
1

CasGP: Building Cascaded Hierarchical Models
Using Niching

Peter Lichodzijewski, Malcolm I. Heywood, A. Nur Zincir-Heywood
Faculty of Computer Science,

Dalhousie University,
6050 University Avenue, Halifax, NS. B3H 1W5, Canada

{piotr, mheywood, zincir}@cs.dal.ca

Abstract— A Cascaded model is introduced for mining large
datasets using Genetic Programming without recourse to special-
ist hardware. Such an algorithm satisfies the seeming conflicting
requirements of scalability and accuracy on large datasetsby
incrementally building GP classifiers through the use of a
hierarchical Dynamic Subset Selection algorithm. Models are
built incrementally with each layer of the cascade receiving
as input the original feature vector, plus the output from the
previous layer(s). In order to encourage each layer to explicitly
solve new aspects of the problem a combination of Sum Square
Error and Niching is utilized. Thus, previous layers of the model
are considered a niche, and the cost function is a shared error
metric.

I. I NTRODUCTION

The principle interest of this work is to provide an ef-
ficient paradigm for mining large datasets using Genetic
Programming (GP) i.e. a supervised learning context, without
recourse to specialized hardware platforms. Previous works
have suggested that an active learning algorithm such as
Dynamic Subset Selection (DSS) may be used to address
the computational overhead associated with large datasets[1].
Such a model decouples the computationally expensive inner
loop of GP from the raw exemplar count by recognizing
that not all exemplars are created equal. Thus, the dataset is
filtered in accordance with an active learning algorithm. Inthis
work we use the DSS methodology to provide the basis for
efficient incremental learning on binary (as opposed to multi-
class) data mining problems. The basic architecture takes the
form of the hierarchical model popularized by the cascade
correlation family of neural networks [2]. The ensuing models
are modular, building on the results from previous layers
such that each layer explicitly minimizes a new component
of the error. Thus, the modular approach to problem solving
provides for the decomposion of the problem into a hierarchy
of different objectives. In order to avoid degenerate solutions
we introduce a combination of sum square distance metric
(as opposed to the count based metric typically employed in
GP classification models) and a niche based fitness function.
Such an approach is rather different from previous approaches
to problem decomposition in GP, where the norm has been to
build models in parallel and recombine using some sort of
voting mechanism [3], [4], [5].

In the following we will first provide a short review of
alternative schemes for encouraging problem decomposition,
Section II, as well as introducing the basis for the DSS
family of active learning algorithms utilized by this work.
Section III provides the details of the CasGP algorithm,
with a particular emphasis on the schemes used to minimize
degenerate solutions at each layer of the hierarchy. Results
are reported in Section IV for three benchmark problems.
In particular a standard implementation of GP is used to
establish the performance base line on several widely available
data mining problems. This demonstrates that variable length
GP is not able to compete with either the subset selection
algorithm alone or CasGP; in effect code bloat results in
significant computational overheads whilst model accuracyis
also lacking. Moreover, comparison against other GP results
based on ensemble methods indicates that CasGP is very
competitive whilst avoiding the need for specialist hardware
resources or reducing model transparency.

II. RELATED WORK

As indicated above, previous works in which GP has
explicitly supported problem decomposition has concentrated
on some form Automatically Defined Functions [7], or more
recently, have been based on ensemble methods such as
Bagging/ Boosting. Indeed several instances of Bagging/
Boosting routines have appeared in GP. Specifically, a par-
titioned population model was utilized to construct ensembles
of classifiers using both Bagging and Boosting by sampling
[3]. This was then refined to produce Boosting by weighting
[4]. Both schemes were demonstrated under small benchmark
applications. In the case of larger datasets, a partitioned
Bagging algorithm has recently been incorporated into a
parallel cellular GP model, thus providing very fast training
times [6]. Such schemes are based on the variance reduction
methodology for model aggregation, where Bayesian Learning
Theory predicts that multiple models will out perform a single
model. However, this is not the only methodology by which
multiple models may be combined to produce an aggregated
model. Of particular interest to this work is the case of
the cascade correlation architecture [2]. In this case models
are not added in parallel, but hierarchically, with each layer
of the hierarchy receiving input from all previous models

2

and the original dataset i.e., each layer of the model adds
a new feature to the input space. In addition, the original
cascade-correlation scheme trained each new layer againstthe
error residual, with adaptation only taking place in the layer
currently under development. As a consequence, layer specific
goals are explicitly identified.

