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Abstract- This paper considers the development of re-
dundant representations for evolutionary computation.
Two new families of redundant binary representations
are proposed in the context of a simple mutation-
selection evolutionary model. The first is a family of
linear encodings in which the connectivity of the search
space may be designed directly via a decoding matrix.
The second is a family of representations exhibiting vari-
ous degrees of neutrality, and is constructed using math-
ematical tools from error-control coding theory. The
study of these representations provides additional in-
sight into the properties of redundant encodings, such
as synonymity, locality, and connectivity, and into their
interrelationships.

1 Introduction

The choice of chromosome representation is known to be
a fundamental design issue in genetic search. In particular,
the role of redundancy, where there is more than one repre-
sentation in genotypic space for the same solution in pheno-
typic space, has been the subject of debate in the last years.
Radcliffe [1], for example, noted how redundancy could be
detrimental in neural network topology optimisation by ge-
netic algorithms, due to the use of crossover, and developed
non-redundant representations for that task. On the other
hand, the use of redundant representations has attracted in-
creasing attention in recent years [2–5] for its potential to
create alternative paths for evolution and, in this way, im-
prove the quality of the search. Unfortunately, the influence
of redundant representations on the performance of evolu-
tionary algorithms is not yet well understood, and practical
evidence [4] of improved search performance afforded by
redundant representations has not passed unquestioned [6].

Although the main motivation for the development of
redundant representations in evolutionary computation has
been the desire to obtain increased performance, the redun-
dant representations proposed so far tend to favour large
amounts of redundancy [4,7–10], and to be based on encod-
ing mechanisms which do not facilitate their analysis. As a
result, experimental comparisons of the resulting algorithms
with an algorithm based on a non-redundant representation
may be affected by large differences in the size of the search
spaces and the corresponding interaction with evolution-
ary algorithm settings such as mutation and recombination
rates.

Rothlauf and Goldberg [5] identify a number of proper-

ties of redundant representations, which are known to influ-
ence their quality:

Uniformity A representation is uniformly redundant if all
phenotypes are represented by the same number of
genotypes;

Synonymity A representation is synonymously redundant
if the genotypes which represent the same phenotype
are similar to each other, i.e., they are close to each
other in genotypic space;

Locality A representation has high locality if neighbouring
genotypes correspond to neighbouring phenotypes;

Connectivity A representation has high connectivity if the
number of phenotypes which are accessible from a
given phenotype by single bit mutations is high.

However, it is fair to say that the importance and the interre-
lationships between these properties of redundant represen-
tations is not yet well understood. For example, Rothlauf
and Goldberg [5] assert that, when using synonymously re-
dundant representations, the connectivity between the phe-
notypes is not increased, whereas in this paper we provide
practical evidence to the contrary.

In this study, the development of families of redundant
representations with varying degrees of synonymity, local-
ity, and connectivity is approached incrementally, from the
non-redundant representation upwards. Using simple, but
powerful, mathematical tools, the non-redundant represen-
tation is progressively modified so as to meet specific re-
quirements, stated in advance. All developments are carried
out in the context of a simple mutation-selection evolution-
ary model (the quasi-species model [11]). This allows the
effect of longer chromosomes in the performance of the al-
gorithm to be taken into account, since the interaction be-
tween chromosome length, mutation and selection is rather
well understood in this model.

In the next section, the evolutionary model adopted is
described. Then, a family of linear redundant encodings is
introduced, which allows redundancy to be explicitly har-
nessed to bias the effects ofindependentmutation towards
certain phenotypic traits, and/or to define the set of pheno-
types reachable from each individual phenotype. Finally,
a novel family of redundant, neutral representations is de-
veloped using mathematical tools from error-control coding
theory. These representations are shown to be capable of
achieving large levels of connectivity even with relatively



small redundancy, as well as displaying considerably high
synonymity and varying degrees of locality. The paper con-
cludes with a discussion of the results and some directions
for further work.

2 Evolutionary Model

Consider a simple evolutionary model involving a popula-
tion of N individuals, a constant selective pressureσ (as
imposed by tournament and rank-based selection, for ex-
ample), independent bit mutation, and generational replace-
ment. Individuals in the population are represented as bi-
nary vectorsv of lengthℓ (the genotypes), and may exhibit
any number ofk phenotypic characteristics, or traits. Repre-
senting each trait as a binary variable, phenotypes may also
be seen as binary vectors,u, but of lengthk.

