
Effects of Experience Bias When Seeding With Prior Results

Mitchell A. Potter, R. Paul Wiegand, H. Joseph Blumenthal and Donald A. Sofge
Naval Research Laboratory

Washington, DC 20375
{mpotter,wiegand,blumenth, sofge}@aic.nrl.navy.mil

Abstract- Seeding the population of an evolutionary al-
gorithm with solutions from previous runs has proved
to be useful when learning control strategies for agents
operating in a complex, changing environment. It has
generally been assumed that initializing a learning algo-
rithm with previously learned solutions will be helpful
if the new problem is similar to the old. We will show
that this assumption sometimes does not hold for many
reasonable similarity metrics. Using a more traditional
machine learning perspective, we explain why seeding
is sometimes not helpful by looking at the learning-
experience bias produced by the previously evolved so-
lutions.

1 Introduction

Learning tasks for agents in complex, changing environ-
ments can be quite challenging. Indeed, the real-time adap-
tive requirements of agents such as autonomous robots op-
erating in the physical world often make learning extremely
difficult. To deal with this, several contemporary learning
systems employ methods that use prior knowledge when
learning behaviors in new, but similar tasks. This is often
done byseeding the learning algorithm with prior knowl-
edge. For evolutionary algorithms, previously evolved so-
lutions are injected into initial populations, competing to
survive in the changed world.

One proposed framework for dealing with situations
requiring adaptive learning methods is anytime learning
(Grefenstette and Ramsey 1992), more recently referred to
as continuous and embedded learning (CEL) (Schultz and
Grefenstette 2000). CEL involves monitoring the environ-
ment for changes, updating a simulated world with the de-
tected changes, then learning new behaviors in simulation to
cope with the new circumstances before posting the adapted
behaviors to the physical robot. CEL relies on the ability of
the underlying learning algorithm to use prior knowledge
to assist in learning new situations. One hopes similar sit-
uations will require similar solutions, and that biasing the
algorithm in this way will improve the learning time.

This seeding technique is not unique to CEL. It is also
used when employing methods like shaping—where grad-
ually more challenging problems are presented to a learn-
ing algorithm so that an explicit gradient is established and
complex tasks can be learned in stages (Dorigo and Colom-
betti 1998). Again, here seeding carries with it the hope
that a similarity bias will improve learning performance on
complex tasks.

Despite the many uses of seeding, it should be clear that
such methods will not always be helpful. When situations

are sufficiently different, it can easily be the case that a bias
toward prior behaviors will trap algorithms in new subop-
tima (Louis and Johnson 1997). Unfortunately, it is unclear
what “sufficiently different” means for a given task; yet for
those who employ methods like CEL and shaping, it is nev-
ertheless important to understand when seeding is helpful,
and when it can be harmful.

One way to answer such a question is to define a va-
riety of useful distance metrics and study how such mea-
sures affect the performance of seeding methods. Rather
than having to rely on arbitrary notions of distance, though,
we adopt a different perspective in which we concentrate
on how experiences in the environment can help or hinder
the establishment of an appropriate learning gradient. Com-
plex behavioral tasks often require different sets of behav-
iors (skills) for different sets of experiences resulting when
problem characteristics differ, what one might call differ-
ent aspects of the problem. In some sense, these aspects
correspond to different objectives; however, the degree to
which they are relevant changes depending on the circum-
stances of the problem itself. The ability to learn skills that
address these aspects, and the ability to balance them ap-
propriately in a given setting, relies on the capability of the
learning algorithm to gain sufficientexperience with them.
Our view is that exposure to proper experiences, appropri-
ately weighted, is important to establish a learning gradient
for the larger problem.

In this paper, we examine the utility of seeding a learning
algorithm using prior knowledge in terms of the algorithm’s
ability to collect sufficient experiences. We show that seed-
ing is helpful when it maximizes experiences of important
elements of the new problem; however, when prior learn-
ing runs generate behaviors that prevent the algorithm from
collecting appropriate experiences in the new environment,
seeding with those behaviors may not help improve learning
performance on the new problem. In fact, seeding may be
considered harmful in the latter case because it impedes the
algorithm from learning new behaviors that are potentially
more appropriate for the new environment. The result of
this work is a pragmatic, more traditional machine learning
view of seeding, in that seeding is a producer of a bias that
may or may not be helpful.

