering to its original con-
tents.

A feature of memory and remembering is that they
provide ‘extrasensory’ meaningful information by which
an agent may modulate or guide its immediate or fu-
ture behaviour; this broadertemporal horizoncan allow
for planning for future actions and learning from past
or imagined sequences of events. Our work focuses
on realizing such mechanisms in artificial autonomous
agents [Nehaniv and Dautenhahn, 1998a, Nehaniv, 1999,
Nehaniv et al., 2002].

1.1 Related Work

The earlier study in [Ho et al., 2003] highlights the ef-
fectiveness of autobiographic memory applied to an au-
tonomous agent from an Artificial Life perspective. The vir-
tual experimental-based approach deals with different im-
plementation designs of control architectures for autobi-
ographic agents, including detailed measurements of the
agents’ lifetimes compared with purely reactive agents,
compared in two distinct static environments. Experimental
results produced evidence which confirmed the research hy-
pothesis that autobiographic memory can prove beneficial,
indicating increases in the lifetime of an autonomous auto-
biographic minimal agent. In particular, both Trace-back
and Locality autobiographic memory architectures, with or
without noise interference, showed superiority over purely
reactive control [Ho et al., 2003].

We have also investigated multiple autobiographic



agents able to share an experienced sequences of events
(perceptions and actions) with others who have the same
goals of wandering and searching for resources so as to sur-
vive in the environment [Ho et al., 2004]. The results of
this study provided experimental evidence to reconfirm that
within our framework autobiographic agents effectively ex-
tend their lifespan by embedding an Event-based memory
which keeps track of agents’ previous action sequences as
compared to a Purely Reactive subsumption control archi-
tecture. Multi-agent environmental interference dynamics
resulted in decreasing average lifespan of agents. Some ap-
propriate combinations of factors, e.g. communication mo-
tivation and cost factors, resulted in improved performance.

In the following sections we first describe the large and
complex virtual environment, which dynamically changes
its conditions and resources distribution in order to gener-
ate various types of events and sequences of sufficient com-
plexity for the experiments (Section 2). Next we focus on
three main agent control architectures (Section 3): Purely
Reactive (PR), Short-term Memory (STM) and Long-term
Memory (LTM). For each of them we illustrate the de-
sign concepts of the architecture in detail; particularly for
the LTM architecture, we specify its main features, includ-
ing Event Specific Knowledge (ESK), Event Reconstruction
(ER), and Event Filtering and Ranking (EFR) processes.
This is followed by the section on experiments and result
analysis (Section 4). In the final section we summarize the
conclusions and discuss the varied potential for future de-
velopments.

2 The Complex Dynamic Virtual Environment
and Agent Embodiment

In order to create rich possibilities of temporal sequences of
events for the agents and to examine the performance of our
agent control architectures, a large, dynamic and complex
“nature-like” virtual environment has been created by us-
ing VRML and Java programming languages. This environ-
ment is fairly different from other simple and flat agent test-
beds since it has various types of resources, most of them
dynamically distributed on different kinds of landform. Fig-
ure 1 illustrates the virtual environment model from two dif-
ferent perspectives.

The temporal richness of events generated by
the complex environment particularly includes the
following two algebraically non-trivial character-
istics [Nehaniv and Dautenhahn, 1998b]: 1non-
commutativity - a sequence of events, can be order-
dependent, with different effects depending on the specific
sequence in which they happen; 2)Irreversibility - some
events cannot be ‘undone’ (‘undo’ means trying to realize
the a previously encountered situation by following actions
in reverse order).

2.1 Environment Structure

To create this richness of temporal events, each area in the
environment has its unique features, illustrated as follows:

Figure 1: The simulated dynamic virtual environment
viewed from two different perspectives.

• Oasis- this is generally a warm and flat area, which
has threeApple Treesin the summer.

• Desert - a hot and flat area where efficiently pro-
vides body heat to the agents and hasStonesand
Cactuses. Cactus is the only resource for agents to
increase theirmoisturein the winter. To crush the
Cactus, agents need to pick up a Stone; this is a real-
ization of non-commutativity(crush, then pick-up is
NOT the same as pick-up, then crush), and agents are
able to change the Stone distribution in the environ-
ment by randomly carrying or laying down the Stone
after they have consumed a Cactus.

• Mountain - located between the desert and oasis ar-
eas; some edibleMushroomsexist permanently on the
top of the mountain, however, climbing up the moun-
tain takes an extra amount of internal energy from the
agents.

