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Abstract—In less-than-truckload terminals arriving trucks  the Branch-and-Cut algorithm implemented in CPlex. On the
have to be allocated to a gate and to a time slot for unloading. one hand the test scenarios show that for small and middle
The allocation to a specific gate results in different transporta-  gj;0 problem instances good solutions can still be found.
tion voI_umes for the fo_rkln‘@ trucks inside of the termlnal,_ But on the other hand—especially for the case of medium
depending on the destinations of the truck's loads. While = . ) .
minimizing these transports the time for trucks waiting to be ~ Sized problems—finding optimal solutions takes up to 30
ordered to a gate also has to be minimized. For the first time this minutes or more. Obviously, this time span is prohibitive fo
problem has been tackled as a 2-objective optimization problem on-line optimization problems. So, exact solution methods
and was solved by an (1+1)-evolution strategy. We developed a 5rq ot relevant for the dynamic allocation of trucks to gate
model which is derived from real fr_elght forwarder’s data and in logistical terminals. Also the two objectives have so far
represents a small company’s terminal on an average workday. . e . .

only been considered by including a penalty for late docking
into the monocriterial objective function.

In our paper we present an approach that allows to allocate

In logistical terminals it is to be decided at which gate anénultiple trucks to the same gate on different timeslots, so
at what time a truck should be unloaded. The goods haxtending the model Bermudez & Cole (2001) used for their
different destinations inside of the terminal and the diséa genetic algorithm. Compared to Stickel & Furmans (2005)
from the gates to these destinations is different for eath gave were able to find good solutions for much larger prob-
as illustrated in Fig. 1. Itis important to minimize the Vi  |em instances, but the underlying model of crossdocking-
time for trucks and keep the transportation volume insidgrminals is different in many aspects from LTL-terminals.
of the terminal low. Goods with a total weight under threerTherefore, the results are not directly comparable. The un-
tonnes, which are often placed on a pallet for further trartsp derlying model is similar to the one used by Chmielewski &
activities, are calletess-than-truckloadLTL) consignments. Clausen (2005), but in our new approach the problem was

Bermudez & Cole (2001) were one of the first tacklingtackled as a multiobjective problem for the first time.
this kind of problem. They used a genetic algorithm to min e solved the two criteria decision problem of minimizing
In their model they assume that a single gate does serve ofg¢ transportation volume inside of LTL terminals and the
a single truck, which means just the allocation of trucks tQuaiting time for trucks between arrival at the terminal and
gates is considered and no time constraints exist. AnOthBéing assigned to a gate. This problem will be referred to
approach by Stickel & Furmans (2005) on crossdockings the LTL-problemin the remainder of this article. The
terminals concentrates on the time-scheduling aspect afgxt section will give a more detailed definition of the
also takes the vehicle routing for inbound and outboungbrresponding model, which is very similar to the model used
routes into account. The associated mathematical modeliis chmielewski & Clausen (2005). Section 3 will introduce
very complex. It was possible to solve tmeixed integer the algorithm we used to solve the problem: a 1+1 evolution
linear program (MILP) with CPlex for very small problem strategy. The experiments are then described in Sect. 4. Nex
inStanCBS. The pI’OCGSSGS inside Of terminals were SOIV% experiment’s results are discussed in Sect. 5 and diﬂfer
by Li & Rodrigues (2004) using an hybrid evolutionaryyariants are being compared. Finally we give a summary in
algorithm. Sect. 6.

Chmielewski & Clausen (2005, 2006) developed an

enhanced mathematical model for optimizing less-than- I

truckload terminals that is based on a time discrete muttico

modity flow and supplemented by necessary side constraints.The transport of LTL goods within a country or a region

The resulting MILP was programmed with the optimizatioris organized via a transportation network. The transpiortat

solver CPlex 4.1 and different test scenarios were apptied tequest of one customer (normally between 1 and 10 pallets)
o . _ _ usually does not suffice to fill the load area of a whole truck
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I. INTRODUCTION
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These terminals are spread uniformly over the region ¢ cC B A | Outbound
country and are interlinked by line haul traffic.

The core element of a terminal is the transfer station whic
is a building with several gates (depending on the size «
the terminal between 20 and 100 gates). The gates can
separated in inbound and outbound gates. Inbound gates
used for discharging trucks and outbound gates for chargin
Some gates, called multi-functional gates, can be used f
both logistical functions (inbound and outbound).

