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Abstract— A Cascaded model is introduced for mining large In the following we will first provide a short review of
datasets using Genetic Programming without recourse to spél-  alternative schemes for encouraging problem decompaositio
ist hardware. Such an algorithm satisfies the seeming conftiag Section II, as well as introducing the basis for the DSS

requirements of scalability and accuracy on large datasetdy . . . . - .
incrementally building GP classifiers through the use of a family of active learning algorithms utilized by this work.

hierarchical Dynamic Subset Selection algorithm. Models e Section Il provides the details of the CasGP algorithm,
built incrementally with each layer of the cascade receivig with a particular emphasis on the schemes used to minimize
as input the original feature vector, plus the output from the degenerate solutions at each layer of the hierarchy. Result
previous layer(s). In order to encourage each layer to explitly 506 reported in Section IV for three benchmark problems.
solve new aspects of the problem a combination of Sum SquareI icul dard impl . fGP i d
Error and Niching is utilized. Thus, previous layers of the model n par_tlcu ar a standard imp ememat'on 0 . 1S use_ to
are considered a niche, and the cost function is a shared emo establish the performance base line on several widelyaivail
metric. data mining problems. This demonstrates that variabletteng
GP is not able to compete with either the subset selection
algorithm alone or CasGP; in effect code bloat results in
I. INTRODUCTION significant computational overheads whilst model accuiacy
also lacking. Moreover, comparison against other GP result
The principle interest of this work is to provide an efbased on ensemble methods indicates that CasGP is very
ficient paradigm for mining large datasets using Genettompetitive whilst avoiding the need for specialist harteva
Programming (GP) i.e. a supervised learning context, withoresources or reducing model transparency.
recourse to specialized hardware platforms. Previous svork
have suggested that an active learning algorithm such as
Dynamic Subset Selection (DSS) may be used to address
the computational overhead associated with large datfidets As indicated above, previous works in which GP has
Such a model decouples the computationally expensive inmaplicitly supported problem decomposition has concéstra
loop of GP from the raw exemplar count by recognizingn some form Automatically Defined Functions [7], or more
that not all exemplars are created equal. Thus, the datmsetecently, have been based on ensemble methods such as
filtered in accordance with an active learning algorithnthiis Bagging/ Boosting. Indeed several instances of Bagging/
work we use the DSS methodology to provide the basis fBoosting routines have appeared in GP. Specifically, a par-
efficient incremental learning on binary (as opposed to imultitioned population model was utilized to construct enskesb
class) data mining problems. The basic architecture tdies of classifiers using both Bagging and Boosting by sampling
form of the hierarchical model popularized by the cascad@]. This was then refined to produce Boosting by weighting
correlation family of neural networks [2]. The ensuing misde[4]. Both schemes were demonstrated under small benchmark
are modular, building on the results from previous layeapplications. In the case of larger datasets, a partitioned
such that each layer explicitly minimizes a new componeBigging algorithm has recently been incorporated into a
of the error. Thus, the modular approach to problem solvingarallel cellular GP model, thus providing very fast trami
provides for the decomposion of the problem into a hierarchiynes [6]. Such schemes are based on the variance reduction
of different objectives. In order to avoid degenerate sohg methodology for model aggregation, where Bayesian Legrnin
we introduce a combination of sum square distance metilibeory predicts that multiple models will out perform a deng
(as opposed to the count based metric typically employedrimodel. However, this is not the only methodology by which
GP classification models) and a niche based fitness functiamultiple models may be combined to produce an aggregated
Such an approach is rather different from previous appm&cimodel. Of particular interest to this work is the case of
to problem decomposition in GP, where the norm has beentl® cascade correlation architecture [2]. In this case tsode
build models in parallel and recombine using some sort afe not added in parallel, but hierarchically, with eachetay
voting mechanism [3], [4], [5]. of the hierarchy receiving input from all previous models

Il. RELATED WORK



and the original dataset i.e., each layer of the model adderse performing individuals from the same tournament. In
a new feature to the input space. In addition, the originatidition the crossover scheme used here enforces an awddlitio
cascade-correlation scheme trained each new layer aglanstconstraint, in which the location of crossover points algo b
error residual, with adaptation only taking place in theelay fixed in an attempt to encourage code alignment between
currently under development. As a consequence, layerfgpeatrossover points [12]. Mutation operators might be defined
goals are explicitly identified. over specific instruction fields (e.g. opcode, source orefarg
Naturally, a hierarchical scheme for incremental modegister) or applied across an entire instruction (thetdteing
building requires an efficient methodology for construgtinused here). Moreover, it is also normal to incorporate apswa
candidate models at each layer. In particular, trainingaghe operator in which two instructions from the same individual
layer is still conducted over the entire dataset. Howeve, tare selected with uniform probability and interchanged.
use of an active learning algorithm implies that the tragnin
data is filtered in accordance with the current classifier per I1l. CASGP ALGORITHMS
formance. To this end, use is made of the Dynamic Subseﬁ
Selection (DSS) active learning algorithm [1], modified to
incorporate the concept of computer memory hierarchies.
basic DSS algorithm collects two exemplar statistics, a