The next section describes some of the related work with
techniques involving the incorporation of prior knowledge
to bias current learning. Section 3 describes a covert track-
ing task, the various objectives and behaviors required to
accomplish the task, and how they can be objectively mea-
sured. Section 4 includes details regarding our robot con-
trol architecture, our evolutionary algorithm, and our seed-
ing mechanism. Section 5 includes experimental results that



illustrate the effect seeding with prior solutions has on the
tracker’s exposure to relevant experiences, which in turn af-
fects the ability of the algorithm to learn certain behaviors.
We conclude in section 6 with a discussion about how these
findings relate to our work, and what future steps to take.

2 Related Work

In the discipline of machine learning, researchers strive to
find a solution that is both accurate and computationally in-
expensive; however, there is often a tradeoff between these
two characteristics. One way to reduce training time is
to incorporate domain specific knowledge into the search,
though frequently little or noa priori knowledge is avail-
able. In the absence of domain specific knowledge, a com-
mon approach is to randomly choose starting points in the
search space.

In a standard evolutionary algorithm (EA), for example,
the population of candidate solutions are randomly initial-
ized, and this strategy suffers from the risk of inadequately
covering the search space and biasing the search toward sub-
optimal solutions. In order to circumvent this risk, there
have been a number of proposed methods that select a set of
points in the search space as evenly distributed as possible.
Morrison (2003) proposed a solution to this common prob-
lem in evolutionary algorithms named the heuristic sentinel
placement algorithm. Morrison’s initialization uses heuris-
tics, guided by a discrepancy measure, to generate a se-
quence of well distributed points in the search space. Of
course, techniques for evenly covering the search space tend
to be representation dependent. For example, a common
initialization algorithm for a two layer neural network is
the Nguyen-Widrow algorithm (Nguyen and Widrow 1990).
This approach generates random values for weights and bi-
ases for all layers of a neural network and then adjusts these
values such that the input space is parsed into different sec-
tions covered by a particular node.

When knowledge of the problem domain is available, it
can be used to bias the search strategy and reduce the com-
putation time required to find a quality solution. An early
example of a mechanism that seeds an EA is Eschelman’s
CHC partial restart (Eshelman 1991). A restart occurs when
the algorithm determines that a population has stagnated or
converged. Eschelman’s system preserves an identical copy
of the best individual and reinitializes the rest of the popu-
lation with individuals that are highly mutated copies of the
best. While restarting due to stagnation or convergence has
proved to be useful, our focus here is on a quite different
situation in which the algorithm is restarted specifically to
deal with a change in the environment.

Of particular interest is learning robot controllers.
Robots typically operate in unstructured, uncertain, and
changing environments where it is critical to find quality
solutions quickly. In particular, if a robot is slow to adapt
to changes in its environment, it may suffer any number
of unfortunate consequences, including physical harm. Yet
evaluating candidate solutions can be extremely time con-
suming when learning is done directly on the robot or in
a high-fidelity simulation. A possible solution is to bias a

search by including domain knowledge previously learned
from similar problems. Some consider case-based reason-
ing to be the first application of this principle (Riesbeck and
Schank 1989).

An early evolutionary computation system for learn-
ing rule-based robot controllers in a dynamic environment
is continuous and embedded learning (CEL)—originally
called anytime learning (Grefenstette and Ramsey 1992).
The CEL architecture includes an execution system that
maintains an active controller for a robot operating in a real-
world environment, a learning system that includes a simu-
lation model of the environment and is capable of producing
new controllers, and a monitor that detects when significant
changes in the real-world environment occur. When such a
change occurs, it triggers an update to the simulation model
to make it more closely match the real world, and the learn-
ing system initiates a restart and performs a round of evo-
lutionary adaptation to this new environment. The learning
system seeds a predefined percentage of its population with
the best previously-learned controllers, while the remain-
ing members of the population are initialized randomly.
Later versions of CEL included a case-base of previously-
evolved controllers for this purpose (Ramsey and Grefen-
stette 1993). As better control systems are evolved, they are
transferred to the execution system for use by the robot in
the real-world environment.