A local area is assigned to each terminal of a transportatic

Tours

network. The daily transportation requests of all cust@mel NGO NN

located within this area are collected in local tours durini 5

the day by small trucks. In the afternoon, these trucks arri ] 1

according to a certain timetable with earliest arrival tiate A3 A3
. . . . Inkbound

the freight forwarding terminal. Some trucks will be needet | g:5 B:5

for further tours or transport services and therefore hay |¢.7 Tours c:7

to leave the terminal at a certain point of time or at least
as soon as possible. Within its attendance time, a truck fsy. 1. Visualization of the decision to make: The transgmtavolume
allocated to an inbound gate to be discharged. The differe¢fpends on the assigned gate and number of palettes to bpatrizsto

ds f that truck lidated di to th the outbound Tours. In this example the inbound tour contaipallets for
goo S_ rom tha r_uc ) are consolidated according o ey, y,ound tour A, 5 for tour B and 7 for tour C. If the inbounddkuis
long distance destinations. Afterwards, they are traniegor assigned to the left gate then the average transportatinmeois low as
by forklift trucks within the building to those outbound gat Most of the pallets have to be transported to a close destinafithe truck

. . ig allocated on the right gate then the destination C, to whiost pallets
where the trucks for the different long distances are loadefl, e 1o pe transported, is far away so the resulting tratesim volume

The long distance trucks leave the site in the late eveningjhigher. One of the objectives of the fitness function dbedrin section
according to a certain timetable that guarantees their ov#fP is the total transportation volume for all trucks
night arrival on time at a partner terminal. Recapitulatiag

terminal has two main operating periods: the inbound oflloc ﬂ Its in | . | han thatri
collection tours with subsequent outbound of long distan git gate results In less transportation volume than thitrig

(12am - 8pm) and the inbound of long distance trucks witﬁate' As the time available on each gate is limited not every

the outbound of small trucks for delivering goods in the Ioca'nbo,und tour may bg assigned to |ts. optlimal ggte. Also when
area (12pm - 9am). the inbound tour arrives at the terminal its optimal gate may

. . . be blocked by another inbound tour - the decision to make
The assignment of trucks to gates and time slots is also

known as yard management. It is the interface between tou'?sto either wait until the optimal gate is freed or pick a sub-

that are conducted on the road network and the processes gﬁ)gmal inbound gate. Depending on these decisions the wo

. . . - conflicting objectives of minimizing total transport volem
opgrgtlons for the transshipment of goods Wlth.m the.te“mminside of the terminal and minimizing the total waiting time
building. It effects the amount of the resulting dlstance§

for the transshipment of all load units between the inbouné)r inbound tours have to tackled. The algorithms may aiso

gates and the outbound gates. Therefore, one objective Oe%mde to which gates the outbound tours have to be located

the planning is to find an optimal allocation that leads t(go, S0 the inbound tours can be assigned best

minimal total distances and a minimal number of resourceg,
needed in operations. A second objective is the minimiratio
of waiting times. Trucks should be allocated to a gate as so
as possible after their arrival at the terminal. Each truak h

2 the Iatest departure fme from the termnal. @14 Just he number of gates is defined beforehand. Each
. - _ . truck has to be allocated to a gate in an individual time

The planner has to reserve a time slot within this per'od/indow between 3pm and 6pm and each truck carries 10
of time that is long enough for discharging and charging th alettes in average for up to 5 different outbound gates. The
booked number of load units. If a truck is not allocated righ odel used for our algorithms is derived from real freight

after its arrival, the driver has to wait in a parking zoneilunt forwarder's data and represents a small company’s terminal
he gets further information. Therefore, minimizing wagtin on an average workday

times leads to less crowded yards. In addition, trucks shou
be charged and discharged as soon as possible to reserve . ALGORITHM
dock gates for time critical or very late trucks.