and difficulty, and stochastically samples exemplars os th o e -
basis. Such a scheme naturally samples exemplars Whrieﬁthodology first identified for neural networks. Within the

are less frequently sampled or defeat classifiers more .oft(gﬂm?Xt of GP, this spheme frequently _results in degenerate
Computationally, the only drawback of such a scheme is th%?'““or_‘s [14]. That is to say, by adding the output from
a random memory access model is still assumed. That3gP"eVIous layer of the casc_ade to the feature vectqr, the
to say, on datasets larger than cache memory a significff‘ﬂ'v'omals at the GP populatlo_n for the next layer qmckly
penalty is encountered during cache misses. Previous wj m to copy this feature as their output. Naturally, trisis

has addressed this case by first partitioning the origirtaiss Fother members of the population but does not further the
Herformance of the overall cascade. Such a scheme is h@areaft

into blocks, where a block of exemplars is sufficiently smal torred t Naive CasGP. T dditional ¢
to reside in cache memory alone [8]. Blocks are selectfg ©'Ted 10 as Nalve L.astr. IWo adaitional components are
troduced to reduce the likelihood of degenerate solstion

with uniform probability (random subset selection, or RS first step is o d h f t based dist
and the DSS algorithm applied to select exemplars within ;e ISt Step 1S 0 drop the use of a count based distance
etric in favour of a sum square error, Subsection B. Finally

block. More sophisticated block compositions and sampli . . . . S
algorithms have been considered for the hierarchy [9] ang D e introduce fitness sharing, where the basic objective is to
explicitly penalize the duplication of error behaviour et

itself [10], but in this work will retain the original RSS-[35 _ . :
layer currently being constructed relative to previouselay

scheme of Song. bsection C details th truction of two fit hari
The CasGP model for hierarchical problem decompositi??“' section etalls the construction ot two Tithess sharing

is independent of the specific form of GP employed. In th inctions.
work a fixed length linearly structured GP representation
is employed. Such a scheme shares many similarities wih Naive CasGP

Genetic Algorithms in which alleles are allowed to take The Naive CasGP algorithm is summarized in Algorithm
the form of a set of integers. For linear GP, the integeks gach jteration of the outermost loop yields one layer of
are decoded into instructions, typically taking the formeof (1o cascade (i.e., one unit is added). The first layer of the
register level transfer language. Programs are therefare ' cascade is trained with the original data and is equivatetite

by starting at the first integer of an individual, decodingyeneration of a single classifier. Each iteration of the ilym
executing and incrementing the 'Program Counter’ to pOiien proceeds as follows. Firdt different populations are

at the next instruction (integer). A register transfer Bage jnjtialized to mitigate the dependence of the algorithm oy a
representation |mpl|es t_hat instructions sp_eCIfy actionerms  one jnitialization N of 1 and 30 are considered in Section
of a predefined instruction set, target register, Sourcs®S, |v). These populations are then trained on the data assaciat
constants and inputs (features of the exemplar vector)dNegiith the current layer. Once training is complete, the bast r
less to say, varying constraints on the number of sourg€jgentified as the one generating the fittest individuakbas
registers specified results in different (register) adsln&s o the training data. The data used to train the next layer
schemes, with instances of zero (stack) [11], two [12] anekth js generated by augmenting the current layer's data with the
[13] register addressing schemes having been demonstrgdighyt of this best individual. Layers are added until a some
in a linear GP context. The fixed length representation usg@mination criterion, such as a maximum depth (16 in the

here implies that crossover always exchange an equal nuUmB@Seriments of Section IV) or an acceptable error level, is
of instructions. The initial population is therefore ialized o5ched.

with uniform probability over the entire range of program

lengths, as opposed to the variable length scheme in whiich al .

individuals are initialized over a small subset of initiehths, B- Distance Metric and Wrapper

This work utilizes a steady state tournament in which ckiddr  GP produces an output, typically real valued, and only lim-
from the better performing half of the tournament replacee ttited by the numerical representation of the machine on which

n the following the three basic components of the CasGP

rchitecture are introduced. The first component provides
e basic algorithm for incrementally building hierarcillg

%%scaded GP models and follows the basic error minimization



TABLE |

Algorithm 1 Cascade model for incrementally building GP
WRAPPER ANDASSOCIATEDDISTANCE METRIC.

models.