• River - in the summer, it provides water resource to
the agents and locates next to the oasis. Agents are
able to swim in the river, but they cannot swim to-
wards the north since it is against the current.

• Lake and Waterfall - these provide another source of
moisture and environmental complexity. The water-
fall connects to the upper river and the lake. Once
agents enter the waterfall area, they will be picked up
by the downstream current and then fall into the lake
area. The passage going to the lake area by passing
through the river and waterfall areas can be seen as
realizing irreversibility, since an agent is not able to
either go back to the river from the waterfall or go
back to the water from the lake.

• Cave - there are two caves in the environment for
agents to regain their energy, one located in the oa-
sis area and the other one located in the desert area.



Figure 2: Hit-Ray sensors 0 - 7 for sensing both objects and
Landforms, agent body has a landform sensor and a time
sensor.

Alternatively, two seasonsSummerand Winter, have
been simulated in the environment to have a higher level
of environmental dynamics (Table 1). Each season has the
same duration but different effects on a) the level of heat
and cold in different areas of the environment, b) dynamic
resources allocation and c) the accessibility of the river.

2.2 Agent Embodiment

All agents in the dynamic environment are virtually em-
bodied with the same body size and sensors. They are
equipped with nine external sensors: seven Hit-Ray sensors
[Blaxxun, 2004] form a 90 degree fan-shape for detecting
the objects, landforms, as well as the environment heat from
different types of landforms; agent body has a landform sen-
sor and also a time sensor for sensing the current season of
the environment. Figure 2 shows the distribution of these
sensors.

All agents have a finite lifespan and are required to wan-
der in the environment as their basic behavior. The sur-
vival of an agent depends on maintaining homeostasis for
its four internal physiological variables, namelyglucose,
moisture, energyandbody temperature. Internal variables
glucose, moistureandenergyare initialized close to a max-
imum value at the start of each experimental simulation run
and can be increased by taking different types of resources
in the environment. Variablebody temperatureis initial-
ized to be ideal - half of the maximum value and needs to
be maintained between maximum and minimum values by
regularly wandering in different areas in the environment.
Each translation or rotation of the agent will reduce the in-
ternal variablesglucose, moistureandenergyby a certain
value. When the internal variablesglucose, moistureand
energydrop below a threshold, which is half of the max-
imum value, then the agent begins searching around for
resources dynamically located in the environment. When
body temperaturegoes beyond the ideal range - lower than
30% or higher than 70% of the maximum value, the agent
needs to move to an appropriate area to maintainbody tem-
peratureuntil it comes back to the ideal range again. If
the value of one of the internal variables (glucose, moisture
andenergy) less than a particular minimum value, orbody
temperaturereaches the minimum or maximum value, then
the agent will die. The experimental parameters (thresholds

Internal variables Relevant resource (effects)

Glucose
Apple Tree (+ 100%)
Mushroom (+ 100%)

Cactus (+ 10%)

Moisture
Apple Tree (+ 100%)

Cactus (+ 10%)

Energy
Cave (+ 100%)

Cactus - tough without stone penalty
(- 10%)

Body temperature
(in each simulation time

step)

Desert - Summer (+ 0.0015%)
Desert - Winter (+ 0.0005%)
Oasis - Summer (- 0.00025%)

Oasis - Winter (- 0.0005%)
Mountain - Summer (- 0.00025%)

Mountain - Winter (- 0.0005%)
Water Area* - Summer (- 0.0005%)
Water Area* - Winter (- 0.0015%)

*Water Area = River, Waterfall and Lake

Table 2: Relationships between agents’ internal variables
and different resources and contexts in the environment.

etc.) that allow the agents to live in the virtual environment,
but eventually die, were determined in initial tests.

The relationship between internal physiological vari-
ables and various types of resources in the environment are
shown in Table 2.

3 Agent Memory Control Architectures

We aim to develop appropriate autobiographic memory ar-
chitectures on top of a basic subsumption control architec-
ture in order to enhance the agents’ performance in surviv-
ing in a dynamic environment. To achieve this goal, we
designed and implemented three different control architec-
tures: Purely Reactive (PR), Short-term memory (STM) and
Long-term memory (LTM). In addition to these three archi-
tectures, in the experiments section we also investigate the
fourth type, which is built by combining STM and LTM into
one architecture in order to broaden the agents’ temporal
horizon by taking advantage of more sophisticated memory
control algorithms. For both STM and LTM architectures,
their distinctive memory layers control algorithms are built
on top of the PR architecture with the aim of inhibiting the
execution of behavior from the PR architecture optionally.