Naturally, a hierarchical scheme for incremental model
building requires an efficient methodology for constructing
candidate models at each layer. In particular, training at each
layer is still conducted over the entire dataset. However, the
use of an active learning algorithm implies that the training
data is filtered in accordance with the current classifier per-
formance. To this end, use is made of the Dynamic Subset
Selection (DSS) active learning algorithm [1], modified to
incorporate the concept of computer memory hierarchies. The
basic DSS algorithm collects two exemplar statistics, age
and difficulty, and stochastically samples exemplars on this
basis. Such a scheme naturally samples exemplars which
are less frequently sampled or defeat classifiers more often.
Computationally, the only drawback of such a scheme is that
a random memory access model is still assumed. That is
to say, on datasets larger than cache memory a significant
penalty is encountered during cache misses. Previous work
has addressed this case by first partitioning the original dataset
into blocks, where a block of exemplars is sufficiently small
to reside in cache memory alone [8]. Blocks are selected
with uniform probability (random subset selection, or RSS)
and the DSS algorithm applied to select exemplars within a
block. More sophisticated block compositions and sampling
algorithms have been considered for the hierarchy [9] and DSS
itself [10], but in this work will retain the original RSS-DSS
scheme of Song.

The CasGP model for hierarchical problem decomposition
is independent of the specific form of GP employed. In this
work a fixed length linearly structured GP representation
is employed. Such a scheme shares many similarities with
Genetic Algorithms in which alleles are allowed to take
the form of a set of integers. For linear GP, the integers
are decoded into instructions, typically taking the form ofa
register level transfer language. Programs are therefore ’run’
by starting at the first integer of an individual, decoding,
executing and incrementing the ’Program Counter’ to point
at the next instruction (integer). A register transfer language
representation implies that instructions specify actionsin terms
of a predefined instruction set, target register, source registers,
constants and inputs (features of the exemplar vector). Need-
less to say, varying constraints on the number of source
registers specified results in different (register) addressing
schemes, with instances of zero (stack) [11], two [12] and three
[13] register addressing schemes having been demonstrated
in a linear GP context. The fixed length representation used
here implies that crossover always exchange an equal number
of instructions. The initial population is therefore initialized
with uniform probability over the entire range of program
lengths, as opposed to the variable length scheme in which all
individuals are initialized over a small subset of initial lengths.
This work utilizes a steady state tournament in which children
from the better performing half of the tournament replace the

worse performing individuals from the same tournament. In
addition the crossover scheme used here enforces an additional
constraint, in which the location of crossover points also be
fixed in an attempt to encourage code alignment between
crossover points [12]. Mutation operators might be defined
over specific instruction fields (e.g. opcode, source or target
register) or applied across an entire instruction (the latter being
used here). Moreover, it is also normal to incorporate a ’swap’
operator in which two instructions from the same individual
are selected with uniform probability and interchanged.

III. C ASGP ALGORITHMS

In the following the three basic components of the CasGP
architecture are introduced. The first component provides
the basic algorithm for incrementally building hierarchically
cascaded GP models and follows the basic error minimization
methodology first identified for neural networks. Within the
context of GP, this scheme frequently results in degenerate
solutions [14]. That is to say, by adding the output from
a previous layer of the cascade to the feature vector, the
individuals at the GP population for the next layer quickly
learn to copy this feature as their output. Naturally, this beats
all other members of the population but does not further the
performance of the overall cascade. Such a scheme is hereafter
referred to as Naive CasGP. Two additional components are
introduced to reduce the likelihood of degenerate solutions.
The first step is to drop the use of a count based distance
metric in favour of a sum square error, Subsection B. Finally,
we introduce fitness sharing, where the basic objective is to
explicitly penalize the duplication of error behaviour at the
layer currently being constructed relative to previous layers.
Subsection C details the construction of two fitness sharing
functions.

A. Naive CasGP

The Naive CasGP algorithm is summarized in Algorithm
1. Each iteration of the outermost loop yields one layer of
the cascade (i.e., one unit is added). The first layer of the
cascade is trained with the original data and is equivalent to the
generation of a single classifier. Each iteration of the algorithm
then proceeds as follows. First,N different populations are
initialized to mitigate the dependence of the algorithm on any
one initialization (N of 1 and 30 are considered in Section
IV). These populations are then trained on the data associated
with the current layer. Once training is complete, the best run
is identified as the one generating the fittest individual based
on the training data. The data used to train the next layer
is generated by augmenting the current layer’s data with the
output of this best individual. Layers are added until a some
termination criterion, such as a maximum depth (16 in the
experiments of Section IV) or an acceptable error level, is
reached.