?0 Wrapper Distance Metric
1if GPout > 0 .

U . = — EBEC=Y1- hit(y,

initialize N populations; Y { 0 otherwise 2, iy p2)

for (i < N) train (data, pop}); BC =3 ,1-hitly,p) SSE=3_, (d—yp)

best = fittest(pop(0),..., poN(- i));
cat(data, output(best));

) o multi-modal optimization problems [15]. The basic problem
until(termination); faced in the multi-modal context was that the stochastianeat
of the GA caused the solutions to converge to a single peak

L ) ... _.._even when several peaks of equal fitness were present. The
it is evolved. In order to apply GP to (binary) classificationaring approach tries to maintain diversity by reducing an

problems the norm established by Koza has been to apply,g;iqual's fitness when it is in close proximity to the sban
binary mapping (or wrapper) to the original GP output [7yentified by other individuals. In this way, the populatiisn
This is synonymous with a switching function, centered couraged to disperse among the multiple optima. Infdymal

zero, Table ,I' Thus,.any GP output smgller th_an ZEro (Ze§ﬂaring reduces the fitness of an individual by a factor dalle
or greater) is associated with the majority (minority) 6las e niche count which measures how similar an individual is
An unfortunate consequence of such a decision is a reduct{gnmarby individuals by way of an appropriate distance or
in the feedback provided to GP regarding the robustnesssﬂgring function.

decision boundaries formed. That is to say, a solution ircvhi o concepts from sharing can be applied to the cascade

exemplars from.both classes are close to the gwnghmg POthitecture by considering the overlap in the performasfce
of the wrapper is treated the same as a solution in whichygerent layers. Thus, during the construction of the egeg
wrapper is placed between classes in such a way to establisisinction is made between the individuals that are in the
a significant tolerance between class memberships. Inteffge, oqs of being evolved at the top most layer and the saltio
switching type wrappers mask valuable distance informatioy; he previous layers which have already been fixed. Only
without whmh it _becomes increasingly d|ff|cullt to. prowd_ethe fitness of the individuals being evolved are evaluated, a
robust classification models. Instead a mapping 1S r(_a_qu'rﬁﬂlike Naive CasGP, this evaluation considers the behawabu
between the real valued GP output and the binary classtitati,,o so1utions at the lower layers. In particular, the indiils

dqmain, such that d_istance iqformation is retained. Weesskjrbeing evolved are penalized if they reproduce the behaviour
this problem by again borrowing concepts from neural nekwop (e ' are similar to) previous layers. However, there is
models. In particular a widely used mapping satisfying thg, important difference between this approach and sharing
abovg objective IS the sigmoid or tansig function. SL,’Ch & traditionally defined. With traditional sharing, simitg
function monotonically maps a continuous input space {0 Ufy measured over both desirable and undesirable behaviours
interval or symmetric interval. The original (neural netWp qeaq, with the cascade, individuals are penalized ohignw
motivation for doing so was to prowde a decision boundamey make the same mistakes as previous layers. That is,
that was smooth, th.us. differentiable. In the case of ,GP Yidividuals should be allowed to reproduce correct behavio
smopthness con;tramt IS redund_ant, however, the fundoes while focusing on correcting incorrect behaviour. Morempve
provide the basis for a more informative wrapper. Thus go /50 emphasize that by conducting sharing between a
good’ placement of the wrapper would tend to force exemuemper of the current population and previously evolved
plars from dissimilar classes to_opposne extre_mes_of tge_sbolutions, the approach does not suffer from the problem
moid, where the means for making such a decision is providgdsqciated with tournament selection [16]. That is, theesl

by the monotonlcallly Increasing chgractenstlc of the B‘Q"j’ used for fitness sharing do not become outdated since they are
Table |. Error or distance calculatl_ons now charact_erlzw hot pre-calculated using other members of the population, b
far GP is able to push exemplars into their respective (assge pased on the previously-fixed layers. In the following tw

as well as whether they are members of the relevant class ((h@y, fynctions are defined, where smaller values correspond
switching wrapper only quantifies the latter). Moreoveg thy, fiyer individuals i.e., a minimization objective.