3.1 Purely Reactive Architecture (PR)

In this paper, we define a PR agent as an agent who makes
its decisions for executing behavior totally based on its in-
ternal physiological variables and sensory inputs. There-
fore we designed and implemented the PR agent by using
a basic subsumption control architecture [Brooks, 1985], as
illustrated in Figure 3. The architecture of the PR agent in-
cludes six layers. Higher-level behaviours inhibit or over-
ride lower-level behaviours. The agent usually wanders
around in the environment by executing the bottom layer
in the architecture. When the agent encounters an object,
which can be any kind of resource, obstacle or one of the
boundaries of the environment (walls), then the agent avoids
the obstacle or the wall by generating a random direction ro-
tating its body. This behaviour will also be triggered in case
the agent encounters a resource object, but the internal vari-



Oasis &

Mountain
Desert

River,

Waterfall &

Lake

Resource allocation River accessibility

Summer Cool Hot Cool

Oasis - Cave, Apple Tree,
River, Waterfall, Lake - Water,

Mountain - Mushroom,
Desert - Cave, Cactus

Flowing (Agents cannot pass)

Winter Cool Warm Cold
Oasis - Cave,

Mountain - Mushroom,
Desert - Cave, Cactus

Frozen (Agents can pass)

Table 1: Environmental heats, resource allocations and river conditions in the dynamic environment

Figure 3: Behaviour hierarchy which is based on the sub-
sumption architecture for a Purely Reactive (PR) agent.

Figure 4: Short-term Memory (STM) with information in-
dicating contents of each entry and the change of its length.

able which needs that particular resource is higher than the
corresponding threshold.

3.2 Short-term Memory Architecture (STM)

On the basis of the design of a PR architecture, STM with
memory Trace-back possesses a memory module on top of
the subsumption architecture. An STM agent has a dedi-
cated mechanism for making memory entries as the remem-
bering process, and using the memory as a tracing process.
In the case of the Trace-back mechanism, the agent has a
finite number of memory entries. Introduction of new en-
tries occurs each time the agent experiences an event, i.e.
encounters either an object or agent, enters a new area, or
changes its current behavior. This is calledEvent-based
memory entry making mode. Each memory entry includes
the current Direction the agent is facing, the kind of ob-
ject encountered by the agent (if any), the current landform
the agent now locates on, and how far the agent has trav-
elled (Distance) since the last event. This information is
inserted at the current position of the index into the memory
table, which has finite length restrained by the current inter-
nal variables but infinite index number. The abstract model
of STM is shown in Figure 4.

The STMTrace-back processwill be triggered if one of
the internal variables of the agent is lower than the thresh-
old and the table of STM entries has at least one useful
entry, which indicates that the agent has previously en-
countered a relevant resource or a landform. Once Trace-

back has started, the agents will simply ‘undo’ all pre-
vious behaviors. This mechanism has a close connec-
tion to the algebraic notion of inverse in mathematics
[Nehaniv and Dautenhahn, 1998a]. Thus, the agent will ex-
ecute the reverse of each action step-by-step starting with
the most recent action, using the information specified in
Direction and Distance. The Trace-back process will be
completed once the agent has executed actions undoing all
memories entries and has reached the target resource. At
this moment, the agent will start sensing around for the re-
source. During the Trace-back process, we have also in-
troduced noise (Gaussian, standard deviation 5◦) to slightly
alter the Direction value when the agent is retrieving an en-
try from its STM. Therefore, there are possibilities that the
resource is not available at this location since 1) some re-
sources in the environment are dynamically distributed; or
2) the actual rotation and distance value in each entry might
have been slightly distorted by accumulated errors created
by the noise during the Trace-back process. As a conse-
quence of these accumulated errors the agent might not be
able to finish the Trace-back process, which is terminated
if the agent collides with any other object or agent in the
environment.

After an agent performs a Track-back process, the re-
sult will be either: target is found or target is not found; in
both situations, those undone entries will be cleared and the
agent will start making new entries from that point. When
an STM agent facing the environmental dynamics, such as
unstable resource distributions and the flowing direction of
the river and waterfall in summer, these sometime cause
the agent to fail in executing the Trace-back process, where
upon the agent will erase all the memory entries in STM.
As an STM agent can not remember an unlimited num-
ber of entries; the number of entries in STM is determined
by estimating the costs of executing Trace-back process of
undoing all existing entries. If the cost for one of the in-
ternal variables is higher than the current value, then the
length of STM will be shrunk by deleting the earliest en-
tries since the agent is not able to afford the cost of doing
the Trace back, as illustrated in Figure 4. The processes of
erasing undone entries and dynamically shrinking the length
of STM can be seen as an improvement from the previous
work [Ho et al., 2003, Ho et al., 2004].