Louis and Johnson (1997) developed a system quite sim-
ilar to continuous and embedded learning called Case In-
jected Genetic Algorithms (CIGAR), which employs case-
based memory and genetic algorithms to reuse previously
discovered information from a similar problem to bias the
search of an unseen space. When CIGAR is faced with a
new problem it searches the case-base containing solutions
to previous problems to find whole or partial solutions to
a similar problem that can be used to seed a genetic algo-
rithm. In these experiments, it was shown that this method
decreases the learning time to solve the problems. CIGAR
also uses a boosting technique independent of problem sim-
ilarity that injects previously evolved cases most closelyre-
sembling the best members of the currently evolving popu-
lation.

Floreano and Mondada (1996) seeded an EA to adapt a
neural network based robot controller to changes in the en-
vironment. Neural networks provide a compact, efficient,
and highly flexible representation for robotic controllers.
The neural network receives sensory input from the robot’s
sensors (as well as possible state information), and produces
the appropriate control commands as its outputs. Floreano
and Mondada used a small Khepera robot whose task was
to navigate a square area for as long as its battery life would
sustain. The robot was equipped with a battery sensor, and a
battery recharge corner of the square was painted black and
illuminated by lights. Once the Khepera could successfully
navigate the area and recharge its battery, the lights were
moved to the opposite corner of the square area from the
black painted recharging station. After this environmental
change, Floreano and Mondada did not restart the learning
process, they simply continued the genetic algorithm with



the final population. This strategy yielded a highly fit solu-
tion in fewer evaluations than reinitializing the genetic al-
gorithm randomly.

Dorigo and Colombetti (1998) address a related problem
in getting a robotic system to learn to perform a complex
task based upon interaction with an external trainer (e.g.,a
human operator or reinforcement program). This approach
focuses heavily upon the use of reinforcement learning tech-
niques, and relies upon the trainer to provide appropriate fit-
ness functions in order to shape the behaviors of the robotic
system. The termshaping is borrowed from experimental
psychology (Skinner 1938) and is based upon the notion
that complex behaviors can be decomposed into simpler
parts. The parts are learned separately and then integrated
together. One of the arguments implicit to this approach is
that complex behavior is learned more easily through de-
composition and learning of simpler behaviors.

Other researchers have adapted the robot shaping
paradigm to use other forms of machine learning. A spe-
cific type of shaping dubbedincremental evolution is used
to shape behaviors by manipulating the complexity of the
task and the fitness function. An interesting application of
this method at the University of Sussex involved a robot
with a camera that is taught incrementally to distinguish be-
tween a rectangle and a triangle (Harvey et al. 1997). Learn-
ing begins with the robot given the simple task of forward
motion, then moving toward targets both big and small, and
finally learning to approach a triangle instead of a square.

There exists a common underlying assumption in most
the previous work described here on initializing a learning
algorithm with previously learned solutions. The assump-
tion is that seeding the learning algorithm with prior results
will be helpful if the new problem is similar to the old. We
will show that this assumption sometimes does not hold for
many reasonable similarity metrics, and explain this seeding
failure by looking at the learning-experience bias produced
by the prior results.

3 Covert Tracking

Many seemingly simple multiagent problem domains con-
tain surprising complexity, often requiring agents to adapt
behaviors to suit even modest changes in the problem char-
acteristics. Consider, for example, a covert tracking prob-
lem. Here there are two agents, a target and a tracker. In
our case, the behavior of the target is fixed, while we are
attempting to learn behaviors for the tracker; however, the
target’s vision capabilities may vary.

The target moves around the environment, perhaps per-
forming various tasks, but will react to any unknown agent
it sees. Such a reaction may be to attack the tracker in some
way, or perhaps to run away from the tracker, etc. In test-
ing and training runs of our system, we assume that if the
target sees the tracker it will inflict some form of damage
that does not necessarily impair the tracker physically, but
nonetheless is undesirable.

The tracker’s task is to track the target as closely as pos-
sible while staying out of the target’s field of view, as shown
in Figure 1. The tracker will be rewarded the closer it is to

the target; however, if seen then it will be penalized. More-
over, since the field of view of the target may be different
at different times, the tracker may need to alter its basic be-
havior to adapt to changed target capabilities.

target tracker

field of view

Figure 1: The task is to learn to track the target as closely
as possible while not being seen.