use of a real valued error (as opposed to a count of the numbeyy Sharing Function: In the case of sharing function
of correct.classif!cations)_ i-mplies th-at we may .now uFiIize 81, we let the shared fitness of an individual be the sum of
cost function which explicitly penalizes errors in propont o individual's raw fitness and normalized niche count. Raw
to a predefined law. We previously demonstrated a preferentge s takes the form of the SSE cost function. Niche count
for case of a sum square error (SSE), where this naturglj¥njizes erroneous behaviour by considering performance
assumes a Gaussian distribution of errors, Table | [14]. previous layers. If the previous layer got the instancetrigh
) ) the niche count is incremented by the sum-squared error of
C. Fitness Sharing the individual on that instance. If the previous layer gaitth
The second approach for minimizing the potential for deastance wrong, the niche count is incremented by the prtoduc
generate solutions across CasGP is based on the concept obfithe errors of the previous layer and the individual on that
ness sharing originally demonstrated for (Genetic Algon} instance. When the niche count is added to the raw fitness, it




is normalized by the number of layers to assure convergerfaaction. At higher layers, the shared fitness is calculdigd

at higher layers. iterating over all the previous units, and for each previauis,
Specifically, the shared fitness of an individiiaé defined incrementing the shared fitness by the error of the indididua

to be, with respect to that unit. If the distance to the given unit is
fsni=fi+ 15 sufficiently large, the error is added to the shared fithess as

Here,L is the number of layersf; is the raw fitness, and mi is. Otherwise, the individual and the previous unit are deg&m

is the niche count. Niche count is defined by, to be too similar, and the weight of the error is increased in
mi =Y ep Yoper $h (4, 1,) proportion to the distance. The distance used is a Euclidean

with T corresponding to the the fitness cases. For an individui$tance based on the values that the current individual and
i, previous layel, and fitness casp, the sharing function is previous unit output for each fitness case. The error with

defined as follows: respect to each previous unit, again based on the fitness, case
sh(i,l,p) = is affected only when the deviation from the desired output
0 if 7 got case right, of the current individual is greater than the deviation df th
(dp — yip)(dp — y1,p) if i @andl got case wrong previous unit. In this case, the error is increased by tharsqu
(dp — yip)? if ¢ got case wrong but did not. difference of the two deviations.

In this definition, d, corresponds to the desired value for

fitness casep, while y; , andy; , corresponds to the values

output for case by individuali and layer respectively. Note

that the output values that are used have been transformedsn.; = ZZEL(l +ei)(1+ sh(dig))

using the appropriate wrapper. Here, L again corresponds to the previous layeys,is the
Thus, the sharing function does not penalize an individualérror for individuali associated with laydy d; ; is the distance

it classifies a fitness case correctly. If the individual sifiss between individual and layerl, and the sharing function is

the fitness case incorrectly and the previous layer classtie defined as:

case incorrectly as well, then the niche count is increntente 1— (di,l )a“h ifd, <o

. . . il sh

in proportion to how far off the two outputs were. Note that in sh(di) = "Bh otherwiée

this cased,, —y; p andd,, —y.,, Will always have the sign and xq i tragitional sharingg, is the neighbourhood radius

their absolute values will be greater than 1, so their prod

: : ! dagy, controls the shape of the function. The distadge
W!" be greater thar_1 L.In ?[hls. way, the evolutionary PrOCESS the Euclidean distance evaluated over the values output b
W|II_ not only penalize an |nd|V|d_uaI based on the_ dewaﬂ_op and! for each of the fitness cases, that s,
of its output value from the desired value, but will penalize
that individual more if previous layers had difficulty withétt diy = \/ZPGT(%,;D — Yp)?
instance as well. Therefore, focus should shift to the moFenally, the error of individuali associated with layet is
difficult cases. defined as,

If the individual classified the fitness case incorrectly and _ ;

. o X eil = Y erse(i,l,p)

the previous layer classified that instance correctly, tthen where P
niche count is incremented by the squared deviation of tgg(i I,p) =
individual's output value from the desired value. In compar "’
ison, penalizing the individual as in the previous case woul | ((do —¥ip) = (dp — y1.p))* if ldp — yipl > Idp — Y1l
actually reward that individual for getting wrong what the , 0  otherwise
previous layer got right since in this caé, — y,| is no Note that in the above definitiofi, —y;,| and |d, —yup|
larger than 1 whiled, — y; | is necessarily larger than 1, soeorrespond to the_dewatlons from the desired value of the
that (d,, — ;.,)(d, — y1») is less than(d, —y; ,)%. As is, the values produced biyandl for patternp.
sum-squared error on that fitness case is essentially abunteThe S2 sharing approach addresses two specific issues.
twice as penalty for misclassifying an instance that anotheirst, individuals are encouraged not to perform worse than
layer got right. previous layers since the calculation @f; counts error only