Figure 1 shows how the transport volume depends
both the assigned gate of the inbound tour and the numberA candidate solution/ implements an array of lists.
of palettes to each outbound tour/gate. In this example tl@onsider the array of lists for the ith solutioh, =

In our model we consider a small terminal of rectangular
ape with 25 gates. 50 trucks have to be assigned to these
ates, 10 of the trucks being long distance trucks (outbpund
he position of outbound gates, inbound gates and multi-
functional gates are part of the solution the algorithmsitere

4 Representation of solutions



[Gi1, Gia, - . ., Gim], Wwherem denotes the number of gates.allocation scheme and processes in LTL-terminals can be
Each listG;; = [T3j1,...,Ti;,] represents one gate. Theseoptimized.
list entries represent tours. Each tdyy; consists of an array

with four integer values: C. Description of the Evolution Strategy

_ _ Evolutionary algorithms are well suited to satisfy our
T35, = [tourNumbergateNumberstartTime endTime. needs, as they can easily be implemented to find a set of
To accelerate the function evaluation, two additional y@ra Pareto—optlmallsolut!ons a.nd' quk quite well even on very
complex combinatorial optimization problems.

to store times and gates were implemented. Within thé Therefore we have chosen a simple EA, ther 1)-ES
framework of evolutionary algorithms, candidate solu$ionSChWefel (1995) described this algorithm ’as “the minimal
are also called individuals. T : "
concept for an imitation of organic evolution.” L¢tdenote
B. Description of the Simple Heuristic a multi-objective function to be minimi_zed. The rules qf
. - . _._an (1 + 1)-ES for MCO can be described as shown in
The existing heuristical approach mimics the dec's'onﬁlgorithm 1.
of a .hum_an P'a””er and follows some simple rules and aq already mentioned before, there are two objectives
clas-smcanon figures. L .. arising from the problem: minimization of distances within
First the tours are sorted by a combination of priorityhe minimization of waiting times. Due to this multi-objiet

and expected difficulty of being assigned to a gate. Thgaqyre of the problem, it was reasonable to apply multi-

tour's priority depends on an assesment based on the USgjigaciive optimization techniques. The decision to invoke
experience and mix/type of loads on the truck, while the,o|ytionary multi-objective optimization techniquesissed
difficulty depends on the size of the time window and time,, the needs of decision makers (planners) to have a set of

of arrival. The weight of each figure can be defined by thgjernative solutions at hand to derive a final decision.eHer
user to find a sorted list of tours matching the individuajj,o concept of Pareto dominance comes into play.

requirements. . . _ A solution one is said to dominate a solution two, iff all
Following this sorted lists each tour is then assigned to @mponents of the fitness functighof solution one are not

gate at the earliest possible time. This is done by calewati yreater that the corresponding components of solution two
the expected waiting time for the truck at each gate and g,y really smaller in at least one component. The set of
resulting transportation volume for the loads on the truckqn_gominated solutions is called the Pareto set of salstio

from that gate to all the load’s destinations inside of th¢ile the corresponding pictures under functiprre called
terminal. These two criterias are used to assign the tour tq3 pareto front.

gate and the user may define the weights for combining the the appreciated set of alternative solutions, a Pareto set,
two objectives to find a solution. _ ___to allow an a posterior decision in multi-objective optias

By changing a tour's priority or varying the heuristic’stjon problems is offered by evolutionary optimisation tech
weights different solutions can be found focusing either oRiques (Deb, 2001; Coello Coello et al., 2002). Severalrothe
optimizing the waiting times for trucks and/or transpadat  techniques need an a priori choice of a ranking of objectives

volume inside of the terminal. S or the definition of weights to start the optimization.
It has to be pointed out, that the heuristic is unable to

optimize the allocation of outbound tours—th.ey.hav.e Fo bﬁ\lgorithm 1 (1+1)ES
assigned to gates mgnually beforeha}nd. This is. similar tu1: pa— 7 Initialize iteration counter */
the regl world planning task wher_1 n LT!_-termlnaIs the 2: I — init() I* Initialize candidate solution */
allocation of outbound tours usually is historically groeund 3 A /* Initialize archive */
not adjusted regulary. Another drawback is, that the hearis 4j repeat
is not built to find a set of Pareto-optimal solutions. It has _ 7o mutatd 1)) /* Generate offspring */
to be decided beforehand, if waiting times or transpontatio ~~ Ve ) ) . ® )
volume has to be considered or how these objectives shoul if (AI') € A(t) fIY) = f(Iye,)) then
be weighted. So a single solution can be found but there’ I0HD Ine
is no further knowledge about the possible solution space: A (10 YU A® P Update archive ¥/
available. 9: else

For these reasons, we decided to develop an algorith@?: 10— ®)
that can tackle the problem in a better way. A multiobjectivell: ~ end if
approach not only gives a range of solutions so that th&2: ¢ <—t+1
human planner is able to pick one that satisfies his needs-13: until stopping criterium fulfilled
we also gather knowledge about the solutions possible to
create. . )

A much more important issue is to develop an algorithn?- Fitnéss Function
which is able to estimate the potential benefit when out- As already mentioned while describing the problem, two
bound tours can be allocated freely. As a result, the curreabjective functionsf;, fo are considered for minimization.




