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Abstract- This paper presents a new operator for ge-
netic algorithms that enhances their convergence in the
case of nonlinear problems with nonlinear equality con-
straints. The proposed operator, named CQA (Con-
straint Quadratic Approximation), can be interpreted as
both a local search engine (that employs quadratic ap-
proximations of both objective and constraint functions
for guessing a solution estimate) and a kind of elitism op-
erator that plays the role of “fixing” the best estimate of
the feasible set. The proposed operator has the advan-
tage of not requiring any additional function evaluation
per algorithm iteration, solely making use of the infor-
mation that would be already obtained in the course of
the usual Genetic Algorithm iterations. The test cases
that were performed suggest that the new operator can
enhance both the convergence speed (in terms of the
number of function evaluations) and the accuracy of the
final result.

1 Introduction

The most common way of incorporating constraints (both
of inequality and equality types) into Genetic Algorithms
has been the use of penalty functions [RPLH:89]. The con-
straints are placed into the objective function via a penalty
parameter that measures violation of the constraints. The
solution to the penalty problem can be made arbitrarily
close to the optimal solution of the original problem by
choosing a penalty parameterµ sufficiently large. Despite
their simplicity, the penalty methods also have potential dif-
ficulties. If a very largeµ is chosen to solve the penalty
problem, some computational difficulties associated with
ill-conditioning may appear. With a largeµ, more empha-
sis is placed on feasibility and most procedures for uncon-
strained optimization will move quickly toward a feasible
point. This point may be far from the constrained optimum,
and premature termination can occur, especially in the pres-
ence of nonlinear equality constraints [BSS:79]. Ifµ is cho-
sen too low, a lot of search time will be spent exploring the
infeasible region, and termination will occur with large vio-
lation of the constraint.

Due to difficulties associated with the penalty methods,
several researchers have developed alternative approaches
to handle constraints [Coe:02], that go from variations of
penalty functions (using, for instance, adaptive penalty fac-
tors) to more sophisticated methods such as dealing with

the constraints as if they were objectives of a multiobjective
problem [FF:98]. These techniques, however, were devel-
oped mainly for the case of inequality constraints.

The equality constraints in Genetic Algorithms are dif-
ficult to manage. This is because equality constraints are
more stringent than inequality ones, defining feasible sets
of smaller dimension than the original optimization variable
space. Genetic Algorithms, performing a search that is es-
sentially based on sampling the full-dimensional space, are
unlikely to find feasible solutions. We argue here that:

• The random nature of Genetic Algorithm operators is
a fundamental feature that allows the search for op-
timal regions (basins of attraction) in the optimiza-
tion space. These operators make the search become
“spread” through the space, maximizing the chance
of finding unknown basins. We call this thevolume
searchproperty.

• This randomness of such operators, however, is con-
flicting with the need for performing a search in well-
definedzero-volumeobjects, such as the feasible sets
in equality-constrained problems. Thevolume search
property will cause a kind ofrandom escape motion
from the feasible object, that will make the algorithm
converge with slower rates.

In the case of unconstrained problems, this problem also oc-
curs, leading to arandom escape motionfrom the optimal
point. However, for dealing with this problem, there is a
well established procedure: the usage of anelitism opera-
tor. This operator avoids theescape motionof the best point
obtained up to the current iteration.

In this paper, we devise a novel local search operator
to tackle equality constraints in optimization problems. The
main idea is to constrain the Genetic Algorithm to find solu-
tions that are inside an object that has the same dimensional-
ity as the feasible set. This object is a second-order approxi-
mation of the feasible surface. In this way, the optimization
algorithm is divided into a two-stage methodology: (i) the
second order approximation is updated in each generation,
and (ii) the evolutionary search is performed such that some
solutions are taken inside this approximated surface. An
operator that performs such steps is included in the Genetic
Algorithm, in this way opposing therandom escape motion
effect.

We suggest that this new operator, named as theCon-
straint Quadratic Approximation(CQA), can be interpreted



as anelitism operatorspecialized for enhancing, iteration
after iteration, the estimate of the feasible set. The conven-
tional elitism operator, that keeps a single point (or a set of
points) in each iteration, does not apply to the search for the
feasible set, since this object is anm-dimensional surface,
and not a set of discrete points. The proposed CQA operator
provides an approximation for this object in this sense: the
best second-order surface that approximates the feasible set
is kept and enhanced, as the algorithm evolves.