B. Distance Metric and Wrapper

GP produces an output, typically real valued, and only lim-
ited by the numerical representation of the machine on which

3

Algorithm 1 Cascade model for incrementally building GP
models.
do
{
initialize N populations;
for (i < N) train (data, pop(i));
best = fittest(pop(0),..., pop(N - i));
cat(data, output(best));
}
until(termination);

it is evolved. In order to apply GP to (binary) classification
problems the norm established by Koza has been to apply a
binary mapping (or wrapper) to the original GP output [7].
This is synonymous with a switching function, centered at
zero, Table I. Thus, any GP output smaller than zero (zero
or greater) is associated with the majority (minority) class.
An unfortunate consequence of such a decision is a reduction
in the feedback provided to GP regarding the robustness of
decision boundaries formed. That is to say, a solution in which
exemplars from both classes are close to the switching point
of the wrapper is treated the same as a solution in which a
wrapper is placed between classes in such a way to establish
a significant tolerance between class memberships. In effect
switching type wrappers mask valuable distance information,
without which it becomes increasingly difficult to provide
robust classification models. Instead a mapping is required
between the real valued GP output and the binary classification
domain, such that distance information is retained. We address
this problem by again borrowing concepts from neural network
models. In particular a widely used mapping satisfying the
above objective is the sigmoid or tansig function. Such a
function monotonically maps a continuous input space to a unit
interval or symmetric interval. The original (neural network)
motivation for doing so was to provide a decision boundary
that was smooth, thus differentiable. In the case of GP the
smoothness constraint is redundant, however, the functiondoes
provide the basis for a more informative wrapper. Thus a
’good’ placement of the wrapper would tend to force exem-
plars from dissimilar classes to opposite extremes of the sig-
moid, where the means for making such a decision is provided
by the monotonically increasing characteristic of the signmoid,
Table I. Error or distance calculations now characterize how
far GP is able to push exemplars into their respective classes
as well as whether they are members of the relevant class (the
switching wrapper only quantifies the latter). Moreover, the
use of a real valued error (as opposed to a count of the number
of correct classifications) implies that we may now utilize a
cost function which explicitly penalizes errors in proportion
to a predefined law. We previously demonstrated a preference
for case of a sum square error (SSE), where this naturally
assumes a Gaussian distribution of errors, Table I [14].

C. Fitness Sharing

The second approach for minimizing the potential for de-
generate solutions across CasGP is based on the concept of fit-
ness sharing originally demonstrated for (Genetic Algorithm)

TABLE I

WRAPPER ANDASSOCIATEDDISTANCE METRIC.

Wrapper Distance Metric

y =

{

1 if GPout > 0,
0 otherwise EC =

∑

p
1 − hit(y, p)

EC =
∑

p
1 − hit(y, p) SSE =

∑

p
(dp − yp)2

multi-modal optimization problems [15]. The basic problem
faced in the multi-modal context was that the stochastic nature
of the GA caused the solutions to converge to a single peak
even when several peaks of equal fitness were present. The
sharing approach tries to maintain diversity by reducing an
individual’s fitness when it is in close proximity to the solution
identified by other individuals. In this way, the populationis
encouraged to disperse among the multiple optima. Informally,
sharing reduces the fitness of an individual by a factor called
the niche count which measures how similar an individual is
to nearby individuals by way of an appropriate distance or
sharing function.

The concepts from sharing can be applied to the cascade
architecture by considering the overlap in the performanceof
different layers. Thus, during the construction of the cascade,
a distinction is made between the individuals that are in the
process of being evolved at the top most layer and the solutions
at the previous layers which have already been fixed. Only
the fitness of the individuals being evolved are evaluated, and
unlike Naive CasGP, this evaluation considers the behaviour of
the solutions at the lower layers. In particular, the individuals
being evolved are penalized if they reproduce the behaviour
of (i.e., are similar to) previous layers. However, there is
an important difference between this approach and sharing
as traditionally defined. With traditional sharing, similarity
is measured over both desirable and undesirable behaviours.
Instead, with the cascade, individuals are penalized only when
they make the same mistakes as previous layers. That is,
individuals should be allowed to reproduce correct behaviour
while focusing on correcting incorrect behaviour. Moreover,
we also emphasize that by conducting sharing between a
member of the current population and previously evolved
solutions, the approach does not suffer from the problem
associated with tournament selection [16]. That is, the values
used for fitness sharing do not become outdated since they are
not pre-calculated using other members of the population, but
are based on the previously-fixed layers. In the following two
such functions are defined, where smaller values correspond
to fitter individuals i.e., a minimization objective.