In the final definition of the shared fitness the niche couiftit is greater than that of the previous layer. With thisrao
is normalized by the number of layers. This was found to bedividuals would minimize error by reproducing exactheth
necessary in order for convergence to take place. Otherwisatputs of previous layers, and once again, degenerates wou
at higher layers, it was observed that many different bbe produced. To prevent this from happening, the approach
poor solutions were evolved. This was attributed to the fapenalizes individuals if, based on their output valuesy the
that without the normalization factor, the weight of theh@c are similar to previous layers. This should lead to higher
count in contribution to the final shared fithness would stgadilayers producing individuals that are no worse than those in
increase as more layers were added. Thus, focus shiftd lower layers but yet remain different. The ultimate goal
from generating good and unique solutions to generating ordeing to identify individuals that would classify instasdfat
unique solutions. previous layers got wrong, units at the top of the cascade

2) X Sharing Function: At the first layer, when there arecould then use the outputs of the lower layers to generate
no previous layers to compare the current individual againsery accurate classifiers. This approach is more similah¢o t
the fitness of an individual is evaluated using the SSE camstiginal formulation of fitness sharing.

More formally, beyond the first layer, the shared fitness of
an individuali is defined as,




TABLE Il

) V. RESULT_S ) GPAND RSS-DSS RRAMETERIZATION
In the following performance is considered across three
benchmark classification datasets: Adult, Shuttle, ands@&n 5 g Page Based Linear GP -
Evaluation is performed by considering cascades builtgusin Pops{;rigﬁ i frvis
one of two methodologies. In both cases 30 initializatiores a Max Page Size 8 Instructions
considered, however, in the first scheme 30 runs are pertbrme Max Pages 32
using 1 initialization per cascade layer, resulting in 3edéent Number of Registers 8
. ; ! Crossover probability 0.9
cascades. This hereafter is referred to as CasGP-30. The Mutation probability 0.5
second architecture performed 30 different initializatiqper Swap probability 0.9
layer, selecting the fittest (on training data) to represkat Probability of initializing with
Yyer, ung _ 9 presl Type 1, 2 or 3 instruction 111, 8/11, 2/11
layer, resulting in a single cascade, or CasGP-1. The fallgw Tournament Size 4
subsections summarize characteristics of the four bendtsma $Uﬂ0ﬁ0n| ge: © 2{54& f{,_ Xﬁ (wres)
. . . erminal sSe yeeny U{input tfeatures
and deal with the par_ametenzatlon employed thrqughqut for RSSDSS Pararsters
CasGP before beginning the performance comparison itself. RSS Block Size 5000
DSS Subset Size 50
RSS lIterations 1000 x | (blocks + 5) /10|
A. Datasets Max DSS lterations 100
Only binary classification problems are considered in this Prob. of DSS pattern
k. The three benchmark data mining datasets considered selection using age (difficulty) 03(0.7)
WOrK. e g DSS Refresh Frequency 6

here are originally binary or converted to binary classifara
problems as detailed below.

1) Adult: The Adult dataset was obtained from the UCI
Machine Learning Repository. Each exemplar in the dataset
has a feature length of 14, representing a mixture of coatisu GP. The CasGP algorithm, however, is actually independent
and nominal features. The task was to decide whether a persérihe form of GP employed. The fix length GP employed
earned over $50 000 per year. The version of the datadi®oughout these experiments is denoted page-based tinear
used did not contain unknown values. This yielded a tot@dP with dynamic crossover [12]. The parameters used are
of 30 162 training and 15 060 test instances. Of the 45 2@gtailed in Table Il. Three general points are note wortingtF
total instances, 24.78% corresponded to individuals thateel the maximum initial number of pages and the initial page size
over $50 000 per year. In preprocessing the data, continugue used to define the size of the individuals at initialorati
features were left unchanged whereas is nominal featuress weiven the settings in Table Il, the maximum individual sige i
mapped to integers. 32 x 8 = 256 instructions. Second, a maximum page size

2) Shuttle: The Shuttle dataset that was used was basetl 8 means that the page sizes dynamically vary between
on the Shuttle dataset found in the Statlog database, also2, 4, and 8, all within the same training run as training
found in the UCI Machine Learning Repository. It represengsror plateau’s are encountered. Third, the weights aataati
conditions and desired actions for controlling a spacetkhut with instruction types define the expected proportion ofheac
The original version of the dataset contained 43 500 trginimstruction type in the initial population. Three instriact
and 14 500 test instances each composed of nine numeriypks are: Type 1, load register with a constant; Type 2,yappl
features. Each instance belonged to one of seven classgsode to an input and register; or Type 3, apply opcode to two
although class 1 accounted for most of the instances. Tiegisters. Thus, given the weights shown, the most common
problem was converted to a binary classification problem lystruction should involve a register and an external input