This operator can be used within the standard iterative
cycle of Genetic Algorithms (GAs) in order to improve their
convergence. In this manner, the proposed algorithm is in
fact a special instance of a Memetic Algorithm (MA) or a
Hybrid Genetic Algorithm (HGA).

The main advantage of the proposed CQA operator is
that it does not require additional function evaluations inits
operation. It employs only information already acquired by
the usual execution of the GA. In the case when the ob-
jective function and/or the constraints are very expensive,
from a computational point of view, this is a great advan-
tage, since the additional computational cost required by the
local operator is negligible.

The proposed CQA operator was coupled to the Real-
Biased Genetic Algorithm (RBGA) [RSTM:03] to create
the novel hybrid algorithm, RBGA-CQA Hybrid. The
RBGA-CQA Hybrid was tested with some analytical prob-
lems and was compared with the RBGA algorithm. The
obtained results support the conclusion that the hybrid al-
gorithm can efficiently deal with nonlinear equality con-
strained problems.

2 Quadratic Approximations

We consider the nonlinear equality constrained problem of
the form:

x∗ = arg minx f(x)

subject to:g(x) = 0
(1)

where f and g are real-valued nonlinear functions. We
propose a methodology to solve the problem (1) using a
quadratic approximation for both the objective and con-
straint functions.

Suppose thatf and g can be locally approximated by
quadratic functions of the form:

f(x) = (x − xf )T .H.(x − xf ) (2)

and
g(x) = (x − xg)

T .G.(x − xg) − 1 (3)

wherexf is the optimal point of the objective function ap-
proximation andxg is the minimum point of the equality
constraint function approximation. With these approxima-
tions, we have the essential information that is to be used
into the methodology: the Hessian matrix and the uncon-
strained minima points off andg.

A possible way to get the Hessian matrix of these func-
tions would be to build an approximated matrixBk through
a quasi-Newtonupdate formula [BSS:79]. However, in

quasi-Newtonformulae, we have to evaluate the gradient
vector of the function. It is sometimes inconvenient, diffi-
cult or impossible to calculate the derivatives of a function.
Besides, the gradient evaluation would put a severe handi-
cap on the new method, since the evaluation would require
considerable computational effort.

Alternatively, with the goal of avoiding high computa-
tional costs, we use the current population and the available
function evaluations for the population of the traditionalGe-
netic Algorithm to fit a quadratic approximated function.
The methodology applied is described as follows.

Let h be a real-valued function. Given distinct points
z1, z2, · · · , zn, we consider the problem of finding a
quadratic real-valued functionf such that

h(zi) = f(zi) (4)

for i = 1, 2, · · · , N whereN is the number of available
points.

The functionf being quadratic, we can write it as

f(z) = zT .H.z + rT z + γ (5)

for some suitable symmetricn × n matrixH, n × 1 vector
r and some scalarγ. Hence, the problem of findingf such
that (4) holds can be restated as to findH, r andγ such that

zi
T .Q.zi + rT zi + γ = h(zi) (6)

for i = 1, 2, · · · , N .
This is a linear system ofN equations in the unknown

entries ofH, r andγ. The number of unknowns inH is
equal ton + n2

−n
2 , hence the total number of unknowns is

given by

n +
n2 − n

2
+ n + 1 =

(n + 1)(n + 2)

2
(7)

If

zi
T.H.zi + rT zi + γ = 0 ⇒ H = 0, r = 0, γ = 0 (8)

for i = 1, 2, · · · , N , andN = (n+1)(n+2)
2 then there exists

a unique quadratic functionf such that (4) holds. This is
an interpolation case. WhenN >

(n+1)(n+2)
2 , the linear

system (6) is over-determined and we can find a least norm
solution:

min
H,r,γ

||
∑

i

Ei|| (9)

whereEi is the residual error given by

Ei = f(zi) − h(zi) (10)

for i = 1, 2, · · · , N . If the norm is the Euclidean norm,
then the functionf is the quadratic least squares approxima-
tion. To obtain the unknown entries ofH, r andγ we solve
the over-determined linear system (6) through the Singular
Value Decomposition (SVD) procedure.