1) S1 Sharing Function: In the case of sharing function
S1, we let the shared fitness of an individual be the sum of
the individual’s raw fitness and normalized niche count. Raw
fitness takes the form of the SSE cost function. Niche count
penalizes erroneous behaviour by considering performanceat
previous layers. If the previous layer got the instance right,
the niche count is incremented by the sum-squared error of
the individual on that instance. If the previous layer got that
instance wrong, the niche count is incremented by the product
of the errors of the previous layer and the individual on that
instance. When the niche count is added to the raw fitness, it

4

is normalized by the number of layers to assure convergence
at higher layers.

Specifically, the shared fitness of an individuali is defined
to be,

fsh,i = fi + mi

L+1

Here,L is the number of layers,fi is the raw fitness, and mi
is the niche count. Niche count is defined by,

mi =
∑

l∈L

∑

p∈T sh (i, l, p)
with T corresponding to the the fitness cases. For an individual
i, previous layerl, and fitness casep, the sharing function is
defined as follows:
sh (i, l, p) =







0 if i got casep right,
(dp − yi,p)(dp − yl,p) if i andl got casep wrong,

(dp − yi,p)
2 if i got casep wrong butl did not.

In this definition, dp corresponds to the desired value for
fitness casep, while yi,p and yl,p corresponds to the values
output for casep by individual i and layerl respectively. Note
that the output values that are used have been transformed
using the appropriate wrapper.

Thus, the sharing function does not penalize an individual if
it classifies a fitness case correctly. If the individual classifies
the fitness case incorrectly and the previous layer classifies the
case incorrectly as well, then the niche count is incremented
in proportion to how far off the two outputs were. Note that in
this casedp − yi,p anddp − yl,p will always have the sign and
their absolute values will be greater than 1, so their product
will be greater than 1. In this way, the evolutionary process
will not only penalize an individual based on the deviation
of its output value from the desired value, but will penalize
that individual more if previous layers had difficulty with that
instance as well. Therefore, focus should shift to the more
difficult cases.

If the individual classified the fitness case incorrectly and
the previous layer classified that instance correctly, thenthe
niche count is incremented by the squared deviation of the
individual’s output value from the desired value. In compar-
ison, penalizing the individual as in the previous case would
actually reward that individual for getting wrong what the
previous layer got right since in this case|dp − yl,p| is no
larger than 1 while|dp − yi,p| is necessarily larger than 1, so
that (dp − yi,p)(dp − yl,p) is less than(dp − yi,p)

2. As is, the
sum-squared error on that fitness case is essentially counted
twice as penalty for misclassifying an instance that another
layer got right.

In the final definition of the shared fitness the niche count
is normalized by the number of layers. This was found to be
necessary in order for convergence to take place. Otherwise,
at higher layers, it was observed that many different but
poor solutions were evolved. This was attributed to the fact
that without the normalization factor, the weight of the niche
count in contribution to the final shared fitness would steadily
increase as more layers were added. Thus, focus shifted
from generating good and unique solutions to generating only
unique solutions.

2) S2 Sharing Function: At the first layer, when there are
no previous layers to compare the current individual against,
the fitness of an individual is evaluated using the SSE cost

function. At higher layers, the shared fitness is calculatedby
iterating over all the previous units, and for each previousunit,
incrementing the shared fitness by the error of the individual
with respect to that unit. If the distance to the given unit is
sufficiently large, the error is added to the shared fitness as
is. Otherwise, the individual and the previous unit are deemed
to be too similar, and the weight of the error is increased in
proportion to the distance. The distance used is a Euclidean
distance based on the values that the current individual and
previous unit output for each fitness case. The error with
respect to each previous unit, again based on the fitness cases,
is affected only when the deviation from the desired output
of the current individual is greater than the deviation of the
previous unit. In this case, the error is increased by the square
difference of the two deviations.

