Genetic Programming for Generating Prototypes in Classifiation Problems

L. P. Cordella C. De Stefano F. Fontanella A. Marcelli
DIS, Universita di Napoli DEIMI, Universita di DIS, Universita di Napoli DIIIE, Universita di
Via Claudio, 21 80125 Cassino Via Claudio, 21 80125 Salerno
Napoli — Italy Via G. Di Biasio, 43 02043 Napoli — Italy Via Ponte don Melillo, 1
cordel@unina.it Cassino (FR) — Italy frfontan@unina.it 84084
destefano@unicas.it Fisciano (SA) — Italy

amarcelli@unisa.it

Abstract- We propose a genetic programming based sions. GP has already been successfully used in many dif-
approach for generating prototypes in a classification ferentapplications [9, 10, 11]. Although genetic algarith
problem. In this context, the set of prototypes to which have often been used for dealing with classification prob-
the samples of a data set can be traced back is codedlems, only recently some attempts have been made to solve
by a multitree, i.e. a set of trees, which represents the such problems using GP [12, 13, 14, 15]. In [13], GP has
chromosome. Differently from other approaches, our been used to evolve equations (encoded as derivation trees)
chromosomes are of variable length. This allows cop- involving simple arithmetic operators and feature vaesabl

ing with those classification problems in which one or for hyper-spectral image classification. In [12], GP has als
more classes consist of subclasses. The devised approacheen employed for image classification problems, adding
has been tested on several problems and the results com-exponential functions, conditional functions and contstan
pared with those obtained by a different genetic pro- to the simple arithmetic operators. In [15], an interesting
gramming based approach recently proposed in the lit- method which considersaclass problem as a set ofwo-

erature. class problems has been introduced. In all the above quoted
approaches, the numbeof classes to be dealt with is used
1 Introduction to divide the data set at hand in exactlglusters Thus,

these approaches do not take into account the existence of

Classification is a very important task in the machine learrsubclasses within one or more of the classes in the analyzed
ing context. In the most common case, the problem impliedata set.
a supervised training phase in which a set of data samples, We present a new GP based method for determining the
each labeled with the name of the class it belongs to, is prpfototypes in a-class problem. In the devised approach,
vided to the system. From such data, classification rulet)e prototypes describing samples belonging thifferent
decision trees, or mathematical functions can be inferretdasses, withc > 2, consist of logical expressions. Each
and afterwards employed to classify unknown data. Mangrototype is representative of a cluster of samples in the
methods have been proposed for solving classification protsaining set and consists of a set of assertions (i.e. lbgica
lems [1] and many of them are based on mathematical thpredicates) connected by Boolean operators. Each assertio
ories. The probability-based methods, for instance, hawstablishes a condition on the value of a particular feature
been founded on Bayesian decision theory [2]. of the samples in the data set to be analyzed. The number

In the last years several modern computational teclof expressions is variable and may be greater or equal to the
niques have been introduced for developing new classifiensimber of classes of the problem at hand. In fact, in many
[3, 4]. Among others, evolutionary computation techniqueslassification problems a single class may contain a vaiabl
have been also employed. In this field, genetic algorithmsumber of subclasses. Heneexpressions may not be able
[5, 6] and genetic programming [7, 8] have mostly beeto effectively classify all the samples, since a single expr
used. The former approach encodes a set of classificatision might be inadequate to express the characteristics of
rules as a sequence of bit strings. In the latter approaeli the subclasses present in a class. The devised approach,
instead, such rules, or even classification functions, cdnstead, is able to automatically finding all the subclasses
be learned. The technique of Genetic Programming (GRyesent in the data set, since a class can be represented by
was introduced by Koza [8] in 1987 and has been applieal variable number of logical expressions. The length of a
to several problems like symbolic regression, robot cdntrsingle expression, i.e. the number of predicates contained
programming, classification, etc. GP based methodologigsit, is also variable. Each expression may representreithe
have demonstrated the ability to discover underlying data class or a subclass of the problem. The proposed method
relationships and to represent these relationships byesxprworks according to the evolutionary computation paradigm.



