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Abstract— Human category learning has been modeled using
exemplar, prototype, and rule-based theories. Rule-based mod-
els are the least discussed. This paper presents a rule-based
model based on evolutionary computation techniques. Such
techniques allow for the combination of concepts, an important
aspect of human cognition that has been largely overlooked
in previous cognitive modeling research. We also include other
human-like characteristic in the model, namely a simplicity bias
and instance-based learning. The results suggest that such an
algorithm can replicate well-known results in human category
learning. We discuss the broader issue of which of the three
models of categorization make sense in particular situations.

I. INTRODUCTION

Human concept formation, or more generally learning,
probably consists of multiple components. In some situa-
tions, humans learn by incrementally modifying their current
knowledge while in other situations, humans learn by con-
ceptual combination [1] [2]. Although the former process
has been widely applied and integrated in computational
models of high-order human cognition and learning, the latter
has been largely overlooked by cognitive modeling research.
Specifically, the gradient descent learning method, which
can be considered as a process of incremental modification
of a concept, has been widely employed in many models
of concept formation and resulted in notable successes in
replicating many psychological phenomena (e.g. [3]). Per-
haps because of this successful explanation of empirical
data by learning-by-modification algorithms, other equally
theoretically plausible ways of learning such as learning-
by-combination have been neglected by the categorization
research community. Alternatively, there may be an implicit
belief that humans possess and utilize a universal set of
concepts, so that combinations would just yield existing
members of the set.

However, there is evidence that learning by concept
combination happens (e.g. [1] [2] [4]). In order to better
understand the nature of human learning, we decided to
develop and evaluate a formal model of learning based on
concept combination.

We proceed in the following way. We first discuss related
work. Then we describe the model in detail. We provide
the results of an illustrative simulation, and discuss the
implications for future categorization research.
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II. MODEL OVERVIEW & BACKGROUND

A. Category Learning

The ability to categorize plays a central role in high-
order human cognition. Categorization allows us to process,
understand, and communicate complex thoughts and ideas by
efficiently utilizing salient information while ignoring other
information: categorization is a form of data compression.
In other words, categories are the building units of human
knowledge or concepts [5]. Therefore in the field of Cog-
nitive Science the terms ’concept formation’ and ’category
learning’ are used interchangeably, and we follow this trend
throughout this paper.

B. Background

Our new model is called HySEP, for Hypotheses-testing
learning with Simulated Evolutionary Process. HySEP is
based on character comparisons, and its learning algorithm is
based on a multi-objective genetic algorithm, which can be
characterized as a simulated evolutionary process: concepts
compete with each other and better concepts survive.

Evolutionary algorithms have been discussed in relation
to categorization in the past. Holland [6] discussed their
use of genetic algorithm in classification. Other researchers
have compared their effectiveness to human categorization
[7] [8]. Their studies suggested that evolutionary algorithms
can replicate, at least generally, the results of a classical study
on human categorization, namely the Shepard, Hovland, and
Jenkins study [9] and its replication [10]. Although the
some degree of effectiveness of evolutionary algorithms in
cognitive modeling was demonstrated by both Hartley [7]
and Sen [8], their studies placed a lesser emphasis on a
qualitative interpretation of the algorithm and had neglect
some important aspects of human cognition. For example,
they focused on batch learning, which is less plausible in
human cognition than instance-based learning. In contrast,
we are interested here in the issue of plausibility and the
descriptive validity of our model.

We model category learning on the basis of rule repre-
sentation, assuming concepts are organized by sufficient and
necessary rules. We choose a rule-like representation, partly
because there is increasing interest in rule-based modeling
(e.g. [11] [12]), and partly because it would result in a
simpler implementation than some of the previous work in
the field, including our own (e.g. [13] [14]).

Throughout this paper, we assume that all feature di-
mensions are binary and there are only two alternatives in
all category structures. Although this is a restriction, we



believe the model’s general principles will still hold for more
complex category structures, and extending the model will
be straightforward.