Though the basic task appears straightforward, a closer
inspection will reveal that it may require a variety of skills
on the part of the tracker, depending on the vision capabili-
ties of the target. We have identified at least three different
skills observed to be helpful in high performance tracker
solutions, depending upon the target’s capabilities:

following: The tracker attempts to get as close as possible
to the target.

avoiding: The tracker attempts to remain outside the tar-
get’s range of vision.

hiding: The tracker attempts to remain outside the target’s
angle of view.

These three skills reflect different means of addressing
the two competing objectives of tracking and not being seen.
Thefollow behavior concentrates exclusively on the first ob-
jective, while theavoid andhide behaviors concentrate on
different means of achieving the second objective.

Obviously these skills are interrelated, but reflect very
different priorities of the overall, compound behavior.
Moreover, they vary in importance in different contexts. For
example, if the angle of view of the target is360◦ then there
is no need for thehiding skill, while theavoid skill is of par-
ticular importance. When the target’s angle of view is180◦,
avoiding is less important, andhiding becomes a valuable
skill for good performance.

It is important to understand that, while it may be rea-
sonable to expect these skills to be important parts of the be-
haviors of the final solutions, they are observed phenomena.
Since we do not wish toengineer particular solutions, they
will not be used directly during learning. Instead, learning
performance will concentrate on the larger task objectives:
Track the target as closely as possible without being seen.
These two objectives are captured by the simple minimiza-
tion function:

f(tracker) =

s
∑

i=1

{

3v if tracker seen
ri otherwise,

(1)



wheres represents the number of steps in a simulation,v

is the vision range of the target, andri is the range of the
target from the tracker at stepi. We developed separate,
external measures for the three skills described above, but
these measures will not be used by the EA.

3.1 Experiences and Skills

Learning the three covert tracking skills clearly requiresdif-
ferent kinds of experiences during training. These different
sets of experiences help define different aspects of the prob-
lem that relate in various ways to the two underlying objec-
tives of the compound problem. Different problem aspects
will determine the degree to which the tracker is capable of
learning skills addressing those aspects. In some situations
certain experiences will be rare, and the learning algorithm
is unlikely to have a sufficient gradient to learn skills ad-
dressing a particular problem aspect.

Figure 2 helps make it clear what circumstances provide
the different kinds of experiences for aspects of the problem
relating the three aforementioned skills. The top segment of
the figure shows that tracker positions closer to the target
receive higher qualityfollowing experiences; the left seg-
ment shows how the tracker receives positiveavoiding ex-
periences by staying outside the target’s vision range; and
the right segment illustrates that positivehiding experiences
are found in the target’s blind-spot, regardless of distance.

+

–

+

+

+

–

–

–

–
–

hiding
avoiding

following

+

+

+

+
+

+

+
–

–

–
–

–

–

+
+ +

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
–

–

–
–

–

–

+

+

+

+

–

–

–

+

+

+

–

+

Figure 2: The tracking agent receives different types of ex-
periences for different skills, based on its position relative
to the target.

As we will see, when circumstances prevent the agent
from obtaining different kinds of experiences, learning
skills that distinguish such experiences becomes difficult
or impossible. In some sense, this is a traditional machine
learning perspective: In order to learn a concept, the learn-
ing algorithm must have appropriate examples necessary to
establish a gradient.

3.2 Measuring Agent Skills

We could visually examine behaviors learned in different
circumstances to see how well the tracker was able to learn
to solve different aspects of the task. But to get a more

objective picture of what aspects of the task are addressed
by various solutions, it is necessary to quantify the perfor-
mance of the tracker for each of the three covert tracking
skills. Once quantified, we can then use these measures to
examine how different environmental parameters affect the
different kinds of tracking behaviors learned by the system.

To compute these measures for a particular solution, we
run it in simulation many times. In the case of thefollow-
ing behavior, we compute a simple linear distance from the
tracker to the target, averaged across all time steps. The
lower the number, the more the tracker isfollowing the tar-
get. Keep in mind that orientation to the target is irrelevant.
Staying two meters in front of the target is just as good (or
bad) as staying two meters behind it. For theavoid behav-
ior, we simply compute a ratio of the number of time steps
the tracker is within the vision range of the target out of all
time steps, regardless of the target’s angle of view. The final
behavior,hiding, is slightly more complicated. For this we
compute the absolute value of the relative angle of orien-
tation between the tracker and the target in each step, cen-
tered directly behind the target. In other words, a tracker
that is exactly behind the target receives a hiding score for
that step of0, but one that is directly in front receives a
score ofπ. The final measure is the average of such angles
over all the steps in a simulation. So, again, lower is better.
We should again emphasize that these measure are used for
post-analysis only. The learning process is driven only by
the objective function in equation 1.

