
1982

A New Estimation of Distribution Algorithm based on Learning
Automata

R. Rastegar
Computer Engineering and IT Department

Amirkabir University of Technology, Tehran, Iran
rrastegar@ce.aut.ac.ir

Abstract. In this paper we introduce an estimation of
distribution algorithm based on a team of learning
automata. The proposed algorithm is a model based
search optimization method that uses a team of
learning automata as a probabilistic model of high
quality solutions seen in the search process. Simulation
results show that the proposed algorithm is a good
candidate for solving optimization problems.

1 Introduction

The necessity to solve NP-complete problems, for which
the existence of efficient exact algorithms is highly
unlikely, has led to a wide range of heuristic algorithms
that implement some sort of search in the solution space.
One of these algorithms is genetic algorithm (GA) that is a
class of optimization algorithms motivated from the theory
of natural selection and genetic recombination. It tries to
find better solutions by selection and recombination of
promising solutions. It works well in wide verities of
problem domains. The poor behavior of genetic algorithm
in some problems, in which the designed operators of
crossover and mutation do not guarantee that the building
block hypothesis is preserved, has led to the development
of other type of algorithms [6]. The Probabilistic Model
Building Genetic Algorithms (PMBGAs) or Estimation of
Distribution Algorithms (EDAs) is a class of algorithms
that are recently developed to preserve the building blocks.
The principle concept in this new technique is to prevent
disruption of partial solutions contained in a chromosome
by giving them high probability of being presented in the
child chromosome. The EDAs are classified into three
classes based on the interdependencies between variables
in chromosomes; no dependency model, bivariate
dependencies model, and multiple dependencies model [5]
[6][ 11]. Instances of EDAs include Population-based
Incremental Learning (PBIL) [1], bit-based simulated
crossover (BSC) [15], Univariate Marginal Distribution
Algorithm (UMDA) [8], Compact Genetic Algorithm
(cGA) [4] for no dependency model, Mutual Information
Maximization for Input Clustering (MIMIC) [3],
Combining Optimizer with Mutual Information Trees
(COMIT) [2] for bivariate dependencies model, and
Factorized Distribution Algorithm (FDA) [7], Bayesian
Optimization Algorithm (BOA) [12][I 1] for multiple
dependencies model, to name a few. Although all no
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dependency model algorithms have low efficiency in
solving difficult problems, due to their simplicity in terms
of memory usage and computational complexity and with
respect to the fact that the computational complexity of
bivariate dependencies model and multiple dependencies
model is high, proposing new algorithms for this model is
an important issue.

Learning Automata (LA) are general-purpose
stochastic optimization tools, which have been developed
as a model for learning systems. They are typically used as
the basis of learning systems, which through interactions
with a stochastic unknown environment learn the optimal
action for that environment. The learning automaton tries
to determine, iteratively, the optimal action to apply to
environment from a finite number of actions that are
available to it. The environment returns a reinforcement
signal that shows the relative quality of action of the
learning automaton. This signal is given to learning
automaton and learning automaton adjusts itself by a
learning algorithm [9].

In this paper we propose a learning automata-based
search method, called Learning Automata based
Estimation of Distribution Algorithm (LAEDA), as an
estimation of distribution algorithm for a class of EDAs in
which there is no dependency between variables. The
LAEDA is a simple EDA that ignores all the variables
interactions. Since the proposed algorithm belongs to no
dependency model, it will be compared with the PBIL and
the UMDA that are among the most famous algorithms of
the class of no dependency model.

The rest of paper is organized as follows. Section 2
briefly presents some EDAs. Learning automata are
described in section 3. Section 4 demonstrates the
proposed algorithm. Simulation results are given in section
5. Finally, section 6 concludes.

2 Estimation of Distribution Algorithms

In EDAs, the problem specific interactions among the
variables of chromosomes are taken into consideration. In
the genetic algorithm the interactions are kept implicitly in
mind whereas in EDAs the interrelations are expressed
explicitly through the joint probability distribution
associated with the chromosomes selected at each
generation. The probability distribution is calculated from
a set of selected chromosomes of previous generation.
Then sampling this probability distribution generates
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children. Neither crossover nor mutation has been applied
in EDAs. But the estimation of the joint probability
distribution associated with the set containing the selected
chromosomes is not an easy task. The easiest way to
calculate the joint probability distribution is to consider all
the variables in a problem as univariate. In all the works
done based on this approach, it is assumed that n-
dimensional joint probability distribution factorizes as a
product of n univariate and independent probability
distributions. In the reminder of this section we briefly
describe the algorithms of no-dependency model.