3.3 Long-Term Autobiographic Memory (LTM)

Inspired by human long-term memory
[Alba and Hasher, 1983] and autobiographic memory



Figure 5: Event Specific Knowledge (ESK) of Long-term
Memory (LTM).

[Conway, 1992] models from related research in psychol-
ogy, we developed a more sophisticated LTM architecture,
which addresses our fundamental research issue - auto-
biographic memory. In this LTM architecture, we are
interested in investigating how the Event Reconstruction
(ER) process in LTM can be beneficial when the agent
recalls all possible past events from its Event Specific
Knowledge (ESK). Also, we are proposing a method for
how an event can be eventually selected from numerous
reconstructed events in the filtering and ranking processes.

3.3.1 Event Specific Knowledge (ESK)

An LTM agent surviving in the dynamic environment has
a long list of ‘history’, which contains records of situa-
tions, called Event Specific Knowledge (ESK). Similar to
the Event-based memory entry making mode in STM, each
record in ESK is a situation of a particular moment when the
agent tries to remember the event context – in this case, the
objects and the landform of its surrounding environment and
its internal physiological variables; the name of each field in
a LTM record and sample entries are shown in Figure 5.

Some records, which individually describe special situa-
tions about the environment, are noticed by the LTM agent
as environmental rules. These records have their unique
combinations of various keys:Condition 1, Condition 2,
Match KeyandSearch Key, whereSearch Keyindicates a
resource that can be obtained ifCondition 1andCondition
2 hold in the area specified byMatch Key. By recognizing
and remembering these environmental rules, an LTM agent
can enhance the precision when filtering out events in the
Event Filtering and Ranking (EFR) processes, more details
are provided in Sub-section 3.3.3.

3.3.2 Event Reconstruction (ER) Process

The Event Reconstruction process proceeds as follows: if
one of the internal variables of the LTM agent is lower than
the threshold, the agent will search all records in its LTM
and to retrive at least one relevant event. In order to form
groups of events taking place in different periods of time,
and also regarding different types of resources or landform,
the ER process retrieves a certain amount of records from
ESK and reconstructs each event by using the ‘meaningful’
Search Key(Figure 5). Then it will recognize the possi-
ble sequence of how an event should be organized - aRedo

Figure 6: Result from Event Reconstruction (ER) process -
autobiographic memory schema.

event can be used to repeat a previous situation by execut-
ing actions in the original order, in contrast anUndoevent
matches situations that happened in the past which can be
reached again by executing inverses of actions in reversed
order, i.e. undoing each action.

Deciding the appropriate length of each event, which
means how many records are related to a specific event, is
one of the important processes during ER process. TheKey
Record(Figure 5) contains the appropriateSearch Keyto in-
dicate one of the target resources for satisfying the current
internal needs of the agent, the length and the final situa-
tion of a Redoor Undo event are recognized by checking
the Match Keyin the Key Recordto find out the situation
that is most appropriate to the current one. Checking the
Match Keycan be done in both directions, searching back-
ward for aRedoevent and forward for anUndo event ac-
cording to the time. Figure 6 shows, after all possible events
have been reconstructed by records from ESK, an autobio-
graphic memory schema dedicated for satisfying a specific
internal physiological variable.

With regard to the dynamic virtual environment intro-
duced in Section 2, all possible events which are generated
by the environment and can be remembered by the agent in
its LTM, are classified in Table 3.

3.3.3 Event Filtering and Ranking (EFR) Processes

After a LTM agent survives for a certain period of time and
wanders around different areas in the environment, its ER
process is able to produce groups of events when it needs to
retrieve an appropriate event from its LTM. Therefore in the
next stage we add Event Filtering and Ranking (EFR) Pro-
cesses to 1) filter out inappropriate events by applying en-
vironmental rules learnt from situations when the agent was
surviving in the dynamic environment, and then 2) rank the
remaining events by measuring their significance of them to
the agent.