Under such a model, the probability of individuals not
undergoing mutation should be such that at least one exact
copy of the best individual in the population can expect to
survive beyond its parent’s death. This setting, suggested
by Eigen and Schuster’s work (see [12]), maximises explo-
ration of the search space by the population while guaran-
teeing the exploitation of the best individual. In fact, higher
mutation rates would quickly make the search degenerate
into a random walk, because selection would no longer be
able to recover from the genetic errors introduced by muta-
tion. This abrupt change in the qualitative behaviour of the
evolutionary process as the mutation rate increases is known
aserror catastrophe. Mutation rates lower than the corre-
spondingerror thresholdare more likely to preserve the best
individual in each generation, but also make the search less
explorative.

For a sufficiently large population, this balance between
selection and mutation is achieved by setting the probability
of the best individual surviving mutation to the inverse of
the selective pressure, i.e.:

(1−m)ℓ = 1/σ

wherem represents the bit mutation rate. Solving form,

m = 1−σ−1/ℓ (1)

≃
logσ

ℓ
(2)

where (2) is the expression derived by Eigen and Schuster in
the context of molecular evolution. For smaller populations,
where the effect of genetic drift cannot be neglected, this
critical mutation rate is reduced, but the general principle is
the same [13].

3 Developing Redundant Representations

In the evolutionary model described in the previous sec-
tion, both genotypes and phenotypes consist of binary vec-
tors. Therefore, the simplest, non-redundant, mapping from
genotypes to phenotypes is the identity map. Consideringu
(respectively,v) as an element of the vector space of allk-
tuples (respectively,ℓ-tuples) over the field GF(2), this can
be written in matrix form as:

u = Ik ·v

whereu andv are column vectors,Ik is the identity matrix
of orderk, andℓ= k. GF(2) is the Galois Field({0,1},+, ·),
where addition is modulo-2 (logic XOR) and multiplication
is the logical AND operation [14].

In evolutionary computation, the use of more complex
representations is only justified when the fitness landscape
is sufficiently complex for evolution based on a direct
genotype-phenotype mapping to be unsuccessful. Taking
the identity map as a reference, increasingly elaborate re-
dundant representations will now be proposed, with a view
to highlighting the impact of each type of redundancy in the
overall evolutionary process.

3.1 Non-coding Genes

The simplest form of genotypic redundancy consists of
adding non-coding, or inactive, genes to the chromosome.
In matrix form, one may write:

u = [Ik 0k×(ℓ−k)] ·v

whereu ∈ {0,1}k, v ∈ {0,1}ℓ, andℓ > k. Matrix 0k×(ℓ−k) is
thek× (ℓ−k) zero matrix.

Non-coding genes will be subjected to mutation just like
coding, or active, genes. Such mutations do not change the
phenotype in any way, and are often called “neutral muta-
tions” for that reason. However, unless the number of re-
dundant bitsℓ−k is explicitly taken into account when set-
ting the mutation rate, redundancy actually leads to the ac-
tive part of the chromosome being mutated less often, and
to slower rates of evolution.

Non-coding genes would seem to have no practical rele-
vance in the context of the evolutionary model adopted. The
question of whether a redundant representation may be con-
structed which preserves evolutionary behaviour under this
model will be answered next.

3.2 Implementing Polygeny

In a redundant genotype-phenotype mapping without non-
coding genes, at least one phenotypic trait must be deter-
mined by the interaction of two or more genes, an effect
which is known as polygeny [15]. For simplicity, consider
the mapping where each phenotypic trait is determined by
modulo-2 addition of two bits. One may write:

u = [Ik Ik] ·v

with ℓ = 2k. Then, for a large population, the prescribed bit
mutation rate will be:

m = 1−σ−1/(2k)

≃
logσ
2k

i.e., half of that for the non-redundant case.
What effect can such a representation have on the evo-

lutionary process? Note that each phenotypic trait will only



change as a consequence of the mutation of one of the genes
which determine it. The probability of a given trait chang-
ing as a consequence of mutation is thus:

m∗ = 2(1−σ−1/(2k))σ−1/(2k)

≃
logσ

k

(

1−
logσ
2k

)

≃
logσ

k

where the approximations are valid for sufficiently largek.
When compared to the non-redundant case, such a represen-
tation will decrease the probability of mutation of each trait,
but only asymptotically ask increases. This is because two
bit mutations will leave the corresponding trait unchanged,
and because such events are very unlikely for largek. For
σ = 2 andk= 40, for example, the effect of the extra bits on
the probability of each trait changing due to mutation will
be less than 1%.