Ignoring the resources needed for the operations inside theln contrast to the simple evolutionary multi-objective op-
transfer stations, the first one describes the way of eatimizer SEMO, our approach keeps the parent individual, if

pallet: the offspring individual is not selected. SEMO chooses a hew
m s parent in each generation uniformly from gHLaumanns,
. 2003). The current Pareto front is updated after each gener-
I;) = d(Gij(Pijir), Gia(Pijir)), o) .
i) ; ; ; Gy (Pujir), Gia(Pigir)) ation, individuals dominated by the new parent are removed.
with P, being r-th pallet of tourT;;; at gateG;; with IV. EXPERIMENTS

destination gateG;s (d € {1,...,m}). The functiond . . .
describes the distance inside the transfer station from oneAn experimental design has to be specified before the ex-

. . . Perimental analysis can be started. Our experiments aeglbas
gate to another. It could also invoke different kinds o n the experimental methodoloay from Bartz-Beielstein
resources for the operations, but we limited ourselves P gy
distances here 006). A hypervolume can be used to judge the performance
BN . . -, . of algorithms for multiobjective optimization problemso T
The second objective function displays the waiting time o

. calculate the hypervolume valu€(PFR.,) the objective
for each truck: . S
function values of each individual of the Pareto-front are
considered. The hypervolume is the space covered by the
(L) = Zth(Tiﬂ)’ solutions of the Pareto front calculated with respect to a
J=1i=1 chosen reference point®/:

m

with functiont,, (T;,;) being the difference between the point

of time the unloading of truck of the corresponding tour S(PAH = A U {z e R"|f(I) <z < xref} 7
is started and the arrival time at the transfer station. This [ inPF

time is normally spent in some parking area. For reasons

of simplicity, we neglected a detailed description of aIIWith A being the Lebesque measure of the hypercube

constraints that can be derived from the problem descriptioSpamneOI by_the solutions frqm th_e Pareto-front a nd the
Of course, all constraints are represented in our algorftm reference point. For the two-dimensional case studied, here
' this can be simplified to:

the task.
E. Problem Specific Operators for the 1+1-ES S(PH = A ( U Mef — A(D)] % [xSEf _ f2(_r)]> .
Search points are initialized as followkong distance I inPF

tours (Ziong) are randomly assigned tong distance gates  ag the door-assignment problem was introduced as a new
(Giong)- If all long distance gates are occupied, the remainingroplem class, no representative results (as for TSP icesn
long distance tours are assigned to multifunctional gate§re ayailable. To overcome this difficulty, we proceeded as
Short distance toursZthor) are assigned to the first availablefg|iows: The problem was solved with several algorithms tha
gate from the set of short distance and multifunctionalgjate ,geq a similar budget, i.e., number of function evaluations
The initialization is restarted if a tour cannot be assigteed e upper 10% quantile of the function values from all
any gate. results was chosen to characterize “good” algorithms. Run-
The mutation operator chooses randomly a tdUre |ength distributions (Fig. 2) as proposed by Hoos (1998)
{TiongU Tshort}, Which will be reassigned. Next, a ga# € G \vere used to determine an adequate number of function
with feasible arrival time is selected randomly. Two muiati g\ /51yations for the final comparisons.
opererators have been implemented: They are reliable tools to avoid floor- and ceiling effects.
1) Random Mutation: redistribute touf$ that have been These effects occur if problem instances that are chosen,
previously assigned t&"" randomly to available gates. which are too hard, or too easy, respectively, for the algo-
2) Quick Mutation: assigi” to the first available gate. rithms under consideration.
In both cases, the mutation is repeated if a tour cannot beAs can be seen from Fig. 2, 300,000 function evaluations

assigned. are a good compromise to detect differences between algo-
) rithms and to enable a fair comparison.
F. Selection One main research topic in evolutionary computation is the