The set of prototypes describing the classes makessipa  The sampléX; is recognizedy I' if and only if:
gleindividual of the evolving population. Each prototype is

encoded as a derivation tree, thus an individual is a multi- Vi = Ai

tree (i.e a list of trees). Given an individual and a sample, ) . L . .
classification consists in attributing the sample to onéief t Otherwise the sample is sardisclassified If Neor is the
classes (i.e. in associating the sample to one of the prBumPer of samples @ recognized by’ the ratioNcor/Np

totypes). The recognition rate obtained on the training s&t defined as theecognition rateof the classifief” obtained

when using an individual is assigned as fitness value to th&f the data seb.

individual. At any step of the evolution process, individu- o

als are selected according to their fitness value. At the ediDescription of the Approach

of the process, the best individual obtained, constitutes t B

set of prototypes to be used for the considered applicatiolf} OUr approach a set of prototypes, each characterizing a

Our method for automatic prototyping has been tested éHffere_nt class or subclas;_s, consists of.a set o_f logical ex-

three publicly available databases and the classificaion Pressions. Each expression may contain a variable number

sults have been compared with those obtained by anotHiiPredicates holding for the samples belonging to one class

GP based approach [16]. In this method individuals are aldB the training set taken into account. A predicate estab-

represented by lists of trees, but expressions involveleimd'SheS a (_:ondmon on the valug ofa partlt_:ul_ar feature. lIf al

arithmetic operators and constants. Differently from quir a the predicates of an expression are satisfied by the values

proach, the number of expressions making up an individu] the feature vector describing a sample, we say that the

is a priori fixed. expressiomatcheshe sample. Training the classifier is ac-
The paper is organized as follows: Section 2 reports °MPplished by means of the evolutionary computation para-

formalization of data classification; Section 3 illustsatee digm described in the following Section 4 and provides a set

approach used to classify the data; in Section 4 the impIQf labeled expressions (i.e. of labeled prototypes). Nudé t

mentation of the evolutionary approach is presented, whifdfférent expressions may have the same label in case they
Section 5 reports the experimental results. Finally, Secti represent subclasses of a class. Given a data set and a set of

6 is devoted to the conclusions. labeled expressions, the classification task is performed i
the following way: each sample of the data set is matched
against the set of expressions assignedo one of them

2 Data Classification (i.e. to a subclasses) or rejected. Different cases mayoccu

In the_data classification context a set_ of objects to be ana- 1. The sample is matched by just one expression: it is
lyzed is calleddata sefand each ob_Ject is callex:kmplaand assigned to that expression.

represented bX = (z1,...,x¢) with X € S, whereS is

the universe of all possible elements characterizetifeg- 2. The sample is matched by more than one expression
tures andr; denotes thé—th feature of the sample. A data with different number of predicates: it is assigned
set with cardinalityVp is denoted byD = {Xy,..., XN, } to the expression with the smallest number of pred-
with D C S. The setD is saidlabeledif it exists a set of icates.

integers:

3. The sample is matched by more than one expression
A={A, .. Anp} i A € (1, (] with the same number of predicates and different la-

Thei-th elemeni; of A is said thdabel of thei—th sample bels: the sample is rejected.

X; of D. We will say that the samples @1 can be grouped 4 The sample is matched by no expression: the sample

into ¢ different classes. Moreover, given the samileand is rejected.
the label\; = 7, we will say thatX; belongs to theg—th
class. 5. The sample is matched by more than one expression
Given a data seD = {X;,...,Xy,} containingc with equal label: the sample is assigned to the class
classes, a classifiéris defined as a function the expressions belong to.
I':D— 10, Hereinafter, this process will be referred toassignment

p Pprocess, and the set of samples assigned to the same expres-

In other words, a classifier assigns a | 0, c| to eac . :
9 ahet [0, c] sion will be referred to asluster.

input sampleX,.
If v; = 0, the corresponding sampl€; is saidrejected
This fact means that the classifier is unable to trace the sam-
ple back to any class.