This representation is more of theoretical than of practi-
cal value. In fact, by demonstrating how redundancy may
be added to a basic representation without significantly af-
fecting evolutionary behaviour, light is shed onto how re-
dundancy may be used to change that behaviour in advanta-
geous ways.

3.3 Implementing Pleiotropy

Pleiotropy is the effect that a single gene may simultane-
ously affect several phenotypic traits [15]. The represen-
tation developed in the previous section can be extended
very easily to implement pleiotropic effects without sig-
nificantly affecting the probability of individuals surviving
mutation. In fact, anyk× ℓ binary matrix G with non-
zero columns andℓ > k defines a redundant, non-neutral
genotype-phenotype map, such that

u = G ·v (3)

Such a linear transformation is not unlike the affine trans-
formations used by Liepins and Vose [16] to transform de-
ceptive functions into easy ones. However, the issue of re-
dundancy was not addressed in that work.

Despite its simplicity, the transformation in (3) has the
virtue of offering considerable control over a representation
to be designed. In fact, the columns ofG consist of, and
thus explicitly determine, the phenotypes which are reach-
able from the all-zero phenotype through single gene mu-
tations. To understand this, considerG = [gℓ−1, . . . ,g0],
where eachgi denotes a column ofG and 0≤ i < ℓ. The
result of a single-bit mutation at positioni of v may be writ-
ten asv + ei , whereei is a vector of lengthℓ with a single
non-zero bit at positioni. It follows that:

G · (v+ei) = G ·v+G ·ei = u+gi

Whenu is zero,gi is the phenotype obtained through mu-
tation of genei. Furthermore, the effect of mutation on an
arbitrary phenotypeu does not depend on the original geno-
typev, but only on the bit mutated (and the corresponding
column ofG).

In addition, the rows ofG determine how likely each trait
is to be changed through a single gene mutation in com-
parison to the other traits. The more ones a given row of
G contains, the more likely is the corresponding bit of the
phenotypeu to change due to a single-bit mutation.

By selectingℓ andG appropriately, it is possible to de-
fine both the connectivity and the locality of the search
space. In particular, connectivity may be made to grow lin-
early with the chromosome length,ℓ, simply by making all
columns ofG distinct.

4 Neutrality

Although the linear encodings proposed in the previous sec-
tion make it possible to specify the set of phenotypes reach-
able from a given phenotype through single-bit mutations,
all genotypic representations of the same phenotype are
equivalent as far as the search is concerned, because they
all reach exactly the same set of phenotypes. On the other
hand, Kimura’s neutral theory of evolution [17] considers
that a large fraction of mutations is neutral, i.e., leads tothe
same phenotype, and that the accumulation of neutral mu-
tations eventually provides new paths for evolution.

Consider the problem of formulating redundant repre-
sentations with the following characteristics:

1. All phenotypes admit the same number of genotypic
representations (uniformity);

2. Individual traits may be determined by the interaction
of multiple genes (polygeny);

3. Individual genes may determine any number of phe-
notypic traits (pleiotropy);

4. Different genotypes representing the same phenotype
should reach different sets of neighbouring pheno-
types through single gene mutations;

5. Different representations for the same phenotype
must be connected by a path composed exclusively
of neutral single-gene mutations (neutrality).

Clearly, goals 1.–3. are met by the linear encodings dis-
cussed earlier. In contrast, goals 4. and 5. suggest that a
radically different approach to encoding formulation is re-
quired. A suitable strategy may be summarised as follows:

1. Split the redundant genotypic space into 2ℓ−k classes
of equal cardinality 2k each, such that single gene mu-
tations allow moving from one class to another;

2. Map the vectors in each class to phenotypic space in
such a way that different representations of the same
phenotype may reach different sets of phenotypes,
each including at least another representation of the
same phenotype.