Syswerda [15] has introduced an operator called bit-
based simulated crossover (BSC) that uses the statistics in
the GA's population to generate offspring. The BSC does
a weighted average of alleles of chromosomes along each
bit position. By using the fitnesses of the chromosomes in
this computation, BSC integrates the selection and
crossover operators into a single step.

The Population based incremental learning (PBIL) [1]
adapts the vector of probabilities by mean of an updating
rule inspired by the so called Hebbian rule used in neural
network. In each generation, the PBIL adapts the n-
dimensional vector of probabilities bringing near each
component, by means of a leaming rate, to the
corresponding component of a set of best chromosomes
found in that generation. When learning rate is 1, the PBIL
is equivalent to the UMDA. In the UMDA [8], the joint
probability distribution is factorized as a product of
independent univariate marginal distribution, which is
estimated from marginal frequencies. There is the
theoretical evidence that the UMDA approximates the
behavior of the Simple Genetic Algorithm (SGA) with
uniform crossover [14].

Harik has presented an algorithm in [4] that called
compact genetic algorithm (cGA). The algorithm
initializes a probability vector whose components follow
Bernoulli distributions with parameter 0.5, and then two
chromosomes are generated randomly by using this
probability vector and rank them by evaluating their
fitnesses. Then the probability vector is updated towards
the best one. This process of adaptation continues until the
probability vector converges.

3 Learning Automata

Learning Automata are adaptive decision-making devices
operating on unknown random environments. A Learning
Automaton has a finite set of actions and each action has a
certain probability (unknown for the automaton) of getting
rewarded by the environment of the automaton. The aim is
to learn to choose the optimal action (i.e. the action with
the highest probability of being rewarded) through
repeated interaction on the system. If the learning
algorithm is chosen properly, then the iterative process of
interacting on the environment can be made to result in
selection of the optimal action. Figure 1 illustrates how a
learning automaton works in feedback connection with a
random environment. Learning Automata can be classified
into two main families: fixed structure learning automata

and variable structure learning automata (VSLA) [9]. In
the following, the variable structure learning automata is
described.

Figure 1. The interaction between learning automata
and environment

A VSLA is a quintuple <a,,I,p, T(a,pJ,p)>, where a, /1, p
are an action set with s actions, an environmental response
set and the probability set p containing s probabilities,
each being the probability of performing every action in
the current internal automaton state, respectively. The
function of T is the reinforcement algorithm, which
modifies the action probability vectorp with respect to the
performed action and received response. Let a VSLA
operate in an environment with 8=(0,1}. Let teN be the
set of nonnegative integers. A general linear schema for
updating action probabilities can be represented as
follows. Let action i be performed at instance (iteration) t.
If,8(t)=O (reward),

pi (t + 1) = p1(t) + a[1-pi(t)]
p y,i (t +1) = (1- a)pj (t)

If,fl(t)=I (penalty),

pi (t + 1) = (1- b)pi (t)
p jwi (t + 1) = (b/s - 1) + (1 - b)pj (t)

Where a and b are the reward and penalty parameters.
When a=b, automaton is called LRP. If b0= and
O<b<<a<l, the automaton is called LRI and LRCP,
respectively.

Another learning algorithm used in this paper is the
pursuit learning algorithm. The LpM algorithm moves the
action probability in the direction of the most recently
rewarded action, whereas the pursuit algorithm moves it
toward the action that possesses the highest estimate of
reward [10][13]. The schema of updating action
probabilities is as follows. Let action i be performed.
Ifi(t)=0 (reward),

p j,i(t + 1) = (1- a)pj(t)
Pk(t + 1)J nji pi(t + 1)

If3flt)=I(penalty),

PM(t + 1) = p (t)
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For either penalty or reward, the running estimates are
subsequently updated as follows:

W (t + 1) = Wi(t) + (1 - f(t))
Zi(t +1) = Zi(t) +1

di (t + 1) = Wi(t + 1) / Z, (t + 1)

where Pk is the action probability that has the highest
running estimate di of being rewarded, Wi(t) is the number
of times the ith action has been rewarded up to t; and Zi(t)
is the number of times the ith action has been selected up
to t.