4 Learning Classification Rules Number Rule Probability
S — A$ 1.0
As mentioned in the introduction, the prototypes to be used A — ABA|D 0.2,0.8

1
2
for classification are given in terms of logical expressions 3 B — V|A equiprobable
Since logical expressions may be thought of as computer 4 D — (P>V)|(P<V) equiprobable

5

6

7

programs, a natural way for introducing them in our learn- P — aplay]...|an equiprobable

ing system is that of adopting the GP paradigm. Our GP V — +0.XX|-0.XX equiprobable
based system starts by randomly generating a population X — 0|1]2|3/4/5/6/7|8|9  equiprobable

of p individuals. The individual phenotype is a string con-

taining a set of logical expressions, each one encoded agable 1: The grammar for randomly generating logical ex-
derivation tree. Hence, the chromosome of the individugiressions XV is the dimension of the feature space. Nonter-
is a multitree (i.e. a list of trees), and the number of treeminal symbols are denoted by capital letters.

in its chromosome will be referred in the following as the

lengthof the individual. The length of the individuals in the . .
initial population ranges from 2 té,,.,.. Afterwards, the the value of a feature. The terminal symbol $ has been in-

fitness of such individuals is evaluated. In order to gemra{rgduced to ?el|m|tdd_|f_f§rerl1t ISoglcaI e>_<p_ress;:)ns withiret f
a new population, first the bestindividuals are selected PNe€NOtype of an individual. Summarizing, the genotype o
(ﬁach individual is seen as a list of derivation trees whose

and copied in the new population so as to implementai h ol bols of th defined f
elitist strategy. Therfp — ¢)/2 couples of individuals are '€aVes are the terminal symbols of the grammar defined for
gnstructing the set of logical expressions, i.e. the proto

selected using the tournament method, so as to control | ™  loical ) Ki he ph
of diversity and selection intensity [17]. The crossover Optypes. € se_tp ogical expressions making up t € pneno-
e of an individual is obtained by visiting each derivatio

erator is applied to each of the selected couples, accordiﬂ’g’ ) X 7 4
to a chosen probability factgr.. Then, the mutation is ap- reen dep_th f'r_St order and copying mt(_) a strlng. the Sym-
plied to the individuals according to a probability factay. bols coqtamed in the leaves. _In such ;trmg, t.he first Idgica
Finally, these individuals are added to the new populatim’?.)(press_Ion derives from the first t_ree n j[he list, the secpnd
The process just described is repeatedi¥er generations. one derives from the second tree in the list and so on. Since

The following steps must be executed before implementinttljre grammar is non-deterministic, to reduce the probgbilit
the above paradigm: Of generating too long expressions (i.e. too deep trees) the

action carried out by a production rule is chosen on the ba-
¢ definition of the structure to be evolved,; sis of fixed probability values (shown in the last column of
Table 1). Moreover, an upper limit has been imposed on the

e choice of the fitness function; total number of nodes contained in an individual, i.e. the

o definition of the genetic operators; sum of nodes contained in each tree. Examples of chromo-
somes are shown in Fig. 1.
4.1 Structure Definition The interpreter is implemented by an automaton which

_ _ _ _computes Boolean functions. Such an automaton accepts as
The implementation requires a program generator, provighput an expression and a sample and returns as output the

ing syntactically correct programs, and an interpreteefer - value true or false depending on the fact that the expression
ecuting them. The program generator is based on a grafatches or not the sample.

mar written forS-expressions. A grammgr is defined as
a quadruplg; = (7, N, S, P), where7 and\ are disjoint
finite alphabets?7 is said theerminal alphabetwhereas\V’
is said thenonterminal alphabets, is the starting symbol The system is trained with a set containing, patterns.
and?P is the set Oproduction rulesused to define the Strings The training set is used for evaluating the fitness of the indi
belonging to the language, usually indicatedby— w  Viduals in the population. This process implies the follow-
wherev is a string on\VV U 7') containing at least one non- ing steps:

terminal symbol, andv is an element of Y U 7)*. The
grammar employed is given in Table 1.