This idea is illustrated in Figures 1 and 2. In Figure 1, an
8×8 grid is divided into 4 different interspersed subspaces
of 16 elements each, represented by the symbols#,  , �

and�. Note that moving either vertically or horizontally



Figure 1: Redundant genotypic space divided into 4 inter-
spersed subspaces.

Figure 2: Genotypes mapping to the same phenotypes.

on the grid always leads to a subspace other than the orig-
inal one, and that the grid is assumed to wrap around the
edges. In Figure 2, phenotypic values are assigned to each
subspace in such a way that each genotype which encodes
for a given phenotype is within reach of another such geno-
type. A solid line is used to highlight the neutral networks
thus formed, with dashed lines indicating continuation of
the network at the edges. It can be clearly seen that each
phenotype may now reach 6 other phenotypes instead of 4,
as would be the case on a non-redundant 4× 4 grid, and
that different genotypes in the same neutral network have
different neighbouring phenotypes, as desired.

Going back to the binary case, by defining classes in such
a way that the minimum Hamming distance between geno-
types in the same class is at least 2, it can be guaranteed that
single gene mutations produce genotypes in classes other
than that of the original genotype. This is a common prob-
lem in error-control coding design, and results from this
area [14] are readily applicable here.

4.1 Linear Block Error-control Codes

Linear block codes may be defined as follows [14]:
Definition 1 A binary block code of lengthℓ and with2k

code words is called a linear(ℓ,k) code if its2k code vectors
form a k-dimensional subspace of the vector space of all the
ℓ-tuples over the field GF(2).

Linear block codes define a mapping between a certain class
of binary code vectors of lengthℓ and binary message vec-
tors of lengthk. Although linear codes can also be described
based on the matrix notation used in the previous section,
an alternative, polynomial representation is especially use-
ful in describing, for example, the important subclass of
cyclic linear codes. Unlike the matrix notation, this poly-
nomial representation is unrelated to that used by Liepins
and Vose [16].

4.2 Polynomial Notation

Code vectorsv can also be represented by polynomials
where each component of a given vector is treated as a co-
efficient, as follows:

v(X) = vℓ−1Xℓ−1+vℓ−2X
ℓ−2+ · · ·+v1X +v0.

Cyclic codes, as well as some other, more general code sub-
classes, can be constructed by selecting a suitable generator
polynomialg(X) of degreeℓ− k, and computing its mul-
tiples for every possible value of the message polynomial
u(X), i.e.:

v(X) = g(X)u(X) (4)

Provided thatg(X) is a primitive (or even merely irre-
ducible) polynomial,1 it is easy to show thatv(X) cannot
be of typeXi (otherwiseg(X) itself would have to be of
the same type and would not be primitive or even irre-
ducible). Due to the linearity of the code, neither can the
difference between two code polynomials have that form,
which implies that the minimum distance between different
code polynomials must be at least two.

In an evolutionary algorithm context, expression (4) pro-
vides a method of mapping arbitrary phenotypes onto a lin-
ear classC of code polynomials of degree up toℓ−1. Fur-
thermore, it suggests that another 2ℓ−k− 1 classes of code
polynomials may be defined as:

v(X) = g(X)u(X)+ r j(X)

for every non-zero polynomialr j(X) of degree up toℓ−
k−1. Clearly, these classes are no longer linear (the sum of
two polynomials in a classCj is not inCj ), but since they
can be obtained from the linear classC through the addition
of a constant polynomial, they are called thecosetsof C.
Furthermore, changing a single coefficient in a polynomial
v(X)∈C will have the effect of producing a member of one
of the cosetsCj . This is exactly the property which is ex-
plored in error-control applications, but here it will provide
a suitable mechanism for making the sets of reachable phe-
notypes vary for different genotypic representations of the
same phenotype.

Equation (4) shows how code polynomials can be ob-
tained by multiplying the corresponding message polyno-
mials byg(X). A more popular approach consists of gen-
erating code polynomials by multiplying message polyno-
mials byXℓ−k and dividing the results byg(X), which al-
lows the code to be generated insystematicform. A code

1A polynomial is irreducible if it cannot be factored. A polynomial
of order n is primitive if it is irreducible and the smallest degreee of a
polynomialXe+1 which it divides ise= 2n−1.



is in systematic form if message vectors can be obtained by
discarding givenℓ− k components from the corresponding
code vectors.