More formally, beyond the first layer, the shared fitness of
an individuali is defined as,

fsh.i =
∑

l∈L(1 + ei,l)(1 + sh(di,l))
Here, L again corresponds to the previous layers,ei,l is the
error for individuali associated with layerl, di,l is the distance
between individuali and layerl, and the sharing function is
defined as:

sh(di,l) =

{

1 −
(

di,l

σsh

)αsh

if di,l < σsh

0 otherwise
As with traditional sharing,σsh is the neighbourhood radius
andαsh controls the shape of the function. The distancedi,l

is the Euclidean distance evaluated over the values output by
i and l for each of the fitness cases, that is,

di,l =
√

∑

p∈T (yi,p − yl,p)2

Finally, the error of individuali associated with layerl is
defined as,

ei,l =
∑

p∈T se(i, l, p)
where
se(i, l, p) =

{

((dp − yi,p) − (dp − yl,p))
2 if |dp − yi,p| > |dp − yl,p| ,

0 otherwise.
Note that in the above definition|dp − yi,p| and |dp − yl,p|
correspond to the deviations from the desired value of the
values produced byi and l for patternp.

The S2 sharing approach addresses two specific issues.
First, individuals are encouraged not to perform worse than
previous layers since the calculation ofei,l counts error only
if it is greater than that of the previous layer. With this alone,
individuals would minimize error by reproducing exactly the
outputs of previous layers, and once again, degenerates would
be produced. To prevent this from happening, the approach
penalizes individuals if, based on their output values, they
are similar to previous layers. This should lead to higher
layers producing individuals that are no worse than those in
the lower layers but yet remain different. The ultimate goal
being to identify individuals that would classify instances that
previous layers got wrong, units at the top of the cascade
could then use the outputs of the lower layers to generate
very accurate classifiers. This approach is more similar to the
original formulation of fitness sharing.

5

IV. RESULTS

In the following performance is considered across three
benchmark classification datasets: Adult, Shuttle, and Census.
Evaluation is performed by considering cascades built using
one of two methodologies. In both cases 30 initializations are
considered, however, in the first scheme 30 runs are performed
using 1 initialization per cascade layer, resulting in 30 different
cascades. This hereafter is referred to as CasGP-30. The
second architecture performed 30 different initializations per
layer, selecting the fittest (on training data) to representthat
layer, resulting in a single cascade, or CasGP-1. The following
subsections summarize characteristics of the four benchmarks
and deal with the parameterization employed throughout for
CasGP before beginning the performance comparison itself.

A. Datasets

Only binary classification problems are considered in this
work. The three benchmark data mining datasets considered
here are originally binary or converted to binary classification
problems as detailed below.

1) Adult: The Adult dataset was obtained from the UCI
Machine Learning Repository. Each exemplar in the dataset
has a feature length of 14, representing a mixture of continuous
and nominal features. The task was to decide whether a person
earned over $50 000 per year. The version of the dataset
used did not contain unknown values. This yielded a total
of 30 162 training and 15 060 test instances. Of the 45 222
total instances, 24.78% corresponded to individuals that earned
over $50 000 per year. In preprocessing the data, continuous
features were left unchanged whereas is nominal features were
mapped to integers.

2) Shuttle: The Shuttle dataset that was used was based
on the Shuttle dataset found in the Statlog database, also
found in the UCI Machine Learning Repository. It represents
conditions and desired actions for controlling a space shuttle.
The original version of the dataset contained 43 500 training
and 14 500 test instances each composed of nine numerical
features. Each instance belonged to one of seven classes,
although class 1 accounted for most of the instances. The
problem was converted to a binary classification problem by
labeling class 1 as negative and all other classes as positive.
This resulted in 21.40% of instances belonging to the positive
class.

3) Census: Similar to the Adult dataset, the objective is
to classify whether a person earned over $50 000 per year.
In this case, however, there are 40 features (as opposed
to 14 in the case of Adult) describing demographic and
personal characteristics of each exemplar. The resulting dataset
consists of 95 130 training and 47 391 test exemplars, with
approximately 5.6% of the data representing the minor class
(on both partitions). This latter characteristic makes thedataset
an interesting test of performance under very unbalanced con-
ditions. The dataset was also sourced from the UCI repository.

B. GP Parameterization

As indicated in the introduction, one of the motivations
for designing CasGP was as an alternative to variable length

TABLE II

GP AND RSS-DSS PARAMETERIZATION

Page Based Linear GP
Parameter Value

Population Size 125
Max Page Size 8 Instructions

Max Pages 32
Number of Registers 8
Crossover probability 0.9
Mutation probability 0.5

Swap probability 0.9
Probability of initializing with

Type 1, 2 or 3 instruction 1/11, 8/11, 2/11
Tournament Size 4

Function Set {+,−,×,÷}
Terminal Set {0, ...,256}∪{input features}

RSS-DSS Parameters
RSS Block Size 5 000
DSS Subset Size 50
RSS Iterations 1000 × ⌊(blocks + 5) /10⌋