As mentioned above, the chromosome of each individual
consists of a variable number of derivation trees. The rbot o
every tree is the symbd that, according to the related pro-
duction rule, can be replaced only by the string “A$". The
symbol A can be replaced by any recursive combination of
logical predicates, each one establishing the constramts

4.2 Training Phase and Fitness Function

1. The assignment of the training set samples to the ex-
pressions belonging to each individual is performed.
After this step,n; (n; > 0) samples have been as-
signed to the-th expression. Note that each expres-
sion for whichn; > 0 is associated with a cluster.

In the following these expressions will be referred to
asvalid. The expressions for which;, = 0 will be
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Figure 1: (a) and (b) Chromosomés and C> of length respectively equal to 4 and 3. (c) and (d) The chisontes
obtained after applying the crossover operation wjth- 2 and¢, = 1.

ignored in the following steps. [1, Ly], two multitreesC,, and C,,, respectively of length

) ) o ] . to and Ly — to, are obtained fronCs. At this stage, in
2. Each valid expression of an individual is labeled withy . yar t0 obtain a new chromosome. the ligts and C,)

the label most widely represented in the correspondye merged. This operation yields a new chromosome of

ing cluster. lengtht, + Lo — t,. The same operation is applied to the

3. For every individual (i.e. a set of prototypes) a clasiemaining lists<”; andC’; and a new chromosome of length

sifier is built up and its recognition rate is evaluated?2 + L1 — t1 is obtained. _ _
Such rate is assigned as fitness value to the individual, F'om the phenotype perspective, the result of applying
the crossover is swapping substrings containing entire log

In order to favor those individuals able to obtain good perical expressions. The number of the swapped expressions
formances with a lesser number of expressions, the fithedspends on the integefrsandis. It is worth noting that the
of each individual is increased lfyl/N., whereN. is the implemented crossover operator allows us to obtain chro-

number of expressions in an individual. mosomes of variable length. Hence, during the evolution
process, individuals made of a variable number of proto-
4.3 Genetic Operators types can be evolved.

The genetic operators are applied to the lists of derivatio :

treesgencodingthe individuaﬁspdefined in Section 4.1. Thijf';'?"2 Mutation

allows us to implement the genetic operators in a simpl€he mutation operator is independently applied to evepy tre
way acting either on the lists or on the trees. Two operaf the chromosomé€’ with probability p,,,. More specifi-
tors are defined for modifying the individuals of the popu<ally, given a tre€l;, the mutation operator is applied by
lation: crossovelandmutation Both the operators preserverandomly choosing singlenonterminal node iff; and then
the syntactic correctness of the expressions represahgng activating the corresponding production rule in order to-su

new individuals generated. stitute the subtree rooted under the chosen node. It is impor
tant to note that if the chromosomécontainsn nontermi-
4.3.1 Crossover nal nodes ang,, is the mutation probability, the probability

Th . lied h of mutating each single node 6fis equal top,,, /n.
& crossover operator Is applied to two chromosogies The effect of the mutation depends on the nonterminal

a]?dr?? ‘T‘_nd ylefldf]twp .n.e\IN crr;romosomes by:wapp.mg pﬁrgsymbol chosen. In fact, this operation can result either in
of the lists of the Initial chromosomes. - Assuming that,, g hstitution of the related subtree, causing a macro-

the length ofC; and C; are respectivell, and Ly, the mutation, or in a simple substitution of a leaf node (micro-

crossover is applied in the following way: the first Chromc"mutation). For instance, considering the grammar of Table