Formally,

Xℓ−ku(X) = a(X)g(X)+b(X) (5)

m

Xℓ−ku(X)+b(X) = a(X)g(X) = v(X),

whereb(X) is a polynomial of degreeℓ−k−1 or less. Thus,
v(X) is in systematic form, since the message can be recov-
ered by discarding the terms of degree lower thanℓ−k. As
before, cosetsCj may be defined by adding to each polyno-
mial in C a constant polynomial not inC.

4.3 Neutral Representations

A neutral genotype-phenotype encoding with the desired
properties may now be defined as follows:

1. If v(X) is in C0 = C, thenu = [Ik 0k×(ℓ−k)] ·v

2. If v(X) is in Cj , for some 0< j < 2ℓ−k, then u =
[Ik 0k×(ℓ−k)] · (v+z j)

wherez j(X) ∈ Cj . Vectorsz j are no more than the geno-
typic representations of the all-zero phenotype in each coset
Cj , whereas the corresponding representation inC is the all-
zero genotype (denote itz0). Determining the classCj to
which eachv(X) belongs may be accomplished by deter-
mining the remainderr(X) of its polynomial division by
g(X) and, for example, takingj as the integer whose bi-
nary representation isr . Since polynomial division can be
implemented efficiently, so can genotype decoding.

Since, under this encoding, single gene mutations cause
genotypes to move to a different class, and since the map-
ping between each classCj and phenotypic space may be
changed through the correspondingz j , different representa-
tions v of the same phenotypeu may now reach different
sets of phenotypes through single gene mutations. Finally,
by selecting the variousz j , 0≤ j < 2ℓ−k, so that they are
reachable from each other, a neutral network may be de-
fined for the all-zero phenotype. Similar neutral networks
will arise for every other phenotype.

4.4 Enumerating All Neutral Encodings

The encoding proposed in the previous subsection is ac-
tually a family of encodings. In fact, for each pair(ℓ,k)
and primitive generator polynomialg(X) of degreeℓ− k,
many different neutral representations may be constructed
by choosing appropriatez j . In particular, a redundant repre-
sentation involvingℓ−k non-coding genes, similar to those
described in section 3.1, may be defined as a special case,
by setting eachz j to the binary representation ofj.

A variant of the closure algorithm [18] was used to sys-
tematically generate all possible representations under these
conditions. Starting from the representation described inthe
last paragraph, the variousz j were successively varied until
no more representations with the desired properties could
be generated.

Exhaustive enumeration was only feasible for reasonably
small ℓ (up to 8) and low redundancy (ℓ− k ≤ 3), but this
exercise did allow the properties of the resulting represen-
tations to be inspected, and insight to be gained into the
potential of such representations for genetic search.

5 Results and Discussion

Families of neutral representations were exhaustively enu-
merated for 0< k ≤ 8 and primitive polynomialsg(X) of
degrees 0< ℓ− k ≤ 4, where practicable. Their sizes are
presented in Table 1 as a function ofk and of the generator
polynomial used. It can be seen that the number of possi-
ble representations increases rapidly withk and very rapidly
with the degreeℓ−k.

Subsequently, for every representation produced, the set
of reachable phenotypes was determined. Table 2 shows
the maximum connectivity which can be achieved by repre-
sentations in each family, complemented with some lower
bounds for larger codes, which were obtained through a
combination of the closure algorithm and hill-climbing (in
brackets).

It is interesting to note that the maximum connectivity
in each representation family appears to increase exponen-
tially with the number of redundant bits. This surprising re-
sult indicates that very large connectivities may be achieved
even with comparatively little redundancy, and suggests that
the current emphasis on highly-redundant representations
should probably be reconsidered.

In Figures 3 and 4, scatter plots of connectivity versus
average and maximum distance to reachable phenotypes are
presented for the (11,8) family of neutral representations.
These plots show that relatively strong locality can be main-
tained by certain representations, despite large connectivity.