Once we have obtained a quadratic approximation

f(z) = zT.H.z + rT z + γ (11)



we can easily find the minimum point off

zf = −
1

2
H−1r (12)

and then we can rewrite the analytical expression of the
function

f(z) = (z − zf )T .H.(z − zf ). (13)

3 The Bisection Method for Solving the Ap-
proximated Optimization

With the local quadratic approximations

f(x) = (x − xf )T .H.(x − xf ) (14)

and
g(x) = (x − xg)

T .G.(x − xg) − 1 (15)

we can estimate a solution for (1) using the bisection
method. In this section we present the mathematical formu-
lation that permits the utilization of the bisection to solve
(1).

By using a suitable change of coordinates, we can write
the associated problem for the problem (1):

min(z − zf )T .(z − zf )

subject to:(z − zg)
T .Q.(z − zg) − 1 = 0

(16)

wherezf is the unconstrained minimum of the new objec-
tive function,zg the center point of the quadratic constraint
andQ the Hessian matrix associated with the constraint.

We know that

∇f(z) = 2(z − zf ) (17)

is the analytical form of the gradient vector off on the point
z wherezf is the minimum point off and

∇g(z) = 2Q(z − zg) (18)

is the analytical form of the gradient vector of the approxi-
mated constraint onz wherezg is the minimum point of the
approximated constraint function.

Besides, through the Kuhn-Tucker conditions, we have

∇f = −λ.∇g (19)

Then, using (17), (18) and (19), we can write

z − zf = −λ.Q.(z − zg) (20)

and, finally,

(I + λ.Q).z = zf + λ.Q.zg (21)

We can see that the equation (21) gives a parametric path
joining zf to zg, where the gradient vectors off andg are

linearly dependent. We search for the value,z∗, that is on
the path and on the constraint

(z − zg)
T .Q.(z − zg) − 1 = 0 (22)

This value is found through a bisection method.
The idea behind the bisection method is very simple.

Over some interval the function is known to pass through
zero because its sign changes. Evaluate the function at the
interval’s midpoint and examine its sign. Use the midpoint
to replace whichever limit has the same sign. On the para-
metric path joiningzf andzg, all values ofz that are inside
the interval[zf , z∗) haveg(z) = (z−zg)

T .Q.(z−zg)−1 >

0. In the same way, allz that are inside the interval(z∗, zg]
haveg(z) = (z − zg)

T .Q.(z − zg) − 1 < 0. Therefore,
given any interval on this path, it is possible to ensure the
existence of the pointz∗ which satisfiesg(z∗) = 0.

Below we can see an algorithm based on the bisection
method that can find this pointz∗ for a given precisionǫ.

The Bisection Method

Step 1. Specifyla e lb;

Step 2. xa ← x(la);

Step 3. xb ← x(lb);

Step 4. fla ← f(xa);

Step 5. flb ← f(xb);

Step 6. whilenon stop criterion

Step 6.1. M ← flb;

Step 6.2. lk ← la+lb
2

Step 6.3. xk ← x(lk)

Step 6.4. fk ← f(xk)

Step 6.5. ifM.fk > 0

Step 6.5.1. lb ← lk

Step 6.5.2. xb ← xk

Step 6.5.3. flb ← fk

else

Step 6.5.1. la ← lk

Step 6.5.2. xa ← xk

Step 6.5.3. fla ← fk

If after n iterations the solution is known to be within an
interval of sizeǫn, then:

ǫn+1 =
ǫn

2
(23)

Thus, we know in advance the number of iterations that are
required to achieve a given tolerance in the solution

n = log2
ǫ0

ǫ
(24)

At the end of the bisection procedure, we must change
the coordinates again, returning to the original problem co-
ordinates of (1), in which the objective function is evaluated.



4 Hybridizing the Local Operator with GAs

In order to implement the proposed ideas, we use a version
of a Genetic Algorithm that has been tested already in some
related problems in the literature: the Real-Biased Genetic
Algorithm (RBGA). The proposed new operator is only in-
cluded in the pre-existing GA.

4.1 The Real-Biased GA

The Real-Biased Genetic Algorithm (RBGA) [RSTM:03]
is a Genetic Algorithm with a different feature: the real bi-
ased crossover operator. The RBGA is defined as the suc-
cessive application of the following operations: population
evaluation and the fitness function computation; selection
by roulette; real biased crossover; mutation; elitism.