As mentioned above, we utilized a simgle+ 1)-ES selec- design of problem-specific evolutionary algorithms (Beiel
tion scheme, but it has to deal with multiple objectives andtein et al., 2003). The aim is to systematize the design of
therefore differs from the single-objective case, of ceurs evolutionary algorithms for problems with nonstandard-rep
The selection scheme implemented accepts the offspringsentations. Especially nonstandard, problem-speeificer
individual to become the parent in the next generatiorsentations and variation operators are of great importance
iff it is non-dominated by all individuals generated by theTherefore, it is an important step to develop and analyze
algorithms until now. The set of individuals generated Wwith mutation operators for the LTL-problem. Two mutation (vari
the optimization run and non-dominated by each other ition) operators, which were introduced in Sect. llI-E, are
called thecurrent Pareto frontPF. subject of our experimental analysis. Our comparison is
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Fig. 2. Run-length distribution to determine the computatidiudget, i.e., Fig. 3. Histograms comparing distributions of function valdem runs
the number of function evaluations for the comparisons. Thphg illustrate ~ with random mutation and quick mutation schemes as introducgegt. |11
the RLD of the(1 + 1)-ES with quick mutation and with random mutation, E. Larger values are better. Quick mutation outperforms randuitation

respectively. Based on these distributions, 300,000 fone&valuations were

chosen
1600 . . — . .
* (1+1) solutions, fixed
TABLE | o (1+1)_ solutions, ﬂeijl_e O
RESULT TABLE OF THE FUNCTION VALUES(x 1.0e + 06) FROMn = 50 O solutions from heuristic
RUNS FOR THELTL-PROBLEM. BETTER VALUES ARE PRINTEDboIdface 1200 r |
Design Min Mean Median Max SD :
N L ) 4
Quick _ 7.6587 8.6733 8.7182 9.3124 02067 & 801 ¢
Random8.1642  8.8457 8.8562  9.4976  0.2380 o i
400 I g \ ]
. . = O
based on the LTL-problem with 300,000 function evalua- \_
tions. Each run was repeated 50 times. Results from these 0 ‘ ‘ ‘ ‘ ‘
runs are shown in Table I. Histograms (Fig. 3) visualize the 4000 6000 8000 10000 12000 14000
numerical values from Table I. Outliers and variation of the fl

function values can eaS|Iy be compared. Fig. 4. Comparison of results from the heuristic describethintext and

from two simple (1+1)-selection scheme. The presented Pé&tts were

V. ANALYSIS received from two runs with the (1+1)-Algorithm while thedle points were

. . received with the heuristic featuring different weightieTleft Pareto front
Experiments were performed to tackle the following tasksias created with flexible outbound tours while the right Rafeont has the

. . . : s same fixed allocation of outbound tours to gates as the hieurdistan be
¢ Valldatlo_n. Is the SImUIatI_On model correct seen that allowing to reallocate outbound tours has a majoadtmpn the
« Comparison.s an evolutionary approach better than &olution and the size of the gap shows the potential of reatiog outbound

practical heuristic? tours to gates. The three solutions of the heuristic have lbesated with

: - : _ three different settings of how to weight the two objectiitkzan be seen
« Operators. Is it beneficial to |mplement prOblem that the (1+1)-Algorithm is better than all of the three $ingesults and

specific operators for the ES? that also more alternative solutions along the found Pareiat ©xist

A. Validation

Our simulation model is more than just an abstractioR: Comparison
developed by an analyst or theoretician working in isolatio  Results from the heuristic introduced in Sect. IlI-B are
It is based on representative data. Comparisons with simileompared to results from the multi-objectivé + 1)-ES.
studies and with expected results from real world datBigure 4 compares Pareto fronts after 300,000 function
support the assumption that our model is valid. Results haesaluations of the€1 + 1)-ES with three solutions from the
been reported to practitioners who confirmed their validityheuristic.
However, this is the first step in a very complex validation It can be clearly seen, that the results from the heuristic
procedure. A detailed statistical comparison of outputdatare outperformed by the solutions from the+ 1)-ES by
from our model and real-world data (which may take a yedar. Nearly all points from the Pareto front dominate at
or more) was not performed yet. Hence, we can state that tleast one of the solutions from the heuristic. Many points
validation performed so far gave no evidence that the modeven dominate all three such solutions. Therefore, it can
is wrong. clearly be stated, that th@ + 1)-ES works much better than



e multi-functional gate. In Fig. 5, two Gantt charts illustreay
|= solutions from the Pareto front are detailed:
— — | .
1) A Gantt chart for the solution from the upper left
— S — == flank of the Pareto front, where the distances inside
——— " — the transfer statiorif;) are minimized without caring
—————— I— — — too much about waiting times.
jum— = — i__ — 2) A Gantt chart for the solutions from the lower right
—— == = flank of the Pareto front. Here, the focus lies on the
= l# the minimization of the waiting tim€ f2) instead of
T e — the distances.
—————— — = The presented Gantt charts show the expected appearance. In
— e —— | e — the one assigned to the solution minimizifig some gates
— —— e e et e et are not attended by any truck. This is the major difference

to the Gantt chart assigned to the solution minimizjagn
chigi 5f T_\tr_vo irt\‘dividfualf of kthg Itterf]t Pareto féqnttfromtrlfig- ;-g:n betseelg the lower right flank of the figure. Here, a tour is assigned
at It waiting time T1or trucks Is the main objective, then one truc . : . . . .