4 Learning Methodology

4.1 Control Architecture

The tracker is controlled by a combination of motor schema
(Arkin 1989) and a two-layer feed-forward neural network.
The neural network takes the range, bearing, and heading of
the target as inputs and produces the range and bearing of a
goal point at the rate of 10 Hz. A linear attraction vector is
computed from the goal point, and summed with repulsive
vectors for any sensed obstacles and a small amount of ran-
dom noise to produce a control vector that sets the forward
speed and turning rate of the tracker. The neural network
is the learnable component of the tracker’s control system.
Networks with different connections weights will produce
trackers with different high-level behaviors. In contrast, the
target is controlled only by motor schema that are hand-
coded to produced a smooth random walk. These actions
are performed in simulation using TeamBots (Balch 1998).

The architecture of the tracker’s neural network is shown
in Figure 3. Five hidden and two output nodes are imple-
mented using a sigmoid activation function that produces
an output in the range(−0.5, 0.5). Three real-valued in-
puts have weighted connections to all the hidden nodes, and
each hidden node has a weighted connection to both of the
output nodes. In addition, in order to provide a learnable
bias, the hidden and output nodes have a weighted connec-
tion from an input clamped to the value 1.0. This topology
produces a network with a total of 32 weighted connections.
The network output representing the range of the goal point



is converted to a value between 0.0 and 20.0 meters, and the
output representing the goal bearing is converted to a value
in the range(−π, π).

target range

target bearing

target heading

1.0

goal range goal bearing

Figure 3: Neural network with learnable connection weights
for producing high-level tracker behaviors

4.2 Evolving Behaviors

Although the tracker’s neural network topology is fixed, we
learn each of the 32 real-valued connection weights with a
(µ + λ) evolution strategy (ES) as described by Bäck and
Schwefel (1993). Specifically, we use an ES(10+70). That
is, we begin with 10 parents, create 70 children by selecting
parents uniformly and mutating them, evaluate each of the
individuals in the combined population of 80 parents and
children, and apply truncation selection to choose the best
10 individuals for the next generation.

In addition to a real-valued vector of connection weights,
each individual consists of a companion vector of standard
deviations used by a Gaussian mutation operator that is ap-
plied to each connection weight. The weights are initialized
randomly in the range(−5.0, 5.0) unless they are initialized
using prior results as described in the next section. Regard-
less, they are constrained to the range(−10.0, 10.0). The
standard deviations are initialized to 1.0, and are themselves
adapted within the range(0.01, 1.0). Mutation is the only
operator used by our EA.

To evaluate an individual, we construct a neural net-
work from its connection-weight vector and run 25 four-
minute TeamBots simulations of the network-controlled
agent tracking the target. In each of the 25 runs, the tracker
will be given a different random starting position 10 meters
from the target. Given a simulation resolution of 10 Hz,
the minimization function described in equation 1 will be
summed over 2400 steps, and will be averaged over the 25
runs to produce the final evaluation value used by the EA.

4.3 Seeding the EA

In the next section we will describe experiments in which
the population of neural networks are initialized randomly,
and other experiments in which the networks are initialized
from previously evolved solutions. When initializing a pop-
ulation from a prior run of the EA, we take the best indi-

vidual from its final generation and reset its standard devi-
ation values to 1.0. A single copy of this individual is then
inserted into the new population, while the remaining indi-
viduals are initialized randomly.

By resetting the standard deviation values of the seed in-
dividual, we encourage the mutation operator to explore a
larger region of the space around the previous best solution.
However, given that our EA is an ES(µ + λ), the original
unmodified seed individual will continue to be copied into
future generations for as long as it is not superseded by a
better solution. Therefore, the algorithm may continue to
exploit this prior knowledge for many generations.

