
Genetic Programming for Generating Prototypes in Classification Problems

L. P. Cordella
DIS, Università di Napoli

Via Claudio, 21 80125
Napoli – Italy

cordel@unina.it

C. De Stefano
DEIMI, Università di

Cassino
Via G. Di Biasio, 43 02043

Cassino (FR) – Italy
destefano@unicas.it

F. Fontanella
DIS, Università di Napoli

Via Claudio, 21 80125
Napoli – Italy

frfontan@unina.it

A. Marcelli
DIIIE, Università di

Salerno
Via Ponte don Melillo, 1

84084
Fisciano (SA) – Italy
amarcelli@unisa.it

Abstract- We propose a genetic programming based
approach for generating prototypes in a classification
problem. In this context, the set of prototypes to which
the samples of a data set can be traced back is coded
by a multitree, i.e. a set of trees, which represents the
chromosome. Differently from other approaches, our
chromosomes are of variable length. This allows cop-
ing with those classification problems in which one or
more classes consist of subclasses. The devised approach
has been tested on several problems and the results com-
pared with those obtained by a different genetic pro-
gramming based approach recently proposed in the lit-
erature.

1 Introduction

Classification is a very important task in the machine learn-
ing context. In the most common case, the problem implies
a supervised training phase in which a set of data samples,
each labeled with the name of the class it belongs to, is pro-
vided to the system. From such data, classification rules,
decision trees, or mathematical functions can be inferred
and afterwards employed to classify unknown data. Many
methods have been proposed for solving classification prob-
lems [1] and many of them are based on mathematical the-
ories. The probability-based methods, for instance, have
been founded on Bayesian decision theory [2].

In the last years several modern computational tech-
niques have been introduced for developing new classifiers
[3, 4]. Among others, evolutionary computation techniques
have been also employed. In this field, genetic algorithms
[5, 6] and genetic programming [7, 8] have mostly been
used. The former approach encodes a set of classification
rules as a sequence of bit strings. In the latter approach
instead, such rules, or even classification functions, can
be learned. The technique of Genetic Programming (GP)
was introduced by Koza [8] in 1987 and has been applied
to several problems like symbolic regression, robot control
programming, classification, etc. GP based methodologies
have demonstrated the ability to discover underlying data
relationships and to represent these relationships by expres-

sions. GP has already been successfully used in many dif-
ferent applications [9, 10, 11]. Although genetic algorithms
have often been used for dealing with classification prob-
lems, only recently some attempts have been made to solve
such problems using GP [12, 13, 14, 15]. In [13], GP has
been used to evolve equations (encoded as derivation trees)
involving simple arithmetic operators and feature variables,
for hyper-spectral image classification. In [12], GP has also
been employed for image classification problems, adding
exponential functions, conditional functions and constants
to the simple arithmetic operators. In [15], an interesting
method which considers ac-class problem as a set ofc two-
class problems has been introduced. In all the above quoted
approaches, the numberc of classes to be dealt with is used
to divide the data set at hand in exactlyc clusters. Thus,
these approaches do not take into account the existence of
subclasses within one or more of the classes in the analyzed
data set.

We present a new GP based method for determining the
prototypes in ac-class problem. In the devised approach,
the prototypes describing samples belonging toc different
classes, withc ≥ 2, consist of logical expressions. Each
prototype is representative of a cluster of samples in the
training set and consists of a set of assertions (i.e. logical
predicates) connected by Boolean operators. Each assertion
establishes a condition on the value of a particular feature
of the samples in the data set to be analyzed. The number
of expressions is variable and may be greater or equal to the
number of classes of the problem at hand. In fact, in many
classification problems a single class may contain a variable
number of subclasses. Hence,c expressions may not be able
to effectively classify all the samples, since a single expres-
sion might be inadequate to express the characteristics of
all the subclasses present in a class. The devised approach,
instead, is able to automatically finding all the subclasses
present in the data set, since a class can be represented by
a variable number of logical expressions. The length of a
single expression, i.e. the number of predicates contained
in it, is also variable. Each expression may represent either
a class or a subclass of the problem. The proposed method
works according to the evolutionary computation paradigm.