Similarly, scatter plots of connectivity versus average
and maximum distance between genotypes representing the
same phenotype are given in Figures 5 and 6. Strikingly,
degrees of connectivity as high as 23 (in comparison to 8
for the non-redundant representation) are exhibited even by
highly synonymous representations (at least as highly syn-
onymous as the base representation including 3 non-coding
bits), in clear contrast with Rothlauf and Goldberg’s asser-
tion [5] that synonymity does not increase connectivity.

Finally, the shape of the actual neutral networks induced
by these representations may be visualised through a tech-
nique known as multi-dimensional scaling (MDS) [19], by
approximating in Euclidean space the Hamming distances
between all pairs of genotypes which represent the same
phenotype. In Figure 7, MDS graphical representations of
the neutral networks induced by two different(11,8) repre-
sentations are given: the first one corresponds to a highly
neutral and highly synonymous representation which ex-
hibits, nevertheless, a degree of connectivity of 23; the sec-
ond one corresponds to a representation with degree of con-
nectivity 30.



Table 1: Number of neutral representations

1 2 3 4 5 6 7 8 k

X +1 2 3 4 5 6 7 8 9
X2 +X +1 4 9 18 32 50 75 108 147
X3 +X +1 19 266 1828 8128 25100 66750 158784 342701
X4 +X +1 1489

g(X)

Table 2: Maximum connectivity

1 2 3 4 5 6 7 8 k

X +1 1 2 3 4 5 6 7 8
X2 +X +1 1 3 5 7 9 11 13 15
X3 +X +1 1 3 7 14 18 22 26 30
X4 +X +1 1 (3) (7) (15) (30) (43) (55) (63)

X5 +X2+1 1 (3) (7) (15) (31) (59) (98) (125)
g(X)
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Figure 3: Connectivity versus locality of (11,8) neutral rep-
resentations
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Figure 4: Connectivity versus locality of (11,8) neutral rep-
resentations



0 2 4 6 8 10
0

5

10

15

20

25

30

Average distance between different genotypes
which map to the same phenotype

C
on

ne
ct

iv
ity

Figure 5: Connectivity versus synonymity of (11,8) neutral
representations
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Figure 6: Connectivity versus synonymity of (11,8) neutral
representations

Figure 7: MDS representation of two neutral networks

6 Concluding Remarks

In this paper, an incremental approach to the development
of new redundant binary representations was adopted. Af-
ter specifying a suitable evolutionary model based on se-
lection and independent mutation only, redundancy was
shown not to be necessarily detrimental in that context.
This was achieved by constructing a purely polygenic, re-
dundant representation leading to a performance which is
asymptotically equivalent to that of the corresponding non-
redundant genotype-to-phenotype mapping. This result was
then extended to implement dependencies between genes,
or pleiotropy. In this setting, the connectivity of the search
space can be explicitly designed and made to increase pro-
portionally to the chromosome length, but the representa-
tion remains non-neutral.

A radically different approach based on results from
error-control code theory was adopted to implement neu-
trality. The result was the definition of a rich family of re-
dundant binary representations implementing various levels
of neutrality, connectivity, and locality. In particular,the
maximum connectivity achievable with these codes appears
to increase exponentially in the number of redundant bits!
Thus, even small levels of redundancy may have a large im-
pact in search behaviour. On the other hand, this apparent
gain in genotype length comes at the immediate expense of
having to store (or compute) all the representations of the
all-zero phenotype, the number of which also grows expo-
nentially with the number of redundant bits. Whether at
least some of these encodings may be represented more ef-
ficiently is the subject of future work.

Comparatively speaking, the linear encodings proposed
in the first part of this study have the clearly advantage
of allowing search neighbourhoods to be designed directly,
whereas the link between a neutral network and its neigh-
bours is much less clear at this stage. In contrast, the neutral
representations developed in the second part clearly open a
new avenue for research into the relative merits of neutrality,
synonymity, locality and connectivity in genetic search, es-
pecially with respect to a non-neutral, but comparable, lin-
ear encoding. The study of both encoding families in the
presence of recombination is likely to raise new and inter-
esting issues, as well.

Unfortunately, it is still not clear how to select a spe-
cific representation from the classes proposed here to obtain
good results on a given optimisation problem. However,
the large number and variety of neutral redundant encodings
which can now be generated should be useful in improving
that understanding.
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