4 The Learning Automata based Estimation
of Distribution Algorithm

Let x=(xj,...,x,) denoted a vector, that xi belongs to
A={0,...,mi}. Ai represents a set of mi+1 symbols,
representing different alleles in the chromosome. We use
the Xi to denote a variable and xi to denote an assignment.
We consider the optimization problem xp,=argmax fix)
wherefX--R.

In the learning automata based estimation of
distribution algorithm (LAEDA), similar to other
evolutionary algorithms, the parameters of the search
space are encoded in the form of chromosomes. A set of n
learning automata is used in LAEDA to model the
probability of sampling chromosomes in the population. A
learning automaton with m,+l actions is associated to each
variable i with action set Ai= {0,...,mi}. When we consider
a problem in a binary search space, Ai becomes (0, 1} for
all i, i.e. each learning automaton has two actions. In each
instance t, each learning automaton i selects N actions,
ail... aiN, using its probability vector. Selection of any of
these N actions does not change the action probability
vector. That is the same action probability vector is used to
select all N actions. Each action selected by an automaton
becomes an allele of a chromosome. A total of Nx n
alleles will be generated by all learning automata. Now a
new population ofN chromosomes is formed as follows.
The jth chromosome, Xj, is constructed by concatenation
of actions a1j... anj. That is Xj=(aj.1.. anj).

According to a selection strategy, M chromosomes
from the newly formed population are selected. Using
these M chromosomes and a signal generation mechanism
which will be explained later a reinforcement signal vector
,B =(8 .../h,) is produced. Signal /Bi will be used by
automaton i to reward or penalize one of its actions. The
selection of the action that is to be rewarded or to be
penalized is done as follows. Let keAi and X1j be ith
variable of thejth chromosome, Define,

a ri = argmax(, jSel .p(Xi = k))
and

ap1 = arg max(2 jeUnSelt p(Xi = k)),

where Sell is the set ofM chromosomes that are selected
from the current population using selection methods such
as truncation selection schema, and the set UnSel, is the set
of chromosomes not selected during the selection process.
The Boolean function p(exp) returns 1 if exp is true and
returns 0 otherwise. ari and api are the actions of
automaton i that will be rewarded or penalized. Note that
ari and api may represent the same action that is ar1-api.
To generate the reinforcement signal vector, Afi a random
number, p, is generated uniformly from interval [0,1] and
is compared with a predefined parameter 1>u.0. If p>v, a
positive reinforcement signal (i.e. pij0 for all i) is
generated and input to automaton i which as a result,
action ari of learning automaton i is rewarded according to
the learning algorithm. If p<v, a negative reinforcement
signal (i.e. /i3=l for all i) is generated and input to
automaton i which as a result action api of learning
automaton i is penalized according to the learning
algorithm. The process of population generation, selection,
and updating the probabilities vectors of all learning
automata is repeated until a termination condition is
satisfied which at this point the best chromosome of the
last population will the solution to the problem to be
solved. Selection of i is very important issue in the design
of the algorithm. The value of u is selected by heuristics
and according to a learning algorithm. If the learning
mechanism is based on learning only from Sel,, u is set to
0 otherwise it is set to l>>u>0. For a learning algorithm
to work in this context the value of u must be chosen
properly. In the simulations conducted the value of u for
LRI, Pursuit and LRp, are 0, 0, and 0.05 respectively
Remark: If p>u, then the learning automata update their
action probabilities in such a manner that the probability
that search process moves toward the area in the search
space with high quality solution (Sel,) increases that is the
search process learns from positive past experiences.
Whereas if p.u the learning automata update their action
probabilities in such a manner that the probability of
searching the low quality search area in the search space
decreases, that is the search process learns from its
negative past experiences.
In order to have an effective algorithm, the designer of the
algorithm must be careful about determining a suitable
genome representation, fitness function for the problem at
hand, the parameters of LAEDA such as the number of
chromosomes (population size), the selection strategy, the
signal generating mechanism and the type of the learning
automata.