The set of prototypes describing the classes makes up asin-
gle individual of the evolving population. Each prototype is
encoded as a derivation tree, thus an individual is a multi-
tree (i.e a list of trees). Given an individual and a sample,
classification consists in attributing the sample to one of the
classes (i.e. in associating the sample to one of the pro-
totypes). The recognition rate obtained on the training set
when using an individual is assigned as fitness value to that
individual. At any step of the evolution process, individu-
als are selected according to their fitness value. At the end
of the process, the best individual obtained, constitutes the
set of prototypes to be used for the considered application.
Our method for automatic prototyping has been tested on
three publicly available databases and the classification re-
sults have been compared with those obtained by another
GP based approach [16]. In this method individuals are also
represented by lists of trees, but expressions involve simple
arithmetic operators and constants. Differently from our ap-
proach, the number of expressions making up an individual
is a priori fixed.

The paper is organized as follows: Section 2 reports a
formalization of data classification; Section 3 illustrates the
approach used to classify the data; in Section 4 the imple-
mentation of the evolutionary approach is presented, while
Section 5 reports the experimental results. Finally, Section
6 is devoted to the conclusions.

2 Data Classification

In the data classification context a set of objects to be ana-
lyzed is calleddata set, and each object is calledsampleand
represented byX = (x1, . . . , xℓ) with X ∈ S, whereS is
the universe of all possible elements characterized byℓ fea-
tures andxi denotes thei–th feature of the sample. A data
set with cardinalityND is denoted byD = {X1, . . . ,XND

}
with D ⊆ S. The setD is saidlabeledif it exists a set of
integers:

Λ = {λ1, . . . , λND
} : λi ∈ [1, c]

Thei–th elementλi of Λ is said thelabelof thei–th sample
Xi of D. We will say that the samples ofD can be grouped
into c different classes. Moreover, given the sampleXi and
the labelλi = j, we will say thatXi belongs to thej–th
class.

Given a data setD = {X1, . . . ,XND
} containingc

classes, a classifierΓ is defined as a function

Γ : D −→ [0, c]

In other words, a classifier assigns a labelγi ∈ [0, c] to each
input sampleXi.
If γi = 0, the corresponding sampleXi is saidrejected.
This fact means that the classifier is unable to trace the sam-
ple back to any class.

The sampleXi is recognizedby Γ if and only if:

γi = λi

otherwise the sample is saidmisclassified. If Ncorr is the
number of samples ofD recognized byΓ the ratioNcorr/ND

is defined as therecognition rateof the classifierΓ obtained
on the data setD.

3 Description of the Approach

In our approach a set of prototypes, each characterizing a
different class or subclass, consists of a set of logical ex-
pressions. Each expression may contain a variable number
of predicates holding for the samples belonging to one class
in the training set taken into account. A predicate estab-
lishes a condition on the value of a particular feature. If all
the predicates of an expression are satisfied by the values
in the feature vector describing a sample, we say that the
expressionmatchesthe sample. Training the classifier is ac-
complished by means of the evolutionary computation para-
digm described in the following Section 4 and provides a set
of labeled expressions (i.e. of labeled prototypes). Note that
different expressions may have the same label in case they
represent subclasses of a class. Given a data set and a set of
labeled expressions, the classification task is performed in
the following way: each sample of the data set is matched
against the set of expressions andassignedto one of them
(i.e. to a subclasses) or rejected. Different cases may occur:

1. The sample is matched by just one expression: it is
assigned to that expression.

2. The sample is matched by more than one expression
with different number of predicates: it is assigned
to the expression with the smallest number of pred-
icates.

3. The sample is matched by more than one expression
with the same number of predicates and different la-
bels: the sample is rejected.

4. The sample is matched by no expression: the sample
is rejected.

5. The sample is matched by more than one expression
with equal label: the sample is assigned to the class
the expressions belong to.

Hereinafter, this process will be referred to asassignment
process, and the set of samples assigned to the same expres-
sion will be referred to ascluster.

4 Learning Classification Rules

As mentioned in the introduction, the prototypes to be used
for classification are given in terms of logical expressions.
Since logical expressions may be thought of as computer
programs, a natural way for introducing them in our learn-
ing system is that of adopting the GP paradigm. Our GP
based system starts by randomly generating a population
of p individuals. The individual phenotype is a string con-
taining a set of logical expressions, each one encoded as a
derivation tree. Hence, the chromosome of the individual
is a multitree (i.e. a list of trees), and the number of trees
in its chromosome will be referred in the following as the
lengthof the individual. The length of the individuals in the
initial population ranges from 2 toLmax. Afterwards, the
fitness of such individuals is evaluated. In order to generate
a new population, first the beste individuals are selected
and copied in the new population so as to implement an
elitist strategy. Then(p − e)/2 couples of individuals are
selected using the tournament method, so as to control loss
of diversity and selection intensity [17]. The crossover op-
erator is applied to each of the selected couples, according
to a chosen probability factorpc. Then, the mutation is ap-
plied to the individuals according to a probability factorpm.
Finally, these individuals are added to the new population.
The process just described is repeated forNG generations.
The following steps must be executed before implementing
the above paradigm:

• definition of the structure to be evolved;

• choice of the fitness function;

• definition of the genetic operators;

4.1 Structure Definition

The implementation requires a program generator, provid-
ing syntactically correct programs, and an interpreter forex-
ecuting them. The program generator is based on a gram-
mar written forS-expressions. A grammarG is defined as
a quadrupleG = (T ,N , S,P), whereT andN are disjoint
finite alphabets.T is said theterminal alphabet, whereasN
is said thenonterminal alphabet. S, is the starting symbol
andP is the set ofproduction rulesused to define the strings
belonging to the language, usually indicated byv −→ w
wherev is a string on(N ∪ T) containing at least one non-
terminal symbol, andw is an element of(N ∪ T)∗. The
grammar employed is given in Table 1.

As mentioned above, the chromosome of each individual
consists of a variable number of derivation trees. The root of
every tree is the symbolS that, according to the related pro-
duction rule, can be replaced only by the string “A$”. The
symbolA can be replaced by any recursive combination of
logical predicates, each one establishing the constraintson

Number Rule Probability
1 S −→ A$ 1.0
2 A −→ ABA|D 0.2, 0.8
3 B −→ ∨|∧ equiprobable
4 D −→ (P > V)|(P < V) equiprobable
5 P −→ a0|a1| . . . |aN equiprobable
6 V −→ +0.XX | − 0.XX equiprobable
7 X −→ 0|1|2|3|4|5|6|7|8|9 equiprobable

Table 1: The grammar for randomly generating logical ex-
pressions.N is the dimension of the feature space. Nonter-
minal symbols are denoted by capital letters.

the value of a feature. The terminal symbol $ has been in-
troduced to delimit different logical expressions within the
phenotype of an individual. Summarizing, the genotype of
each individual is seen as a list of derivation trees whose
leaves are the terminal symbols of the grammar defined for
constructing the set of logical expressions, i.e. the proto-
types. The set of logical expressions making up the pheno-
type of an individual is obtained by visiting each derivation
tree in depth first order and copying into a string the sym-
bols contained in the leaves. In such string, the first logical
expression derives from the first tree in the list, the second
one derives from the second tree in the list and so on. Since
the grammar is non-deterministic, to reduce the probability
of generating too long expressions (i.e. too deep trees) the
action carried out by a production rule is chosen on the ba-
sis of fixed probability values (shown in the last column of
Table 1). Moreover, an upper limit has been imposed on the
total number of nodes contained in an individual, i.e. the
sum of nodes contained in each tree. Examples of chromo-
somes are shown in Fig. 1.

The interpreter is implemented by an automaton which
computes Boolean functions. Such an automaton accepts as
input an expression and a sample and returns as output the
value true or false depending on the fact that the expression
matches or not the sample.

4.2 Training Phase and Fitness Function

The system is trained with a set containingNtr patterns.
The training set is used for evaluating the fitness of the indi-
viduals in the population. This process implies the follow-
ing steps:

1. The assignment of the training set samples to the ex-
pressions belonging to each individual is performed.
After this step,ni (ni ≥ 0) samples have been as-
signed to thei-th expression. Note that each expres-
sion for whichni > 0 is associated with a cluster.
In the following these expressions will be referred to
asvalid. The expressions for whichni = 0 will be

2T T3 T4T1

(a)

3T

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

T2 T1

(b)

3T T4

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

T2 T1

(c)

3T

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

T2 T1

(d)

Figure 1: (a) and (b) ChromosomesC1 andC2 of length respectively equal to 4 and 3. (c) and (d) The chromosomes
obtained after applying the crossover operation witht1 = 2 andt2 = 1.

ignored in the following steps.

2. Each valid expression of an individual is labeled with
the label most widely represented in the correspond-
ing cluster.

3. For every individual (i.e. a set of prototypes) a clas-
sifier is built up and its recognition rate is evaluated.
Such rate is assigned as fitness value to the individual.

In order to favor those individuals able to obtain good per-
formances with a lesser number of expressions, the fitness
of each individual is increased by0.1/Nc, whereNc is the
number of expressions in an individual.