Iapeling class_ las negativ_e and all other c_Iasses as pms_ifciv To facilitate training with large datasets, the page-bdsed

This resulted in 21.40% of instances belonging to the pa@siti5p \yith dynamic crossover was combined with the hierarch-

cla353.c - Simil he Adult d he obiective i ical RSS-DSS algorithm [8]. The parameters associated with
) Census: Similar to the Adult dataset, the objective iye pgs.pss algorithm are shown in Table Il. Two things

to clqssify whether a person earned over $50 000 per Y& of note. First, the number of RSS selections is defined
In this case, however, there are 40 features (as oppo

roportion to the number of blocks used to partition the
to 14 in the case of Adult) describing demographic a dp P P

| ch - f h lar. Th i aining dataset; if the dataset has more blocks, more RSS
personal characteristics of each exemplar. The resulatasdt selections are made. The idea is that, on average, the number

conS|st_s of 95 132 training and 47 391 te_st exempllars, WIS? times the entire dataset is traversed will remain corstan
apprommatel_y_ 5.6% Of. the data representing the minor Cla\%sgardless of the number of training exemplars. Secondly,
(on_both pz_irtltlons).Thls latter characteristic makesdhtmset the actual number of DSS selections made per tournament
a_nllnterestmg test of performance under very unbalancad.c%epends on the difficulty of a block. This will decrease as
ditions. The dataset was also sourced from the UCI repYSItof|assifier performance improves, thus concentrating thed#

o evaluation on the most pertinent exemplars i.e., difficult o

B. GP Parameterization old, as per the DSS algorithm. Detailed descriptions of the

As indicated in the introduction, one of the motivation®ynamic Subset Selection algorithms and associated asalys
for designing CasGP was as an alternative to variable lengthparameterization are available elsewhere [1], [8].
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lower test error, as measured by-gest at the 99% confidence

interval for Adult and Census with respect to the S2 sharing
C. Evaluation function. Moreover, S2 tends to utilize more layers before
As indicated above in the following we will consider twoln® best training error was identified than either S1 or SSe,

schemes for building cascaded hierarchies: CasGP-30; af@ple Ill. The principle benefit from using the shared fitness
CasGP-1. In the following use will therefore be made dfnctions on CasGP-30 appears to have been in terms of the

both best case and quartile performance, as well as res@fggenerate counts (number of layers at which a classifier jus
previously published for the various datasets in question. COPied the result from the previous layer), Figures 4 to @sTh

1) CasGP-30 Hierarchies The CasGP-30 methodologySt returns less degenerates on Adult and S2 less degenerates
results in a new classifier for each run, but only perfornfy) Shuttle and Census, where this is again significant at the

one initialization per layer of the cascade. This means th&t 70 confidence interval as measured biytest.

we are able to provide some qualification of the degree of2) Previous Results and CasGP-1: Tables IV and V sum-
spread associated with the resulting cascades. Conveaselynarize best case results for the CasGP algorithms (using
the CasGP-1 architecture selects the best classifier fromtggning performance to select best cases for CasGP-30).
initializations per layer, the scheme is less dependemitinli Needless to say, the CasGP-1 results are uniformally better
conditions than CasGP-30, but will only produce a singl@an those returned under CasGP-30, where the CPU time
classifier from the same number of initializations.

In the case of CasGP-30, classification performance is
reported for the layer with lowest training error (not neces
sarily the last layer). Figures 1 to 3 detail the test error
on Adult, Census, and Shuttle datasets respectively ifigrin Dataset SSE S1  S2
curves showing similar characteristics). It is appareat the CA:n“S'LS 155 111 152
sharing algorithms in this case do not result in a improvemen Shutle 5 6 95
above that provided using SSE alone. SSE actually resuéts in

TABLE Il
CAsSGP-30 MeDIAN TOTAL CASCADE LAYERS




TABLE V
% BESTCASE CASGP-1 ACCURACY

11

10

. Training Test
Dataset SSE S1 S2 SSE S1 S2
& Adult 1549 1531 1529 15.7 1552 1547