5 Experimental Results

At the most basic level, the question of whether or not it
is advisable to seed a current learning situation with prior
knowledge seems straightforward: If the older situation is
like the current one then presumably a learning algorithm
should be able to leverage useful elements of the behavior in
order to assist in learning the new situation. Unfortunately,
finding ameasure for similarity that is commensurate with
such learning properties is difficult in general, and the most
obvious similarity metrics, such as some kind of parameter-
space distance, may not provide this facility. In the case
of the covert tracking problem, for example, attempting to
learn behaviors when the angle of view is270◦ turns out
to be easy when the180◦ case is used as a seed, but very
difficult when the360◦ case is used, as we will show in the
next section.

To try to understand why this is the case, it is neces-
sary to better understand the relationship between problem
characteristics and learning experiences. In order to do this,
we examine the skills learned in five separate experimen-
tal groups, each corresponding to a covert tracking learn-
ing problem with the target having a vision range of 5 me-
ters, but a different angle of view (0◦, 90◦, 180◦, 270◦, and
360◦). Each group was evolved for 100 generations in 50
independent trials, then the best control system from each
group was considered for external measurement. Figure 4
below shows the relative performance for each group and
measure. The points are mean values of 100 sample test
runs, the wings represent the 95% confidence intervals for
each group. Recall that lower values are better.

Pair-wiset-tests (95% confidence) with Bonferoni ad-
justment shows that, in the case of thefollowing measure,
statistically significant differences are maintained between
all groups except the0◦ and90◦ cases. In the case ofavoid-
ing, the0◦ and90◦ cases are not statistically different, nor
are90◦ and180◦, but all other groups are different from
one another. Withhiding, only the180◦ and270◦ cannot
be statistically distinguished from each other; the othersare
different.

These results show the effects that problem characteris-
tics have on the ability of an agent to learn to address cer-
tain problem aspects. Situations in which the target’s angle
of view is very limited present no (or few) experiences for
learning toavoid the target—as a result, the trackerdoes
not learn that behavior. By the same token, when there is no



0 90 180 270 360

3
4

5
6

7

F
ol

lo
w

0 90 180 270 360

0.
0

0.
2

0.
4

0.
6

0.
8

A
vo

id

0 90 180 270 360

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

H
id

e

Angle Of View

Figure 4: External measures of final learned behaviors un-
der different angles of view. The measures illustrate the per-
formance of the tracker as itfollows the target,avoids the
target, andhides from the target on average per time step.
Lower values are better.

directional bias in the target’s vision system, as is the case
in the0◦ and360◦ groups, the tracker cannot learn tohide
particularly well. Moreover, this graph helps illustrate the
important point that parameters of the system form tradeoffs
in experience sets available to the agent during learning, and
thus there are natural tradeoffs in skill sets that occur as a
result of such changes; in one situation it is better to learn
skills A andB, while in another it is better to learnC.

Just as the problem characteristics can prevent the agent
from learning skills because they preclude certain experi-
ences, the skills themselves (once learned) restrict expe-
riences. Behaviors that have learned toavoid the vision
range of the target, for example, will incur few (or no) high-
performancefollowing-while-hiding experiences in the fu-
ture. This being the case, it seems clear that a simple
distance measure between parameter values makes an in-
sufficient similarity metric for the purposes of determining
whether or not a prior behavior makes a useful seed.

The fact that the tracker learns these skills better in some
circumstances than others is no cause for alarm. There is
nothing inherently wrong with this since any particular skill
may be unnecessary in the context in which the tracking
behavior was learned—the problem aspect may be unim-
portant in that circumstance. The trouble comes when we
introduce ana priori behavior into the learning process, a
behavior that will influence how the agent gathers new in-
formation.

Consider the case in which we attempt to improve the
learning performance on the270◦ angle of view problem
by seeding with similara priori cases. Here, the180◦ case
makes an appealing seed for a variety of reasons. First, from
a parameter-space point of view, it is no more distant from
the new problem than is the360◦ case. Additionally, in
our previous measures, our learning algorithm was able to
evolve very goodhiding behaviors for the180◦ case. Still,
given only distance as a rule of thumb, it is reasonable to as-
sume that both180◦ and360◦ will make good seeds for the
270◦ problem. As it turns out, and has already been men-
tioned, using the360◦ case as a seed does not help. More-
over, even though it is at the opposite end of the parameter
space, seeding with the0◦ case is of more value for learning
the270◦ context than the360◦ seed.