The first step of EFR processes is searching for thein-
stantaneous context, where the situation the agent is cur-
rently facing fully matches the target situation specified by
theKey Record; in this case, the agent will directly execute
the LTM Tracebehaviour (Redoing a sequence of actions
with length zero) and just wander around in the same area
and wait for the target object to appear. If the current situa-
tion doesn’t match any target situation, in the second step of
EFR processes some events which are inappropriate to the



Possible Event Effect to Internal Variable
Target

(Resource, Object

or Location)

Environmental

Condition

Looking for Apple Tree Glucose(I), Moisture(D) Apple trees in Oasis area Summer only

Looking for River Moisture(I), Temperature(D) River Summer only

Looking for Lake Moisture(I), Temperature(D) Lake Summer only

Looking for Caves Energy(I) Caves at Mountain’s foot

Looking for Mushrooms Glucose(I) Mushrooms
Climbing up Mountains

(Energy (D))
Eating Cactus Glucose(I), Moisture(I) Cactus in Desert area With a stone in hand

Hurt by Cactus Energy(D) Cactus in Desert area No stone in hand

Picking Stone Stone(Picked) Stone in Desert area

Location of Mountain area
Temperature(D), Glucose(I) (from

Mushroom) Mountain Area

Location of Oasis area
Temperature(D), Glucose(I),

Moisture(I) (from Apple Tree)) Oasis Area

Location of Desert area
Temperature(I), Glucose(I),

Moisture(I) (from Cactus), Stone
(picks up)

Desert Area

River water flow
Energy(D), Moisture(D), Glucose(D)

(gets stuck) River Summer only

Irreversible Waterfall
Energy(D), Moisture(D), Glucose(D)

(gets stuck) Waterfall

Table 3: Possible events for Long-term Memory (LTM) agent to remember (I: Increase, D: Decrease).

Figure 7: Event Filtering and Ranking (EFR) processes.

current situations will be filtered out by using environmen-
tal rules (shown asCondition 1 & 2in Figure 5). If there is
more than one event left after the filtering process, a rank-
ing process will choose the most significant event (shown as
Priority Key (Type 1)in Figure 5) to do theLTM Trace. The
most significant event is calculated by measuring the total
change of internal physiological variablesglucose, moisture
andenergy. EFR processes are illustrated in Figure 7.

To execute aLTM Trace(either aRedoor Undoevent),
the agent will try to achieve the next situation from the cur-
rent situation, until it reaches the target one. For example,
once an LTM agent wandering in theOasisarea needs to
find Cactusin theDesertarea, this agent follows the recon-
structed event experienced in the past, which indicates that
in order to reach the desert area, the agent will need to go
to the mountain area, and then the desert area. Before it can
consume the cactus, the event also indicates that the agent
should have aStoneto crush theCactus; therefore it only
searches for aStoneafter it reaches the desert area.

4 Experiments

To measure the performance of four types of agent archi-
tecture PR, STM, LTM and STM+LTM running in the dy-
namic virtual environment, we carried out 10 experimental
runs for each architecture; each run takes approximately 20

minutes on a Pentium 4 2.0GHz PC with 512MB Ram. For
the fourth type STM+LTM control architecture, we have ar-
ranged the STM to have higher priority to execute itsTrace-
backprocess thanLTM Tracein the sense of decision mak-
ing. The starting position for all agents in the experiments
is in the center of the oasis area.

Apart from the main measured dependent variable - the
average lifespan in 10 experimental runs of each agent con-
trol architecture, we also observe the capability of each ar-
chitecture in keeping up its internal variables in the ideal
value range. Therefore, in each experimental run we
recorded the change of all internal variables by monitor-
ing over time. We expect that a desirable control architec-
ture for agents surviving in a highly dynamic environment
should be able to maintain all internal variables in the ideal
value range - in this study, this means most of the time inter-
nal variablesglucose, moistureandenergyshould be kept at
a level higher than a threshold (half of the maximum value).

4.1 Results

Figure 8 shows lifespans of four types of agent. Since we
are also interested in observing each agent’s comprehensive
behaviour generated from its unique control architecture,
Figure 9 and Figure 10 illustrate how well all four types
of agents maintain their internal physiological variables.

4.2 Discussion and Analysis

Figure 8 shows significant results namely that the average
lifespan of the LTM agent and the STM+LTM agent outper-
form the PR agent, which implies that having LTM helps
agents to be more adaptive in the sense of surviving in the
highly dynamic environment. However, the performance of
the Trace-backprocess from the STM agent is sometimes
affected by the environmental dynamics, such as the sea-
sonal resource distributions; therefore the average lifespan



Figure 9: Examples of internal variables’ changes of a Purely Reactive (PR) agent (upper graph) and a Short-term Memory
(STM) agent (lower graph), in time window of lengh 25000 steps.