5 Simulations and Results

In order to show the performance of the proposed
algorithm, the algorithm is tested on 5 different problems:
One Max, Subset Sum, Checker Board, Equal Product,
Knapsack 0/1, and TSP problems and then compared with
the simple genetic algorithm (SGA), the UMDA, and the
PBIL. The test problems are briefly explained below.
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OneMax: This is a linear problem that can be written
mathematically as,

FOneMcr (X) =ZE,1Xi
SubsetSum: It is a problem of finding what subset of a

set of integer A has a given sum c.
CheckerBoard: This problem was used by Baluja to

evaluate the performance of the PBIL algorithm [1]. In
this problem a sxs grid is given. Each point of the grid can
take two values 1 and 0. The goal of this problem is to
create a checkerboard pattem of 0's and l's on the grid.
Each location with a value of 1 should be surrounded in all
four directions by a value 0, and vise versa. Only the four
primary directions are considered in the evaluation. The
evaluation is measured by counting the number of correct
surrounding bits for the present value of each bit position
for a (s-2)x(s-2) grid. In this manner, the corners are not
included in the evaluation. The chromosomes of this
problem have dimension n=s2. Ifwe consider the grid as a
matrix C=[c]ij=1,... and interpret S(a,b) as the kronecher's
delta function, the checkerboard function can be written as
follows,

FCheckerBoard (C) = 4(s -2)2
n-I n-I 45(cij,ci lj)+ ((cii,C i+lj)+
i=2 j=2 5(Cij, cij_1) + 6(ci1,Ci+l )

EqualProducts: Given a set of n real numbers
{bl . bn} that a subset of them is chosen. The objective is
to minimize the difference between the products of the
selected and unselected numbers.

FEqualProducts (x)

I =,'1 Xi i- =1(lx)b
For the simulations {b1,..bn} is generated by sampling
from a uniform distribution in the interval [0,4].

Knapsack 0/1: In the knapsack problem, there is a
single bin of limited capacity, and n elements of varying
size and values. The problem is to select the elements that
will yield the greatest summed value without exceeding
the capacity of the bin. The evaluation of the quality of the
solution is measured in two ways; if the solution selects
too many elements, such that the sum of the sizes of the
elements is too large, the solution is judged by how much
this sum exceeds the capacity of the bin. If the sum of the
sizes of the elements is within the capacity of the bin, the
sum of the values of the selected elements is used as the
evaluations.

fKnapsack (X) = (xi vi ) +

7(C-E n1 (xici )) U(,=n (xici)C)
where il is a parameter that determines the penalty
coefficient that is given to infeasible solutions and u() is
step function. ni is 0.1 in our simulations. The values and
sizes of the elements are selected uniformly between
intervals of [0,30].

TSP: Given L cities, the object is to find a minimum
length tour that visits each city exactly ones. The encoding

used in this study requires a bit string of size LlogL bits.
Each city is assigned a sub string of length logL that is
interpreted as an integer. The city with the lowest integer
value comes first in the tour, the city with the second
lowest comes second, etc.

fTsP(x) = d(cityL, cityl ) + EL1 d(cityi, cityi+l)
city = 2 2jx

I j=° (i-I)L+(logL j)

Where d(cityi,cityj) is Euclidian distance between two
cities cityi and cityj.