Figure 5 illustrates these situations. The left-hand panel
of the plot shows the randomly initialized evolution of the
best behavior for each of the0◦, 180◦, and 360◦ covert
tracking problems, while the right shows the average best-
of-generation learning performance on the270◦ problem af-
ter seeding with the afore mentioned case. For comparison
purposes, the average learning curve for the group evolv-
ing 270◦ from random initialization is also shown on the
right-hand side. Statistically, the final results of the group
where270◦ is learned from random initialization is indistin-
guishable from that of the360◦ seeded case; all other final
performances differ significantly.

The skill sets learned in thea priori tracking behaviors
alter the tracker’s exposure to potentially necessary expe-
riences. The180◦ case, for example, provides a skill set
that allows for most of the necessary experiences for learn-
ing high performance behaviors in the new270◦ context;
the tracker has access to positive and negativehiding expe-
riences, for example. In the reverse situation, this is not the
case. The360◦ behaviorsavoid the target entirely, and there
are few experiences to learn tohide; the algorithm will have
to rely on mutation to produce tracking behaviors that allow
the agent to be exposed to the required experiences, while
still performing sufficiently to survive selection. Since such
a mutation is unlikely at this point, the360◦ seed stalls out
with very little improvement on the270◦ problem, while the
180◦ makes steady improvement. In fact, when the360◦

group was used to seed the learning algorithm to solve the
270◦ problem, only four of the 50 trials resulted in behav-
iors that show any significant degree of hiding.

The 0◦ seed is also a very interesting case. As men-
tioned above, because there is no directional information in
the covert tracking problem when the angle of view of the
target is0◦ (like the 360◦ case), that case does not learn



0 10 20 30 40 50 60 70 80 90

5
10

15
360 initialized randomly
180 initialized randomly
0 initialized randomly

F
itn

es
s

0 10 20 30 40 50 60 70 80 90

270 initialized randomly
270 seeded with AOV 0
270 seeded with AOV 180
270 seeded with AOV 360

Generation

Figure 5: Using prior results from0◦, 180◦ and360◦ angle of view (AOV) environments to seed initial populationfor
learning in270◦ angle of view environment. Grey zone represents solutions within vision range of target.

to hide. As such, the performance of the case on the new
problem begins relatively poorly; however, because the0◦

seed has access to betterhiding andfollowing experiences,
it quickly overtakes the360◦ seed, as well as random ini-
tialization for the270◦ problem.

A more precise picture for these effects can be seen in
Figure 6, where external measures are shown for the final
resulting behaviors for some of the aforementioned groups.
Here we average the measure over the resulting behaviors
from the 50 independent runs of each experimental group.
We consider the situation where the0◦ and360◦ cases are
used to seed the270◦ covert tracking problem. Addition-
ally, we include measures for the randomly initialized0◦,
270◦, and360◦ cases for comparison purposes. For both
follow andavoid, all groups are statistically different. In the
case of thehide measure, the two right-most groups (360◦

seeding270◦, and360◦ randomly initialized) do not differ,
nor do the cases where0◦ seeds270◦, and270◦ itself. Oth-
erwise, all the groups are different.

There are several items of note in this graph. First,
though Figure 5 suggests that the360◦ seed performs as
well as the randomly initialized case, here we see that no
new skills are learned. This bolsters our observation that we
can expect very little from this seed. The0◦ case, in addi-
tion to performing statistically better than the randomly ini-
tialized group,does learn something new; it learns tohide.
The reason for this is quite clear: The0◦ behavior allows
the agent to gather relevant experiences in the270◦ context,
while the360◦ does not.

6 Conclusions

While learning behaviors for agents differs from more tra-
ditional machine learning tasks such as concept learning,
there are still many important similarities. In both cases,
learning algorithms typically need to be exposed to appro-
priate experiences in order to learn to distinguish differ-
ent concepts. When relevant experiences are missing, or
weighted inappropriately, their related concepts will notbe
learned.

In many multiagent settings the problem domain can
change, and in such cases we are tempted to leverage prior
learning results to make new problems easier to solve. This
paper begins to explore the question of when this so-called
seeding is advisable by examining a particular class of prob-
lems (covert tracking) from a machine learning perspective:
Changes in problem characteristics affect the algorithm’s
exposure to different kinds of experiences, which in turn af-
fects the potential success of seeding. Our conclusion is that
when prior learning creates behaviors that reduce or elimi-
nate necessary experience in the new context, seeding will
not help. While we concentrated on a particular learning al-
gorithm, seeding mechanism, and problem class, we believe
that this conclusion is fairly general.