Figure 10: Examples of internal variables’ changes of a Long-term Memory (LTM) agent (upper graph) and a Short-term
Memory plus Long-term Memory (STM+LTM) agent (lower graph), in time window of lengh 25000 steps.

Figure 8: Experimental results with confidence values (error
bars) showing the average lifespan of the 4 different agent
control architectures running 10 times in each condition in
the environment.

of the STM agent, with a high range of confidence value,
cannot be considered as outperforming the PR agent; al-
though from time to time the STM agent withTrace-back
process is able to precisely undo all actions of an event and
come back to the resource which was encountered previ-
ously.

The agent with STM+LTM has the highest average lifes-
pan; this result is reflected in agent’s memory control archi-
tecture as it combines the precision offered by theTrace-
backprocess from STM and the flexibility of LTM to cope
with the environmental dynamics. Furthermore, agents with
LTM memory appear to be capable to maintain their physi-
ological variables in the ideal value range most of the time,
comparing with PR and STM agents, as shown in Figure 9
and Figure 10. The reason is that STM agents need to spend
a certain amount of time and internal variables’ energy to

execute theTrace-backprocess in order to reach the target
resource or landform, as indicated in Figure 9.

Compared to the previous work [Ho et al., 2003,
Ho et al., 2004], in which we studied a single PR or STM
agents surviving in a flat and static virtual environment with
constant resource distributions; in this work results show
that LTM agents with a sophisticated autobiographic mem-
ory architecture, inspired by human memory research in
psychology, can survive and cope with events in a dynamic
and temporally rich environment with the characteristics of
irreversibility and non-commutativity. Experiment results
and observations showed that the mechanisms for guiding
behaviour executions from PR and STM agents tend to be
too simple for the dynamically changing environment.

On the other hand, after LTM agents learnt some envi-
ronmental rules by experiencing them, such as when climb-
ing up the mountain or getting stuck in the lake area will
cost more internal variables than wandering in other ar-
eas. They tend to stay wandering in the area where they
can find every necessary resource to maintain their internal
variables in the ideal value range. The process of ranking
event-significance also helps the agent to avoid going to ar-
eas highly costly for internal variables.

Finally, comparing with STMTrace-backprocess, the
process of LTMTrace keeps the agent’s choice open to-
wards all other types of resources: when accidentally sens-
ing other resources rather than the target one decided by the
ER and EFR processes, the agent will firstly pick up that
resource and then continue the LTM trace, if still necessary,
by again executing ER and EF processes to check out its
current needs. Moreover, in each fixed period of time, the
status ofLTM tracewill be updated in order to 1) cope with



some target objects which are difficult to be found in the
area and 2) switch to other targets for fulfilling the same
need of internal need or other internal needs.

5 Conclusions and Future Work

Through experimental results on agents with different mem-
ory control architectures surviving in the dynamic virtual
environment, we confirmed that a more sophisticated Long-
term Autobiographic Memory control architecture effec-
tively extends a PR agent’s lifespan and increases the sta-
bility reflected in the changes of internal physiological vari-
ables over time. We have also shown the design of improved
STM and LTM control architectures in detail, and the com-
bination of them produces the best result in average lifespan
coping with dynamic environmental conditions in a large-
scale virtual environment.

In future, this work can be extended in many ways.
Firstly, STM and LTM agents’ further potential can be dis-
covered by running them in a even larger scale dynamic en-
vironment with different object distribution rules. Secondly,
we can improve the current architecture to get a better co-
ordination of functionalities of STM and LTM; for exam-
ple, motivation-based decision making mode can be used to
solve the conflicts between the executions of output from
STM and LTM. Last but not least, we are interested in de-
signing and implementing multiple autobiographic agents
in ‘story-telling’ virtual environments, in which agents can
communicate their experience to each other or to humans.

Realizations in artificial agents of story-telling and
narrative features can benefit from the temporal hori-
zon of autobiographic agents using temporally extended
meaningful information [Ho et al., 2004, Nehaniv, 1999,
Nehaniv et al., 2002], and should thus benefit from LTM.
In addition to this, by receiving and re-using (and verifying)
events from other agents (‘stories’), an agent with Long-
term Autobiographic Memory may be able to recognize
other agents individually. During the agent’s lifetime, since
it manages the history of interactions with other agents in
the past and there will be an increasing influence on agents’
behaviours from this history, some processes in EFR can
later be developed into having higher priorities in choosing
which event is to be executed; this implies that certain levels
of trust, as well as distrust, could be built up between agents
as time passes by.
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