The real biased crossover is defined as follows.
• The population withN individuals is randomly or-

dered in N
2 pairs of individuals. For each pair, the

crossover will occur with probabilitypc.

• For each pair subjected to crossover, the fitness func-
tion J(x) of the individuals is considered. The in-
dividuals which aren-vectors of real parameters are
labeledx1 andx2, such thatJ(x2) < J(x1).

• The real biased crossover generates one offspring in-
dividualxg as

xg = α.x1 + (1 − α).x2 (25)

with α chosen in the interval[−ξ; 1+ξ], with ξ being
an extrapolation factor selected by the user from the
interval[0; 1]. α is selected according to the probabil-
ity distribution defined by

α = (1 + 2.ξ)β1β2 − ξ (26)

where β1 and β2 are random variables with uni-
form probability distribution inside the domain[0; 1].
These provide a quadratic probability distribution for
α which makes the new individualxg have a greater
probability of being closer tox1 (the best parent indi-
vidual) than tox2 (the worst parent individual).

• The other offspring is chosen without bias, i.e,α is
chosen in the interval[−ξ; 1 + ξ] with uniform prob-
ability.

The specific evaluation of the effect of the real biased
crossover operator can be found in [TVRK:03].

In the case of one individual being out of the admissible
range, the reflection method is applied to force the individ-
ual back inside the feasible region. For a reflection by the
lower limit (xL) the operation is defined as

xr = xL + |x − xL| (27)

wherex is the individual outside of the admissible range
andxr represents the resulting individual after the reflec-
tion. For a reflection by the upper limit(xU ) the operation
is defined in an analogous way as

xr = xU − |xU − x| (28)

with the same meaning for the other variables.
The mutation operator is defined as follows. Each indi-

vidual in the population can be subjected to mutation, with
probability of0.03. If an individualx suffers mutation, the
resulting individualxm is defined by

xm = x + δ (29)

with

δi = 0.05βi(xr)i (30)

whereβi is a random number with Gaussian distribution,
zero mean and variance equal to one, andxr is a range vec-
tor with lower and upper limits given byxL andxU respec-
tively. The other operations in the RBGA are as usual.

The real-biased crossover resembles a search following
the direction of a “tendency” with an information that is
similar to the one that is given by a kind of “gradient vec-
tor” evaluation, but with possibly “long-range information”
validity (instead of the only local validity that is associated
with a gradient). This operator only evaluates the objective
function without any calculation of function derivatives,in
the same way as the GA. If the parents are located near each
other, then a step that implicitly uses a directional derivative
information is executed. This procedure speeds up the lo-
cal convergence to the optimal point. If the parents are far
away from each other (maybe in different attraction basins),
this procedure can be interpreted as a “long-range trend” in-
formation. The offspring individual is created taking into
account such information.

4.2 The RBGA-CQA Hybrid

A difference between global and local search procedures is
that global techniques are largely independent on the initial
conditions while local methods produce solutions that are
strongly dependent on the starting point. Besides, local pro-
cedures tend to be coupled to the solution domain. The Ge-
netic Algorithms were largely developed for the purpose of
performing global searches. The conventionalgenetic oper-
ators were developed with the main purpose of enhancing
the algorithm capability of finding global optima basins.

Memetic Algorithms(MA) or Hybrid Genetic Algorithm
(HGA) denote the association of local and global search op-
erators inside GA. This kind of strategy is used by many
successful global optimization procedures with the goal of
refining the solution of the problem and improving the speed
of convergence to the actual optimum point (not only to its
vicinity).

Richard Dawkins in his bookThe selfish genehas in-
troduced the wordmemeto denote the idea of a unit of
imitation in cultural transmission which in some aspects is
analogous to the gene [Daw:76]. The first use of the name



Memetic Algorithm in the literature appeared in 1989 in the
work of Pablo Moscato [Mos:89]On Evolution, Search, Op-
timization, Genetic Algorithm and Martial Arts: Towards
Memetic Algorithms, for denoting algorithms that use some
kind of structured information, that is obtained and refined
as the algorithm evolves, and is “transmitted” from one gen-
eration to the another, for enhancing the search. Since then,
this idea has gained wide acceptance in the computing com-
munity and has been successfully applied in a large class of
problems [IM:96, Mos:99, LHKM:04, KC:04].