Our examination was promulgated by our needs: Our lab
conducts research in evolutionary robotics, and continuous
and embedded learning is one of the tools we use. However,
it is clear to us that the results are helpful in many contexts,
such as shaping. Indeed, another study currently underway
relates to the order in which learning cases should presented
to an algorithm employing shaping. Using the same per-
spective we’ve shown here, we hypothesize that one should



3
4

5
6

7

F
ol

lo
w

0.
0

0.
2

0.
4

0.
6

0.
8

A
vo

id

000 000 → 270 270 360 → 270 360

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

H
id

e

Figure 6: External measures of final learned behaviors un-
der various initialization conditions.

first learn sub-problems that constitute rare but vital expe-
riences in the global problem. In a tracking and docking
task, for example, one should learn docking first, then the
complete problem.

Next we turn our attention to the use of CEL as a means
of co-adaptively learning behaviors for cooperative multi-
agent teams. To do this, it will be important to understand
what types of prior-learned behaviors will be useful for dif-
ferent team configurations and environmental parameters
when configurations or parameters change. We believe this
work is a step toward answering such questions.

Acknowledgments

This work was performed under ONR Work Orders
N0001405WX20057 and N0001405WX30001.

Bibliography

Arkin, R. C. (1989). Motor schema-based mobile robot
navigation.The International Journal of Robotics Re-
search 8(4), 92–112.

Bäck, T. and H.-P. Schwefel (1993). An overview of evo-
lutionary algorithms for parameter optimization.Evolu-
tionary Computation 1(1), 1–23.

Balch, T. (1998). Integrating robotics research with jav-
abots. InWorking Notes of the AAAI-98 Spring Sympo-
sium, Stanford, CA.

Dorigo, M. and M. Colombetti (1998).Robot Shaping:
An Experiment in Behavior Engineering. Intelligent
Robotics and Autonomous Agents series, vol. 2. MIT
Press.

Eshelman, L. (1991). The chc adaptive search algorithm:
How to have safe search when engaging in nontradi-
tional genetic recombination. InFoundations of Genetic
Algorithms I, pp. 265–283. Morgan Kaufmann.

Floreano, D. and F. Mondada (1996). Evolution of homing
navigation in a real mobile robot.IEEE Transactions on
Systems, Man and Cybernetics 26(3), 396–407.

Grefenstette, J. J. and C. L. Ramsey (1992). An approach to
anytime learning. InProceedings of the Ninth Interna-
tional Conference on Machine Learning, pp. 189–195.
Morgan Kaufmann.

Harvey, I., P. Husbands, D. Cliff, A. Thompson, and
N. Jakobi (1997). Evolutionary robotics: the sussex ap-
proach.Robotics and Autonomous Systems 20, 205–
224.

Louis, S. J. and J. Johnson (1997). Solving similar prob-
lems using genetic algorithms and case-based memory.
In Proceedings of the International Conference on Ge-
netic Algorithms, pp. 283–290. Morgan Kauffman.

Morrison, R. W. (2003). Dispersion based population ini-
tialization. In Proceedings from the 2003 Genetic and
Evolutionary Computation Conference, pp. 1210–1221.

Nguyen, D. and B. Widrow (1990). Improving the learn-
ing speed of 2-layer neural networks by choosing initial
values of the adaptive weights. InProceedings of the In-
ternational Joint Conference of Neural Networks, Vol-
ume 3, pp. 21–26. IEEE.

Ramsey, C. and J. Grefenstette (1993). Case-based initial-
ization of genetic algorithms. InProceedings of the Fifth
International Conference on Genetic Algorithms, San
Mateo, California, pp. 84–91. Morgan Kauffman.

Riesbeck, C. K. and R. C. Schank (1989).Inside Case-
Based Reasoning. Cambridge, MA: Lawrence Erlbaum
Associates.

Schultz, A. C. and J. J. Grefenstette (2000). Continuous and
embedded learning in autonomous vehicles: Adapting
to sensor failures. InUnmanned Ground Vehicle Tech-
nology II: Proceedings of SPIE, Volume 4024, pp. 55–
62.

Skinner, B. F. (1938).The Behavior of Organisms: An Ex-
perimental Analysis. D. Appleton-Century, New York.