Census  4.98 4.89 4.87 4.9 4.85 4.8
Shuttle 0.06 0.05 0.14 0.1 0.14 0.13

Degenerates

&
: TABLE VI
4 BEST CASE TEST RESULTS FORECISIONTREE AND NAIVE-BAYES
] CLASSIFIERS ONCENSUSDATASET
: ssE 51 2 Classifier % Test Error
C 45 4.8
C5.0 4.7
Fig. 5. CasGP-30 Quartile Degenerate Count on Census tlatase C%%oBsgslfiig 3(75
Naive Bayes 23.2
14
13
" As a final test, 10 runs were made using (variable length)

tree structured GP without the RSS-DSS algorithm (fitness

was evaluated across all training exemplars) using the tAdul

1 dataset. Parameterization follows the basic Koza utitinat

s of generational selection, a population of 4 000 individual

and 90% crossover (10% mutation). Fitness is evaluatedusin

a SSE cost function. Figure 7 plots test performance as

’ quartiles for CasGP-30 and the vanilla implementation @é tr

s structured GP (implemented using lilgp [17]). The benefit of

SSE and S1 based CasGP-30 cascades is now readily apparent,

with the S2 sharing function resulting in more sensitivity t

Fig. 6. CasGP-30 Quartile Degenerate Count on Shuttle etatas initial conditions under this dataset. Moreover, all theazle
solutions required an order of magnitude lower node count
than that returned for the variable length tree representat

requirement is the same for both schemes (both use a totallable VIII.

30 initializations overall). This result is confirmed byt-éest

returning p values of 0.002, 0.029 and 0.57 for Adult, Census V. CONCLUSION

and Shuttle respectively. In contrast to the general firglinfy , ) , )

the quartile CasGP-1 results above, it is the solutionstifiess 1 he Hierarchical Cascade architecture has been introduced

using the sharing functions that result in the best resulfgr efficiently building modular solutions to large classéfion

irrespective of dataset. datasets. Specific attention is paid to the use of a suitably

In the case of the Census dataset, results were availaihe ﬂjgfofrmatn:je COStl funct|I(E)n Iand_ the fnumhber of g\ltlal(ljzalmn
the UCI repository for decision tree algorithms and a Naiv@eriormed per layer. Evaluation of schemes based on one

Bayes Classifier, Table VI, with performance of both CasGP-

11

Degenerates

1 and CasGP-30 remaining competitive with the decision TABLE VII
trees, and bettering that of the Naive-Bayes Classifier.n@n t AvERAGE % TESTERROR USINGPARALLEL CELLULAR GPON ADULT
Adult and Census dataset previous results from a GP solution AND CENSUSDATASET

based on a distributed parallel Cellular Automata, Tablg VI
demonstrate that the median CasGP-30 results, Figures 1 and

Classifier Adult  Census
CGPC 17.18 5.19

2, match those reported for the Cellular Automata using 10 BagCGPC  17.01  5.08
fold cross validation [6]. BoostCGPC  16.53  8.33
TABLE IV TABLE VIII
9% BESTCASE CASGP-30 ACCURACY NODE COUNTS FOR VARIABLE LENGTHTREE STRUCTUREDGP AND
CASGP-300N ADULT DATASET
Training Test
Dataset SSE S1 S2 SSE S1 S2 Quartile  Tree GP SSE S1 S2
Adult 1591 1564 16.09 16.56 15.88 16.02 3rd 3219 424,25 466.25 495.5
Census 5.05 5.0 4.96 4.89 4.9 4.82 Median 2604 379.5 390.5 418

Shuttle 0.14 0.14 0.156 0.145 0.131 0.145 1st 1519.5 316.5 353 385
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Fig. 7. % Test Error on Adult for variable length Tree strueth GP and

CasGP-30

initialization per layer over 30 runs (CasGP-30) versusr0 i
tializations per layer for a single run (CasGP-1) demotestra
that the best performance is still dominated by considering

multiple initializations per layer. However, the perfomca

(3]

(4]

(5]

(6]

(7]
(8]

El

[10]

of the CasGP-30 is still competitive with that returned by

a parallel Cellular GP implementation with either baggingi)

or boosting. This is achieved without the requirement for

the necessary parallel hardware, albeit taking severatshol}?

to return the same level of performance. We note, however,

that both CasGP-1 and CasGP-30 readily support parallel

implementations.
Comparison with traditional variable length GP on the Adult

dataset indicates that the resulting solutions are indeed 4]

more succinct (lower node count) without impacting on the

classification performance. Moreover, by using fixed sizggs)

individuals, but using the cascade to provide the basisdar v
able length solutions, we maintain that the cascade aotbite
is much better at incrementally decomposing the problem at
each layer. This naturally does not preclude using variable

length chromosomes, though whether this would result i

radically different behaviour from that observed here is an
open question.