4.3 Genetic Operators

The genetic operators are applied to the lists of derivation
trees encoding the individuals defined in Section 4.1. This
allows us to implement the genetic operators in a simple
way acting either on the lists or on the trees. Two opera-
tors are defined for modifying the individuals of the popu-
lation: crossoverandmutation. Both the operators preserve
the syntactic correctness of the expressions representingthe
new individuals generated.

4.3.1 Crossover

The crossover operator is applied to two chromosomesC1

andC2 and yields two new chromosomes by swapping parts
of the lists of the initial chromosomes. Assuming that
the length ofC1 and C2 are respectivelyL1 and L2, the
crossover is applied in the following way: the first chromo-
some is split in two parts by randomly choosing an integer
t1 in the interval[1, L1]. The obtained multitreesC

′

1
and

C
′′

1
will have lengtht1 andL1 − t1 respectively. Analo-

gously, by randomly choosing an integert2 in the interval

[1, L2], two multitreesC
′

2
andC

′′

2
, respectively of length

t2 and L2 − t2, are obtained fromC2. At this stage, in
order to obtain a new chromosome, the listsC

′

1
and C

′′

2

are merged. This operation yields a new chromosome of
lengtht1 + L2 − t2. The same operation is applied to the
remaining listsC

′

2
andC

′′

1
and a new chromosome of length

t2 + L1 − t1 is obtained.
From the phenotype perspective, the result of applying

the crossover is swapping substrings containing entire log-
ical expressions. The number of the swapped expressions
depends on the integerst1 andt2. It is worth noting that the
implemented crossover operator allows us to obtain chro-
mosomes of variable length. Hence, during the evolution
process, individuals made of a variable number of proto-
types can be evolved.

4.3.2 Mutation

The mutation operator is independently applied to every tree
of the chromosomeC with probabilitypm. More specifi-
cally, given a treeTi, the mutation operator is applied by
randomly choosing asinglenonterminal node inTi and then
activating the corresponding production rule in order to sub-
stitute the subtree rooted under the chosen node. It is impor-
tant to note that if the chromosomeC containsn nontermi-
nal nodes andpm is the mutation probability, the probability
of mutating each single node ofC is equal topm/n.

The effect of the mutation depends on the nonterminal
symbol chosen. In fact, this operation can result either in
the substitution of the related subtree, causing a macro-
mutation, or in a simple substitution of a leaf node (micro-
mutation). For instance, considering the grammar of Table
1, if a node containing the symbolD is chosen, then the
whole corresponding subtree is substituted. In the pheno-
type, this operation causes the substitution of the predicates
encoded by the old subtree with those encoded by the new

generated subtree. If, instead, the symbolX is chosen, only
a leaf of the tree is substituted, causing, in the phenotype,
the substitution of a single digit with one of those in the
right side of the rule.

5 Experimental Results

Three data sets have been used for training and testing the
previously described approach. The sets are made of real
data and are available at UCI site [18] with the names IRIS,
BUPA and Vehicle (see Table 2).

IRIS This is the well known Anderson’s Iris data set [19].
It consists of 150 samples characterized by four fea-
tures representing measures taken on iris flowers of
three different classes, equally distributed in the set.
The four features are sepal length, sepal width, petal
length and petal width.

BUPA The BUPA liver disorders data set consists of 345
samples distributed in two classes of liver disorders.
Six features characterize each sample.

Vehicle The samples of this data set are images of 3D ob-
jects (vehicles). The data set is made of 846 samples
distributed in four classes. Each sample is described
by a vector of 18 features.

In order to use the grammar shown in Table 1 the features
of the data sets taken into account have been normalized
in the range[−1.0, 1.0]. Given a not normalized sample
X = (x1, . . . , xN), every featurexi is normalized using
the formula:

xi =
xi − xi

2σi

wherexi andσi, respectively represent the mean and the
standard deviation of thei-th feature computed over the
whole data set.

Each dataset has been divided in two parts, a training
set and a test set. These sets have been randomly extracted
from the data sets and are disjoint and statistically indepen-
dent. The first one has been used during the training phase
to evaluate, at each generation, the fitness of the individu-
als in the population. The second one has been used at the
end of the evolution process to evaluate the performance of
our method. In particular, the recognition rate over the test

Name Classes Features Size
IRIS 3 4 150(50+50+50)

BUPA 2 6 345(145+200)
Vehicle 4 18 846(212+217+218+199)

Table 2: The data sets used in the experiments. The class
distribution is shown between brackets in the last column.