The main advantage obtained from the use of Memetic
Algorithms is that the space of possible solutions is reduced
to a “subspace” (or a lower-order set) of local optima. The
introduction of local search in the traditional genetic algo-
rithms has some computational cost, but this is compensated
by the decrease in the search space that must be explored in
order to find the solution.

The new methodology, RBGA-CQA Hybrid (RBGA
with Constraint Quadratic Approximation), presented in
this paper, deals with nonlinear equality constraint using
the quadratic approximation technique and the bisection
method as a local search operator in the real-biased Genetic
Algorithm. This new local search operator improves the so-
lution because it allows the equality constraint to be reached
with increased precision. Furthermore, notice that this op-
erator does not impose any significant additional compu-
tational cost on the traditional RBGA if the computational
cost is measured by the number of calls of the objective and
constraint functions. In this way, the new algorithm is a
kind of Memetic Algorithm or Hybrid Genetic Algorithm
for equality constrained problems. We show below the ba-
sic sketch of a Memetic Algorithm:

Step 1. Initialize parameters

Step 2. Initialize population

Step 3. WHILE no stop criterion

• selection

• crossover

• mutation

• local search

end

The RBGA-CQA fits in this sketch by using the quadratic
approximation method as an operator for improving one or
more individuals, providing solutions that satisfy the equal-
ity constraint with higher precision.

An actual implementation of the proposed scheme could
be performed in several different ways. With the main pur-
pose of showing the relative enhancement of solution that
the proposed CQA operator can provide, we used a rather
arbitrary choice of specific definitions that define how that
operator links the pre-existing RBGA algorithm. For hy-
bridizing the RBGA with the local search operator, we have
established the following definitions:

• The RBGA is executed for the optimization of a mod-
ified objective function with a penalty term that takes
into account the equality constraint:

F (x) = f(x) + β|g(x)|

• The local search CQA operator will be run every 5
generations. We performed experiments on execut-
ing the operator every 2, 5 and 10 generations, but no
considerable variation in the results was perceived.

• As this operator is a local search one, only points in
a neighborhood of the current best point will be used
to build the quadratic approximations. This neigh-
borhood is an ellipse whose axes correspond to 10
percent of the length of each parameter range. As a
mathematical condition, the number of points inside
this neighborhood must be higher or equal to

(n + 1)(n + 2)

2

wheren is the problem dimension. The higher the
number of points inside this neighborhood,the more
accurate the quadratic approximation.

• Finally, the output point of the new operator will de-
terministically replace the worst point of the current
population.

Notice that the output point also can be used as an ad-
ditional stop criterion for the algorithm: the stabilization of
such point can be interpreted as the algorithm finding the
solution.

5 Results

The RBGA and RBGA-CQA-Hybrid algorithms have been
tested with a set of analytical problems. The analytical test
problems were chosen with different characteristics and de-
grees of difficulties. The problems are:

• Quadratic Problem:

x∗ = arg minx x1
2 + x2

2 + x3
2

subject to:(x1 − 2)2 + (x2 − 1)2 + 4(x3 − 1)2 = 1
(31)

• Non-quadratic Problem:

x∗ = arg minx(x1 − 2)4 + (x1 − 2x2)
2

subject to:x2
1 − x2 = 0

(32)

• Multimodal Problem:

x∗ = arg minx xT .AT .A.x − 10[11]cos(2πAx)

subject to:(x1 − 2)2 + (x2 − 2)2 = 1
(33)

where

A =

(

1 0
0 4

)
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Figure 1: Convergence Line for the Quadratic Problem

In both algorithms, the equality constraintg(x) = 0 is
replaced by two inequality constraints of the form

g1(x) = −g(x) − ǫ ≤ 0
g2(x) = g(x) − ǫ ≤ 0

with ǫ = 0.001. If any inequality constraintgi is violated
then the modified objective function is given by

f = f + 10.gi(x).

Each algorithm was executed 30 times for each function
and was started with the same basic parameters as listed be-
low:

• Population size: 20 individuals

• Recombination Probability: 0.6

• Polarization Probability: 0.3

• Mutation Probability: 0.02

• Mutation Size: 0.05

• Dispersion Factor in Fitness Function: 1.8

• Extrapolation Factor in Recombination: 0.2

• Maximum Number of Generations: 100
For a discussion of the effect of these parameters over the

RBGA performance, see [TVRK:03]. Since our objective
is only coupling the CQA operator with an efficient and a
previously tested Genetic Algorithm, we do not focus on
this subject. An exhaustive investigation on this issue will
be carried out and a parameter sensitivity analysis will be
addressed in a future work.