some Is s_plit in two parts by randc_)mly choqsing an integei if a node containing the symba@) is chosen, then the
ty In t.nehmterlval[l,hLl]. -Lhe obtained mulytr<|ae€1 anld whole corresponding subtree is substituted. In the pheno-
¢ V\:' bave antl 2 sn Ly - tl.respegtlviy._ Ana OI_ type, this operation causes the substitution of the préstica
gously, by randomly choosing an integerin the interval o qeqd by the old subtree with those encoded by the new



generated subtree. If, instead, the symkids chosen, only Parameter symbol value

a leaf of the tree is substituted, causing, in the phenotype, Population size D 200
the substitution of a single digit with one of those in the Tournament size T 10
right side of the rule. elithism size e 5
Crossover probability De 0.4
5 Experimental Results Mutation probability DPm 0.8
Number of Generations Ng 300
Three data sets have been used for training and testing the Maximum number of nodes Nimaz 1000

previously described approach. The sets are made of real Maximum length of an individual L., 20
data and are available at UCI site [18] with the names IRI

S
BUPA and Vehicle (see Table 2). Table 3: Values of the basic evolutionary parameters used

in the experiments.
IRIS This is the well known Anderson’s Iris data set [19].

It consists of 150 samples characterized by four fea- ) o
tures representing measures taken on iris flowers gt has been computed using a classifier implemented by

three different classes, equally distributed in the sefhoosing the best individual generated during the training

The four features are sepal length, sepal width, petQIhase' For the sake of comparison, at each generation, the
length and petal width. best individual in the population has been considered and

the obtainable recognition rates on both training set astd te
BUPA The BUPA liver disorders data set consists of 345et, have been evaluated.
samples distributed in two classes of liver disordersThe values of the evolutionary parameters, used in all the
Six features characterize each sample. performed experiments, have been heuristically determhine

) ) ) and are summarized in Table 3. The performance of the
Vehicle The samples of this data set are images of 3D obsrqnased classification scheme has been evaluated by a 10-

jects (vehicles). The data set is made of 846 samplg§iq cross validation procedure: the data set has been di-
distributed in four classes. Each sample is describgfljeq in ten parts, alternatively used as test set. For each
by a vector of 18 features. given test set ten runs have been performed with different

In order to use the grammar shown in Table 1 the featurditial population, but keeping unchanged all the otheapar

of the data sets taken into account have been normalizB¥ters- Hence, 100 runs have been performed for each data
in the range[—1.0,1.0]. Given a not normalized sample set. Such protocol has been used for comparing our results
y with those reported in the literature.

X = (x1,...,zN), every featurer; is normalized using g g )
the formula: In a learning process, in most cases, when the maximum
T =T recognition rate is achieved, the generalization power, i.
Ti= 20; the ability of obtaining the same rate on a different data set

whereZ; ando;, respectively represent the mean and thg[he test set), may not be the best. In order to investigate

standard deviation of théth feature computed over the such ability for our system, the recognition rates on train-
whole data set ing and test set have been taken into account for the dif-

Each dataset has been divided in two parts, a trainiHc rent considered data sets. In Figure 2 such recognition

set and a test set. These sets have been randomly extra(fh gs: evaluaéed E_velzrdeO generatiog_s, iIn a (';ypical rgn f%r
from the data sets and are disjoint and statistically indepe'"€¢ BUPA and Vehicle data sets, are displayed. It can be ob-

dent. The first one has been used during the training phaSg/Ved from the figure that, in the experiments carried out,

to evaluate, at each generation, the fitness of the individ1€ "ecognition rate increases with the number of genera-
s both for the training set and for the test set. The best

als in the population. The second one has been used at fign

end of the evolution process to evaluate the performance Gco9nition rateshocfcurri?]g inhboéhﬁcases ngarby genr:aratio
our method. In particular, the recognition rate over thé te350' Moreover, the fact that the difference between the two

recognition rates tend to increase when that on the training
set reaches its maximum, suggests that the use of a valida-

Name | Classes| Features Size tion set could further improve the classifier performances.
RIS 3 4 150(50+50+50)