Max DSS Iterations 100
Prob. of DSS pattern

selection using age (difficulty) 0.3 (0.7)
DSS Refresh Frequency 6

GP. The CasGP algorithm, however, is actually independent
of the form of GP employed. The fix length GP employed
throughout these experiments is denoted page-based Linear-
GP with dynamic crossover [12]. The parameters used are
detailed in Table II. Three general points are note worthy. First,
the maximum initial number of pages and the initial page size
are used to define the size of the individuals at initialization.
Given the settings in Table II, the maximum individual size is
32 × 8 = 256 instructions. Second, a maximum page size
of 8 means that the page sizes dynamically vary between
1, 2, 4, and 8, all within the same training run as training
error plateau’s are encountered. Third, the weights associated
with instruction types define the expected proportion of each
instruction type in the initial population. Three instruction
types are: Type 1, load register with a constant; Type 2, apply
opcode to an input and register; or Type 3, apply opcode to two
registers. Thus, given the weights shown, the most common
instruction should involve a register and an external input.

To facilitate training with large datasets, the page-basedL-
GP with dynamic crossover was combined with the hierarch-
ical RSS-DSS algorithm [8]. The parameters associated with
the RSS-DSS algorithm are shown in Table II. Two things
are of note. First, the number of RSS selections is defined
in proportion to the number of blocks used to partition the
training dataset; if the dataset has more blocks, more RSS
selections are made. The idea is that, on average, the number
of times the entire dataset is traversed will remain constant
regardless of the number of training exemplars. Secondly,
the actual number of DSS selections made per tournament
depends on the difficulty of a block. This will decrease as
classifier performance improves, thus concentrating the fitness
evaluation on the most pertinent exemplars i.e., difficult or
old, as per the DSS algorithm. Detailed descriptions of the
Dynamic Subset Selection algorithms and associated analysis
of parameterization are available elsewhere [1], [8].

6

Fig. 1. CasGP-30 Quartile % Errors on Adult test data

Fig. 2. CasGP-30 Quartile % Errors on Census test data

C. Evaluation

As indicated above in the following we will consider two
schemes for building cascaded hierarchies: CasGP-30; and,
CasGP-1. In the following use will therefore be made of
both best case and quartile performance, as well as results
previously published for the various datasets in question.

1) CasGP-30 Hierarchies: The CasGP-30 methodology
results in a new classifier for each run, but only performs
one initialization per layer of the cascade. This means that
we are able to provide some qualification of the degree of
spread associated with the resulting cascades. Conversely, as
the CasGP-1 architecture selects the best classifier from 30
initializations per layer, the scheme is less dependent on initial
conditions than CasGP-30, but will only produce a single
classifier from the same number of initializations.

In the case of CasGP-30, classification performance is
reported for the layer with lowest training error (not neces-
sarily the last layer). Figures 1 to 3 detail the test error
on Adult, Census, and Shuttle datasets respectively (training
curves showing similar characteristics). It is apparent that the
sharing algorithms in this case do not result in a improvement
above that provided using SSE alone. SSE actually results ina

Fig. 3. CasGP-30 % Quartile Errors on Shuttle test data

Fig. 4. CasGP-30 Quartile Degenerate Count on Adult dataset

lower test error, as measured by at-test at the 99% confidence
interval for Adult and Census with respect to the S2 sharing
function. Moreover, S2 tends to utilize more layers before
the best training error was identified than either S1 or SSe,
Table III. The principle benefit from using the shared fitness
functions on CasGP-30 appears to have been in terms of the
degenerate counts (number of layers at which a classifier just
copied the result from the previous layer), Figures 4 to 6. Thus,
S1 returns less degenerates on Adult and S2 less degenerates
on Shuttle and Census, where this is again significant at the
99% confidence interval as measured by at-test.

2) Previous Results and CasGP-1: Tables IV and V sum-
marize best case results for the CasGP algorithms (using
training performance to select best cases for CasGP-30).
Needless to say, the CasGP-1 results are uniformally better
than those returned under CasGP-30, where the CPU time

TABLE III

CASGP-30 MEDIAN TOTAL CASCADE LAYERS

Dataset SSE S1 S2
Adult 10 11 12

Census 9.5 11 12
Shuttle 5 6 9.5

7

Fig. 5. CasGP-30 Quartile Degenerate Count on Census dataset

Fig. 6. CasGP-30 Quartile Degenerate Count on Shuttle dataset

requirement is the same for both schemes (both use a total of
30 initializations overall). This result is confirmed by at-test
returning p values of 0.002, 0.029 and 0.57 for Adult, Census
and Shuttle respectively. In contrast to the general findings of
the quartile CasGP-1 results above, it is the solutions identified
using the sharing functions that result in the best results,
irrespective of dataset.