The Sharing functions, S1 and S2, appeared to be more
successful in identifying best case solutions than progdi
consistent classification performance. Thus the CasGR-1 ar
chitecture returned better results using the sharing fomnst
than the SSE cost function alone (best of 30 initializations

selected from at each layer). On CasGP-30, however, both S1

and S2 did provide a reduction in the number of degenerate
solutions across the cascade, where this is significanteat th
99% confidence interval. Future work continue to identify
whether this is endemic to the formulation of the cost fuorcti
or a question of parameterization.

(1]

(2]

REFERENCES

C. Gathercole, P. Ross, “Dynamic training subset silacfor super-
vised learning in genetic programming.” In Parallel Probl&olving
from Nature Ill, Lecture Notes in Computer Science, LNCS ,866
Springer-Verlag, pp 312-321, 1994.

S. E. Fahlman and C. Lebiere., “The cascade-correldgaming archi-
tecture.” In Proceedings of Advances in Neural InformatiRnocessing
Systems-2, Morgan Kaufmann, pp 524-532, 1990.

H. Iba, “Bagging, Boosting and Bloating in Genetic Pragming.”
Proceedings of the Genetic and Evolutionary Computationfé&ence,
GECCO0-99. Banzhaf W., et al. (Eds), Morgan Kaufmann. pp 10830,
1999.

G. Paris, D. Robilliard, C. Ronlupt, “Applying Boostingechniques
to Genetic Programming.” 5th International Conference atifidial
Evolution. Collet P., et al. (Eds), Lecture Notes in Compueience,
LNCS 2310. pp 267-278, 2001.

M. Brameier and W. Banzhaf. “Evolving teams of predistovith linear
genetic programming.” Genetic Programming and Evolvabieivhes,
2(4), pp 381-407, 2001.

G. Folino, C. Pizzuti, G. Spezzano, “Boosting TechnidaeCombining
Cellular GP Classifiers,” Proceedings of the 7th Europeanfé€ence on
Genetic Programming, EuroGP’04, Lecture Notes in CompBtéence,
LNCS 3003, Springer-Verlag. pp 47-56, 2004.

J. R. Koza. Genetic Programming: On the Programming ah@aters
by Means of Natural Selection. Cambridge, MA: MIT Press, 2199
D. Song, M.l. Heywood, A.N. Zincir-Heywood, “Training é&hetic
Programming on Half a Million Patterns: An Example from Araign
Detection,” To appear in: IEEE Transactions on Evolutign@omputa-
tion, 2005.

R. Curry, M.l. Heywood, “Towards Efficient Training on tge Datasets
for Genetic Programming,” Advances in Artificial Intelligee, Proceed-
ings of the 17th Conference of the Canadian Society for Caatipnal
Intelligence. A. Y. Tawfik, S. D. Goodwin (eds), Lecture Noté
Computer Science, LNCS 3060 Springer-Verlag. pp 161-174y,M
2004.

C. Lasarczyk, P. Dittrich, and W. Banzhaf. “Dynamic sabselection
based on a fitness case topology.” Evolutionary Computafi@?), pp
223-242, 2004.

T. Perkis, “Stack Based Genetic Programming.” Procegdof the IEEE
Congress on Computational Intelligence. IEEE Press, 1994.

] M.l. Heywood, A.N. Zincir-Heywood, “Dynamic Page Bas€rossover

in Linear Genetic Programming,” IEEE Transactions on SysteMan

and Cybernetics - Part B, 32(3), pp 360-388, June 2002.

J.P. Nordin, W. Banzhaf, “Evolving Turning CompleteoBrams for a
Register Machine with Self-Modifying code.” In Proc. 6thtémational

Conference on Genetic Programming. MorganKaufmann, pp3253

1995.

P. Lichodzijewski, M.l. Heywood, A.N. Zincir-HeywogdCascaded GP
Models for Data Mining,” IEEE Congress on Evolutionary Cartgtion,

CEC-04, Portland, Vol.2, pp 2258-2264, 2004.

K. Deb and D.E. Goldberg, “An Investigation of niche asgecis
formation in genetic function optimization.” Proceeding$ the 3rd

International Conference on Genetic Algorithms. pp 42-BEB9.

16] B. L. Miller and M. J. Shaw. Genetic algorithms with dyniz niche

sharing for multimodal function optimization. Technicagport 95010,
IlIGAL, University of lllinois at Urbana-Champaign, 1995

B. Punch and E. Goodman. lil-gp genetic programmingtesys v.1.1
[http://garage.cps.msu.edu/software/lil-gp/lilgpiax.html], Genetic Al-
gorithms Research and Applications Group, 1998.