Parameter symbol value
Population size p 200
Tournament size T 10
elithism size e 5
Crossover probability pc 0.4
Mutation probability pm 0.8
Number of Generations NG 300
Maximum number of nodes Nmax 1000
Maximum length of an individual Lmax 20

Table 3: Values of the basic evolutionary parameters used
in the experiments.

set has been computed using a classifier implemented by
choosing the best individual generated during the training
phase. For the sake of comparison, at each generation, the
best individual in the population has been considered and
the obtainable recognition rates on both training set and test
set, have been evaluated.
The values of the evolutionary parameters, used in all the
performed experiments, have been heuristically determined
and are summarized in Table 3. The performance of the
proposed classification scheme has been evaluated by a 10-
fold cross validation procedure: the data set has been di-
vided in ten parts, alternatively used as test set. For each
given test set ten runs have been performed with different
initial population, but keeping unchanged all the other para-
meters. Hence, 100 runs have been performed for each data
set. Such protocol has been used for comparing our results
with those reported in the literature.

In a learning process, in most cases, when the maximum
recognition rate is achieved, the generalization power, i.e.
the ability of obtaining the same rate on a different data set
(the test set), may not be the best. In order to investigate
such ability for our system, the recognition rates on train-
ing and test set have been taken into account for the dif-
ferent considered data sets. In Figure 2 such recognition
rates, evaluated every 50 generations, in a typical run for
the BUPA and Vehicle data sets, are displayed. It can be ob-
served from the figure that, in the experiments carried out,
the recognition rate increases with the number of genera-
tions both for the training set and for the test set. The best
recognition rates occurring in both cases nearby generation
250. Moreover, the fact that the difference between the two
recognition rates tend to increase when that on the training
set reaches its maximum, suggests that the use of a valida-
tion set could further improve the classifier performances.

The proposed approach has been compared with another
GP based approach [16] in which an individual consists of
a set of expressions (i.e. prototypes) involving simple arith-
metic operators, constants and feature variables. Each ex-

Generation
50 100 150 200 250 300

R
ec

o
g

n
it

io
n

 r
at

e

55,0

60,0

65,0

70,0

75,0

80,0

Test set
Train set

(a) (b)

Figure 2: Recognition rate on training and test sets for the BUPA (a) and Vehicle (b) data sets during a typical run.

pression establishes conditions on the values of a variable
number of features characterizing the data to be analyzed.
The samples are matched against the expressions and as-
signed to the one satisfying the constraints on feature val-
ues.
Similarly to our approach, each individual is encoded as a
multitree, but the number of trees (i.e. expressions) for each
individual is constant and a priori fixed equal to the number
of classes of the problem at hand. Moreover, each tree is a
priori labeled: the first tree with the label of the first class,
the second tree with that of the second class and so on. As a
consequence, a sample belonging to thei–class is correctly
classified only if it is assigned to thei–tree of the individual.
In Table 4 the recognition rates obtained on the test set by
the two methods are shown. Since the GP approach is a sto-
chastic algorithm, the standard deviations are also shown.
Moreover, the average number of clusters found by our
method (represented by valid expressions in the considered
individual) and the related standard deviation are reported.
For the IRIS data set, 99.4% of the test set has been correctly
recognized by our classification system, against 98.67% ob-
tained by the method considered for comparison. Instead,

Data sets R2 R1 σR1
NC1

σNC1

IRIS 98.67 99.4 0.5 3.03 0.2
BUPA 69.87 74.3 3.0 2.36 0.5
Vehicle 61.75 66.5 2.0 4.8 0.6

Table 4: The average recognition rates (%)R1 andR2 for
our classifierC1 and the comparison classifierC2. The stan-
dard deviation in case ofC1 is given. The average number
Nc of data clusters found byC1 and the related standard
deviation are also shown.

for the BUPA data set our method is able of correctly recog-
nizing 74.3% of the test set, a rate significantly better than
that obtained in [16] (69.87%). Also for the Vehicle data set,
our method performs significantly better than the compari-
son method, achieving on the test set the recognition rate of
66.5%, against 61.75% obtained by the other method. Sum-
marizing, the experimental results show that the proposed
method outperforms the method used for comparison on all
the data sets taken into account. Thus, the comparison car-
ried out confirms the validity and the effectiveness of the
proposed approach.