has been assigned to each gate and trucks are docking tovgayesarly to eV‘“er Qate_ right in the bgglnnlng. .ThIS clearly III.’lkS FO
in general (right chart). On the other extreme if mainly thexsportation  the minimization of waiting time, that is focused on in this
V0|U(;“et i”ﬁid?‘_?f the termi”atlj ii ICOHSidefe”d thendSOth\e of thsgﬂmdn%t area of the Pareto front. In the other solution, some gates
used at all while some - probably generally good gates - ang arewde .

e B L B ressing oo e o

would be too long. Here, a certain time is accepted to

the heuristic designed by experts on this special problel® assigned to a gate nearer to the corresponding long
Furthermore, the generation of the Pareto front with th@istance trucks. This clearly indicates the focus on dian
(14 1)-ES required only a few seconds CPU time. Compar@inimization in this area of the Pareto front.

this value to the time required by the deterministic algwnit ~ Considering multi-functional gates, the different Gantt
used in Chmielewski & Clausen (2005, 2006). Therefore weharts emphasize another advantage of (the- 1)-ES. In
can state that thél + 1)-ES significantly outperforms state- COntrast to the heuristic, this approach is able to assign
of-the-art approaches with respect to solution quality angifférent gates to long distance trucks. This can be seen fro

time to obtain this solution. the two Gantt charts, where different gates are occupied by
these trucks. The heuristic needs an a priori decision which
C. Operators gates are assigned to long distance trucks.
The quick mutation operator assigns tours to gates and VI. SUMMARY AND OUTLOOK

considers the time slots, whereas the random mutation OP-we introduced a simulation model derived from real

erator does not consider arrival times. Results presentﬁ%ight forwarder's data. It models a small company’s ter-

in Table 1 and F'g 3 clearly demonstrz_;lte the usefulne%inal on an average workday. This model-which is used
of problem specific knowledge for evolutionary algonthmsfor LTL-terminals—differs in several aspects from bredkbu

Furthermorg, experiments with a mu!timembered evo.lum.)[brminals and crossdocking terminals. Hence, results are
strategy which uses standard mutation and recombmatlc&.ri]fﬁcuIt to be compared. However, the proposed model is
oper.ators were performed. Tife+1)-ES outperformed the superior to existing models in the following sense: Bernmde
multimembered-ES, too. & Cole (2001) did not take into account that multiple trucks
may share the same gate. Stickel & Furmans (2005) did
not include the waiting time for trucks—also the mix of
A more detailed look at the solutions generated by(the  loads on a truck and the number of possible destinations is
1)-ES might provide some insight that is helpful for furthermuch more complex in LTL-terminals. The model proposed
improvements and can guide the development of enhancky Chmielewski & Clausen (2006) is very similar, but the
variation operators or representations. From two solgtimin method is unable to solve larger problems efficiently and the
the Pareto front, Gantt charts of the distribution of tours tproblem is optimized for a single objective only.
gates are presented additionally in Fig. 5. We demonstrated that @l + 1)-ES can solve the two-
These Gantt charts represent one gate in each row and tigective problem. Thél + 1)-ES outperformed an existing
blocks give a tour, that is assigned to the corresponding gateuristic. Problem specific operators improve the perfor-
and point of time. Therefore, the Gantt charts also displapance of the(1 + 1)-ES. An evolution strategy, which did
the distribution of tours in time. Within all presented Gantnot incorporate domain knowledge, failed completely os thi
charts, a block allocating a whole row (a gate for the wholproblem.
time) means the corresponding gate is allocated by a longAfter the superiority of the(l + 1)-ES over the simple
distance tour. This implies, that the gate is an outbound orteeuristic could have been shown, the approach will be

D. Interpreting solutions



further investigated and compared to other techniques. The REFERENCES
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