The maximum number of generations was the only stop-
ping criterion in both methods. At the end of 30 executions
of RBGA and RBGA-CQA Hybrid, we obtained the mean
convergence line which corresponds to the mean value of
the best individual throughout the 100 generations.

Figures 1,2 and 3 show the convergence line for each
problem. In the graphs, the x-axes represent the genera-
tion and the y-axes represent the base 10 logarithm of the
objective function value of the best individual. The base 10
logarithm was used, except in the multimodal problem, only
to enforce the difference between the lines.
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Figure 2: Convergence Line for the Non-Quadratic Problem
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Figure 3: Convergence Line for the Multimodal Problem

In figure 1, we can see that the RBGA-CQA Hybrid has
a higher speed of convergence compared with the RBGA.
Around the 10th generation, the RBGA-CQA Hybrid found
a solution which is a better value than the final solution
found by the RBGA. A similar result can be seen when
we observe the convergence line for figure 3. For the non-
quadratic problem (fig.2), the convergence speed of the
RBGA-CQA Hybrid is also higher than that of the RBGA.

5.1 Diversity Analysis

Given that the proposed local search, CQA operator, is sub-
stituting the worst individual by an improved one, an im-
portant issue that arises is the effect of this operator on the
diversity of the population.

In order to perform a diversity analysis, we carried out
the following experiment:

1. Define a radiusr in the search space;

2. Execute the GA, returning the final population;

3. Place a sphere of radiusr centered at the optimal
point;

4. Initialize a sphere count as equal to one;



5. Exclude all individuals that are located within this
sphere;

6. Among the remaining individuals, center the sphere
at the individual that is closest to the previous center
and increment the sphere counter;

7. Go to step 5 until there is no more remaining points
in the population.

Through this experiment, it is possible to identify the
population with greater diversity, which is simply that with
more spheres. However, in order to obtain a relevant result,
we need to perform this experiment over many executions
of each algorithm and take the mean values. We executed
the RBGA and RBGA-CQA, with the same basic parame-
ters listed in the begining of this section, 30 times over the
following test problems:

• 2D Rotated Rastrigin

x∗ = arg minx xT .AT .A.x − 10[11]cos(2πAx)

subject to:(x1 − 0.9)2 + (x2 − 0.9)2 = 1
(34)

where

A =

(

1 0
0 2

)

• 3D Rastrigin

x∗ = arg minx xT .x − 10[111]cos(2πx)

subject to:
(x1 − 0.65)2 + (x2 − 0.65)2 + (x3 − 0.65)2 = 1

(35)
For the sphere radius, we setr = 0.0001. The final re-
sults are shown in Table 1. Figures 4 and 5 show the diver-
sity analysis as described above, every 5 generations, for the
problems 34 and 35.

Problem RBGA RBGA-CQA Hybrid
Rastrigin 2D 7.4333 6.4667
Rastrigin 3D 8.3333 7.6000

Table 1: Mean values of the number of spheres in the diver-
sity analysis

As we can observe, in fact, the CQA operator implies
a small reduction in the diversity of the population. This
is expected, since the improvement of the best individual
increases the possibility of extinction of the worst ones.

6 Conclusions

The RBGA-CQA Hybrid has presented a good performance
in the equality constrained problem tests. The usage of
quadratic approximations for both objective function and
constraint and a kind of elitism feature in the proposed CQA
operator enhance the convergence properties of the RBGA.
The results confirm that the RBGA-CQA Hybrid converge
to better solutions, while needing less function evaluations.
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Figure 4: Number of spheres every 5 generations for the
2-D Rotated Rastrigin
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Figure 5: Number of spheres every 5 generations for the
3-D Rastrigin

The CQA operator does not require any additional func-
tion evaluation per algorithm iteration, which allows us to
recommend that this operator should be included in any
GA that is to be used in problems with equality constraints.
This is especially emphasized in the case of problems with
expensive-to-evaluate objective functions or constraints.
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