The population size is the same in all considered
algorithms and set up depending on the complexity of the
problem. The size of the population is 10, 10, 20, 10, 100,
and 100 for OneMax, Subset Sum, Checkerboard,
EqualProducts, Knapsack 0/1, and TSP, respectively. We
use truncation selection schema to select the parent
population in all algorithms. The number of the selected
chromosomes is set up to half of the size of the population.
Two termination conditions are taken into account. Firstly,
The algorithm stops when a fixed number of function
evaluations (Max. Evaluation) are performed. Table 1
shows the characteristics of the test bed problems; 'No.
Variable', 'Max', Evaluation', 'Type' and 'optimum' refer
to the length of the chromosome, the predetermined
maximum number of function evaluations allowed, the
type of the problem which is either a maximization
problem or a minimization problem, and the optimal
solution for the problem, respectively. For the simple
genetic algorithm, uniform crossover with exchange
probability 0.5 is used. Mutation is not used and crossover
is applied all iterations. The best chromosome of the
previous population is always brought into the new
population and the remaining N-] chromosomes of the
new population are generated. Comparisons between
considered algorithms are in terms of solution quality, and
the number of function evaluations taken for finding the
best solution. The proposed Algorithm is tested for
different learning algorithms: LR,, LRp, and Pursuit. In all
the experimentations we select the value of the
reinforcement signal from {0, 1}. For all the experiments,
the learning rate for PBIL is set to 0.01 and the both
reward and penalty parameters in LAEDA are set to 0.01.

For the sake of convenience in presentation, we use
LA(automata)EDA to refer to the LAEDA algorithm
when it uses Learning automata automata. Table 2 and 3
report the result of simulations for all algorithms. In these
tables 'Function evaluation' and 'Objective Value' are
best solution founded in the last population and the
number of function evaluations taken for finding the best
solution. The results reported are average over 20 runs. By
careful inspection of the results reported in Tables 2 and 3,
it is found that LA(LRp)EDA obtained the better solution
for all of the test bed problems except CheckerBoard
problem. For all the problems except problem OneMax,
algorithm LA(Pursuit)EDA obtains the worst results. For
CheckerBoard problem, simple genetic algorithm obtained
the best solution. LA(LRI)EDA and LA(Pursuit)EDA only
get the optimal solution for OneMax problems. For see
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more results, reader can refer to [16]. The results show
that LA(LRp)EDA can be a good candidate for solving
optimization problems.

6 Conclusions

This paper has introduced a new estimation of distribution
algorithm based on learning automata. The proposed
algorithm is a model based search optimization algorithm
that uses learning automata as a tool to effectively search
the search space. In order to show the performance of the
proposed algorithm, it is tested on number of different
problems and then compared with the simple genetic
algorithm (SGA), UMDA, and PBIL. Simulation results
showed the effectiveness of the proposed algorithm in
solving the optimization problems. LAEDA has some
advantages. 1- this algorithm can be easily extended to
continuous and non-binary search spaces. 2- many
learning automata reported in literatures, which could be
used in LAEDA with respect to problem at hand.
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Table 1. Characteristics of the test bed problems
Problem FOneMax FSubsetSum FCheckerBoard FEgualProducts FSP FKnapsck

No. Variable 128 128 100 50 128 100
Max. Evaluation 100000 100000 100000 300000 300000 300000

Type Max. Min. Max. Min. Max. Max.
Optimum 128 25256 - - 1147

Table 2. Results of simulations for LA(LR)EDA, LA(Pursuit)EDA, and LA(L)EDA
Problem LA(LRdJEDA LA (Pursuit)EDA LA(Lpp)EDA

Objective Value 128 128 1
FOneMax Function evaluation 3239 2670 5200

Objective Value 0.00384 0.04835 0.0026
FSubsetSum Function evaluation 4050 380 7530

Objective Value 186 166 210
FCheckerBoard Function evaluation 10000 500 44000

Objective Value 1.16 2.97 0.843
FEqualProducts Function evaluation 17000 4000 22340

Objective Value 1098 910 1
FKnapsack Function evaluation 27300 8310 32850

Objective Value 1893 2324 1710FTSP Function evaluation 52800 7930 57200

Table 3. Results of simulations for UMDA, PBIL, and SGA.
Problem UMDA PBIL SGA

Objective Value 128 1 125.4
FOneMax Function evaluation 7350 4240 36210

..Objective Value 0.00332 0.00320 0.00344
FSubsetSum Function evaluation 6430 4050 12430

Objective Value 241 210 246
FCheckerBoard Function evaluation 53000 13240 52000

Objective Value 1.95 1.1 3.35
FEqualProducts Function evaluation 36320 15320 193430

Objective Value 1141 1125 1024
FKnapsack Function evaluation 34120 27332 300000

Objective Value 1794 1926 1873FTSP Function evaluation 89740 52800 300000
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