In the case of the Census dataset, results were available from
the UCI repository for decision tree algorithms and a Naive-
Bayes Classifier, Table VI, with performance of both CasGP-
1 and CasGP-30 remaining competitive with the decision
trees, and bettering that of the Naive-Bayes Classifier. On the
Adult and Census dataset previous results from a GP solution
based on a distributed parallel Cellular Automata, Table VII,
demonstrate that the median CasGP-30 results, Figures 1 and
2, match those reported for the Cellular Automata using 10
fold cross validation [6].

TABLE IV

% BEST CASE CASGP-30 ACCURACY

Training Test
Dataset SSE S1 S2 SSE S1 S2
Adult 15.91 15.64 16.09 16.56 15.88 16.02

Census 5.05 5.0 4.96 4.89 4.9 4.82
Shuttle 0.14 0.14 0.156 0.145 0.131 0.145

TABLE V

% BEST CASE CASGP-1 ACCURACY

Training Test
Dataset SSE S1 S2 SSE S1 S2
Adult 15.49 15.31 15.29 15.7 15.52 15.47

Census 4.98 4.89 4.87 4.9 4.85 4.8
Shuttle 0.06 0.05 0.14 0.1 0.14 0.13

TABLE VI

BEST CASE TEST RESULTS FORDECISIONTREE AND NAIVE -BAYES

CLASSIFIERS ONCENSUSDATASET

Classifier % Test Error
C 4.5 4.8
C 5.0 4.7

C 5.0 Rules 4.7
C 5.0 Boosting 4.6
Naive Bayes 23.2

As a final test, 10 runs were made using (variable length)
tree structured GP without the RSS-DSS algorithm (fitness
was evaluated across all training exemplars) using the Adult
dataset. Parameterization follows the basic Koza utilization
of generational selection, a population of 4 000 individuals
and 90% crossover (10% mutation). Fitness is evaluated using
a SSE cost function. Figure 7 plots test performance as
quartiles for CasGP-30 and the vanilla implementation of tree
structured GP (implemented using lilgp [17]). The benefit of
SSE and S1 based CasGP-30 cascades is now readily apparent,
with the S2 sharing function resulting in more sensitivity to
initial conditions under this dataset. Moreover, all the cascade
solutions required an order of magnitude lower node count
than that returned for the variable length tree representation,
Table VIII.

V. CONCLUSION

The Hierarchical Cascade architecture has been introduced
for efficiently building modular solutions to large classification
datasets. Specific attention is paid to the use of a suitably
informative cost function and the number of initializations
performed per layer. Evaluation of schemes based on one

TABLE VII

AVERAGE % TESTERROR USINGPARALLEL CELLULAR GP ON ADULT

AND CENSUSDATASET

Classifier Adult Census
CGPC 17.18 5.19

BagCGPC 17.01 5.08
BoostCGPC 16.53 8.33

TABLE VIII

NODE COUNTS FOR VARIABLE LENGTHTREE STRUCTUREDGP AND

CASGP-30ON ADULT DATASET

Quartile Tree GP SSE S1 S2
3rd 3219 424.25 466.25 495.5

Median 2604 379.5 390.5 418
1st 1519.5 316.5 353 385

8

Fig. 7. % Test Error on Adult for variable length Tree structured GP and
CasGP-30

initialization per layer over 30 runs (CasGP-30) versus 30 ini-
tializations per layer for a single run (CasGP-1) demonstrates
that the best performance is still dominated by considering
multiple initializations per layer. However, the performance
of the CasGP-30 is still competitive with that returned by
a parallel Cellular GP implementation with either bagging
or boosting. This is achieved without the requirement for
the necessary parallel hardware, albeit taking several hours
to return the same level of performance. We note, however,
that both CasGP-1 and CasGP-30 readily support parallel
implementations.

Comparison with traditional variable length GP on the Adult
dataset indicates that the resulting solutions are indeed far
more succinct (lower node count) without impacting on the
classification performance. Moreover, by using fixed sized
individuals, but using the cascade to provide the basis for vari-
able length solutions, we maintain that the cascade architecture
is much better at incrementally decomposing the problem at
each layer. This naturally does not preclude using variable
length chromosomes, though whether this would result in
radically different behaviour from that observed here is an
open question.