6 Conclusions

A new genetic programming based approach to prototype
generation and classification has been proposed. According
to the approach, a population is evolved where each indi-
vidual consists of a set of possible prototypes of the classes
present in the data set to be analyzed. A prototype con-
sists of a set of logical expressions establishing conditions
on feature values and thus describing classes of data sam-
ples. The recognition rate obtained using each given set of
prototypes is used as fitness function for controlling the evo-
lution. The method is able to automatically clustering the
data, without forcing the system to find a predefined num-
ber of clusters. This means that a class is neither necessarily
represented by one single prototype nor by a fixed number
of prototypes. On the contrary, other methods, namely the
one used for comparison, a priori set the number of possi-
ble clusters. The greater flexibility of our method depends
on the dynamic labeling mechanism of logical expressions,
which allows us to reduce the constraints imposed during
the prototyping process.

The proposed approach has been tested on three publicly

available data sets and the obtained results have been com-
pared with those obtained by another GP based approach
reported in the literature. The comparison has shown that
the results obtained by our system on the data sets taken
into account are significantly better than those obtained by
the other approach.

Bibliography

[1] Richard O. Duda, Peter E. Hart and David G. Stork,
Pattern Classification, John Wiley & sons, Inc., 2001.

[2] David Heckerman and Michael P. Wellman, “Bayesian
Networks.”, Communications of the ACM, vol. 38,
n. 3, pp. 27–30, 1995.

[3] Guoqiang Peter Zhang, “Neural networks for classi-
fication: a survey.”, IEEE Transactions on Systems,
Man, and Cybernetics, Part C, vol. 30, n. 4, pp. 451–
462, 2000.

[4] J. Ross Quinlan,C4.5: programs for machine learn-
ing, Morgan Kaufmann Publishers Inc., 1993.

[5] John H. Holland,Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications
to Biology, Control and Artificial Intelligence, MIT
Press, 1992.

[6] David E. Goldberg,Genetic Algorithms in Search, Op-
timization and Machine Learning, Addison-Wesley
Longman Publishing Co., Inc., 1989.

[7] John R. Koza, Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selec-
tion, MIT Press, Cambridge, MA, USA, 1992.

[8] John R. Koza,Genetic programming II: automatic dis-
covery of reusable programs, MIT Press, Cambridge,
MA, USA, 1994.

[9] Riccardo Poli, “Genetic Programming for Image
Analysis”, Technical Report CSRP-96-1, University
of Birmingham, UK, January 1996.

[10] Andreas Bastian, “Identifying fuzzy models utiliz-
ing genetic programming”,Fuzzy Sets and Systems,
vol. 113, n. 3, pp. 333–350, 2000.

[11] Mario Koppen and Bertram Nickolay, “Genetic pro-
gramming based texture filtering framework”,Pattern
recognition in soft computing paradigm, pp. 275–304,
2001.

[12] Davide Agnelli, Alessandro Bollini and Luca Lom-
bardi, “Image classification: an evolutionary ap-
proach.”, Pattern Recognition Letters, vol. 23, n. 1-3,
pp. 303–309, 2002.

[13] Patrick J. Rauss, Jason M. Daida and Shahbaz A.
Chaudhary, “Classification of Spectral Image Using
Genetic Programming.”, inGECCO, pp. 726–733,
2000.

[14] Ivanoe De Falco, Antonio Della Cioppa and Ernesto
Tarantino, “Discovering interesting classification rules
with genetic programming.”, Appl. Soft Comput.,
vol. 1, n. 4, pp. 257–269, 2002.

[15] J. K. Kishore, L. M. Patnaik, V. Mani and V. K.
Agrawal, “Application of genetic programming for
multicategory pattern classification”,IEEE Trans-
actions on Evolutionary Computation, vol. 4, n. 3,
pp. 242–258, September 2000.

[16] Durga Prasad Muni, Nikhil R. Pal and Jyotirmoy Das,
“A novel approach to design classifiers using genetic
programming.”,IEEE Trans. Evolutionary Computa-
tion, vol. 8, n. 2, pp. 183–196, 2004.

[17] Tobias Blickle and Lothar Thiele, “A Comparison
of Selection Schemes Used in Genetic Algorithms”,
Technical Report 11, Gloriastrasse 35, 8092 Zurich,
Switzerland, 1995.

[18] C.L. Blake and C.J. Merz, “UCI Repository of ma-
chine learning databases”, 1998.

[19] E. Anderson, “The Irises of the gaspe peninsula”,Bull.
Amer. IRIS Soc., vol. 59, pp. 2–5, 1935.