BUPA 2 6 345(145+200) The proposed approach has been compared with another

Vehicle | 4 18 846(212+217+218+199)  Gp based approach [16] in which an individual consists of

a set of expressions (i.e. prototypes) involving simpl#ari

Tgblg 2:. Th_e data sets used in the experlments. The Clar%%tic operators, constants and feature variables. Each ex-
distribution is shown between brackets in the last column.
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Figure 2: Recognition rate on training and test sets for & (a) and Vehicle (b) data sets during a typical run.

pression establishes conditions on the values of a varialftar the BUPA data set our method is able of correctly recog-
number of features characterizing the data to be analyzeuzing 74.3% of the test set, a rate significantly better than
The samples are matched against the expressions and thst obtained in [16] (69.87%). Also for the Vehicle datg set
signed to the one satisfying the constraints on feature vadur method performs significantly better than the compari-
ues. son method, achieving on the test set the recognition rate of
Similarly to our approach, each individual is encoded as 86.5%, against 61.75% obtained by the other method. Sum-
multitree, but the number of trees (i.e. expressions) fohea marizing, the experimental results show that the proposed
individual is constant and a priori fixed equal to the numbemethod outperforms the method used for comparison on all
of classes of the problem at hand. Moreover, each tree idlze data sets taken into account. Thus, the comparison car-
priori labeled: the first tree with the label of the first classried out confirms the validity and the effectiveness of the
the second tree with that of the second class and so on. Api@posed approach.
consequence, a sample belonging toithedass is correctly
classified only if it is assigned to thietree of the individual. § Conclusions
In Table 4 the recognition rates obtained on the test set by
the two methods are shown. Since the GP approach is a sfonew genetic programming based approach to prototype
chastic algorithm, the standard deviations are also showgeneration and classification has been proposed. According
Moreover, the average number of clusters found by ouo the approach, a population is evolved where each indi-
method (represented by valid expressions in the considereidual consists of a set of possible prototypes of the ctasse
individual) and the related standard deviation are regorte present in the data set to be analyzed. A prototype con-
For the IRIS data set, 99.4% of the test set has been corredsigts of a set of logical expressions establishing conuiitio
recognized by our classification system, against 98.67% obn feature values and thus describing classes of data sam-
tained by the method considered for comparison. Insteaples. The recognition rate obtained using each given set of
prototypes is used as fithess function for controlling the ev
lution. The method is able to automatically clustering the
data, without forcing the system to find a predefined num-
ber of clusters. This means that a class is neither neclyssari
represented by one single prototype nor by a fixed number
of prototypes. On the contrary, other methods, namely the
one used for comparison, a priori set the number of possi-
ble clusters. The greater flexibility of our method depends
on the dynamic labeling mechanism of logical expressions,
which allows us to reduce the constraints imposed during
the prototyping process.

The proposed approach has been tested on three publicly

Data sets| Ry Ri | oRr, | Ng, | 0 Ney
IRIS 98.67| 99.4| 05| 3.03| 0.2
BUPA 69.87| 74.3| 3.0 | 2.36| 0.5
Vehicle | 61.75| 66.5| 2.0 | 4.8 0.6

Table 4: The average recognition rates (Kg) and R, for
our classifielC; and the comparison classifi€s. The stan-
dard deviation in case af is given. The average number
N, of data clusters found bg; and the related standard
deviation are also shown.



available data sets and the obtained results have been cd@8] Patrick J. Rauss, Jason M. Daida and Shahbaz A.
pared with those obtained by another GP based approach Chaudhary, “Classification of Spectral Image Using
reported in the literature. The comparison has shown that Genetic Programming.”, ItGECCQ pp. 726733,
the results obtained by our system on the data sets taken 2000.

into account are significantly better than those obtained k[X 4]

Ivanoe De Falco, Antonio Della Cioppa and Ernesto
the other approach.

Tarantino, “Discovering interesting classification rules
with genetic programming.”, Appl. Soft Comput.
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