The Sharing functions, S1 and S2, appeared to be more
successful in identifying best case solutions than providing
consistent classification performance. Thus the CasGP-1 ar-
chitecture returned better results using the sharing functions
than the SSE cost function alone (best of 30 initializations
selected from at each layer). On CasGP-30, however, both S1
and S2 did provide a reduction in the number of degenerate
solutions across the cascade, where this is significant at the
99% confidence interval. Future work continue to identify
whether this is endemic to the formulation of the cost function
or a question of parameterization.

REFERENCES

[1] C. Gathercole, P. Ross, “Dynamic training subset selection for super-
vised learning in genetic programming.” In Parallel Problem Solving
from Nature III, Lecture Notes in Computer Science, LNCS 866,
Springer-Verlag, pp 312-321, 1994.

[2] S. E. Fahlman and C. Lebiere., “The cascade-correlationlearning archi-
tecture.” In Proceedings of Advances in Neural InformationProcessing
Systems-2, Morgan Kaufmann, pp 524-532, 1990.

[3] H. Iba, “Bagging, Boosting and Bloating in Genetic Programming.”
Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO-99. Banzhaf W., et al. (Eds), Morgan Kaufmann. pp 1053-1060,
1999.

[4] G. Paris, D. Robilliard, C. Ronlupt, “Applying BoostingTechniques
to Genetic Programming.” 5th International Conference on Artificial
Evolution. Collet P., et al. (Eds), Lecture Notes in Computer Science,
LNCS 2310. pp 267-278, 2001.

[5] M. Brameier and W. Banzhaf. “Evolving teams of predictors with linear
genetic programming.” Genetic Programming and Evolvable Machines,
2(4), pp 381-407, 2001.

[6] G. Folino, C. Pizzuti, G. Spezzano, “Boosting Techniquefor Combining
Cellular GP Classifiers,” Proceedings of the 7th European Conference on
Genetic Programming, EuroGP’04, Lecture Notes in ComputerScience,
LNCS 3003, Springer-Verlag. pp 47-56, 2004.

[7] J. R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[8] D. Song, M.I. Heywood, A.N. Zincir-Heywood, “Training Genetic
Programming on Half a Million Patterns: An Example from Anomaly
Detection,” To appear in: IEEE Transactions on Evolutionary Computa-
tion, 2005.

[9] R. Curry, M.I. Heywood, “Towards Efficient Training on Large Datasets
for Genetic Programming,” Advances in Artificial Intelligence, Proceed-
ings of the 17th Conference of the Canadian Society for Computational
Intelligence. A. Y. Tawfik, S. D. Goodwin (eds), Lecture Notes in
Computer Science, LNCS 3060 Springer-Verlag. pp 161-174, May,
2004.

[10] C. Lasarczyk, P. Dittrich, and W. Banzhaf. “Dynamic subset selection
based on a fitness case topology.” Evolutionary Computation, 12(2), pp
223-242, 2004.

[11] T. Perkis, “Stack Based Genetic Programming.” Proceedings of the IEEE
Congress on Computational Intelligence. IEEE Press, 1994.

[12] M.I. Heywood, A.N. Zincir-Heywood, “Dynamic Page Based Crossover
in Linear Genetic Programming,” IEEE Transactions on Systems, Man
and Cybernetics - Part B, 32(3), pp 360-388, June 2002.

[13] J.P. Nordin, W. Banzhaf, “Evolving Turning Complete Programs for a
Register Machine with Self-Modifying code.” In Proc. 6th International
Conference on Genetic Programming. MorganKaufmann, pp 318-325,
1995.

[14] P. Lichodzijewski, M.I. Heywood, A.N. Zincir-Heywood, “Cascaded GP
Models for Data Mining,” IEEE Congress on Evolutionary Computation,
CEC-04, Portland, Vol.2, pp 2258-2264, 2004.

[15] K. Deb and D.E. Goldberg, “An Investigation of niche andspecis
formation in genetic function optimization.” Proceedingsof the 3rd
International Conference on Genetic Algorithms. pp 42-50,1989.

[16] B. L. Miller and M. J. Shaw. Genetic algorithms with dynamic niche
sharing for multimodal function optimization. Technical Report 95010,
IlliGAL, University of Illinois at Urbana-Champaign, 1995.

[17] B. Punch and E. Goodman. lil-gp genetic programming system, v.1.1
[http://garage.cps.msu.edu/software/lil-gp/lilgp-index.html], Genetic Al-
gorithms Research and Applications Group, 1998.