C. Relationships between Genetic Algorithm and Human
Cognition

A Genetic Algorithm (GA) is a relatively simple yet
robust optimization method based on simulated evolutionary
processes [15]. In a GA, there are chromosomes that consist
of genes (i.e. coefficients) to be optimized. In HySEP, a
gene is a particular rule, and a chromosome is a particular
concept or a set of rules (referred to as a concept vector).
In a GA, there are multiple chromosomes in a hypothetical
environment or population and they compete with each other
to pass their genes to their descendant. There are some impor-
tant evolutionary processes in this hypothetical environment,
allowing fitter genes (i.e., a set of rules) to survive. This in
turn results in having strong genes in the population, which
translate to concepts and knowledge optimization in HySEP.

In a typical GA setup, there are three important processes
in each evolution phase: Selection, Crossover (i.e., recom-
bination), and Mutation (i.e., stochastic modification). Here
we interpret these processes in terms of human cognition.

1) Mutation: In a Mutation process, each gene is ran-
domly altered with some probability P. The Mutation can
be considered as a modification of the concept by randomly
creating and testing new hypothesis. Virtually all previous
models of human category learning incorporate a Mutation
process as the sole mechanism of learning.

2) Crossover: In a Crossover process, the selected chro-
mosomes form a pair and exchange gene information to
create a new pair of chromosomes. In human cognition, the
crossover process is one of conceptual combination, creating
new sets of concepts by merging two strong concepts chosen
by the (parent) selection process.

3) Selection: In a (parent) Selection process, usually
about a half of the chromosomes are selected on the basis of
their fitness in relation to the environment. Those selected
create offspring (i.e., new concepts), while non-selected
chromosomes or concepts become obsolete and extinct.

The characteristics of the Selection and Crossover
processes are distinct from most models of human category
learning, because previous models posses and modify a
single concept (i.e., a single set of coefficients), whereas
HySEP maintains, modifies, and combines multiple concepts.
We consider this to be a contribution of HySEP to cognitive
modeling.

The idea of having a population of concepts (vs. having
a single concept) is important not only because it allows
the Selection and Crossover processes in learning, but also
because it allows the creation of diverse concepts that have
similar accuracies and/or utility, making knowledge more
robust. To our knowledge, this capability has not been
discussed in the category learning modeling community, and
may warrant future research. The utility of having homoge-
neous versus heterogeneous concepts probably depends on
situational factors, and these factors could be varied.

TABLE I

ALL POSSIBLE RULES FOR A TWO-DIMENSIONAL BINARY STIMULUS

SET AND AN EXAMPLE CONCEPT VECTOR FOR CATEGORY STRUCTURE:

CATEGORY A IF DIM2 = � AND CATEGORY B IF DIM1=©
R1 R2 R3 R4 R5 R6 R7 R8

Dim1 ∗ � ∗ © � © � ©
Dim2 � ∗ © ∗ © � � ©

Example Concept Subvectors
ρA

j 1 0 0 0 0 0 0 0
ρB

j 0 0 0 1 0 0 0 0

Another important feature of a GA in cognitive mod-
eling is that it allows the hypothetical error surface to
be discontinuous. Some empirical studies have suggested
that a human’s concept space might have a non-smooth
or discontinuous property [16]. This characteristic has not
been successfully incorporated in cognitive model using
gradient descent optimization methods. HySEP, because of
its stochastic optimization technique, can incorporate multi-
objective functions in learning that are consistent with the
complexity of human learning and the possibly discontinuous
nature of the knowledge utility hypersurface.

III. REPRESENTATION & ENCODING

There are several ways in which concepts or categorization
rules can be represented in a chromosome. For example, a
complex encoding approach would incorporate both variables
(rules) and operations in a concept vector (a chromosome).
A minimal approach would just use a vector indicating the
presence or absence of rules. We selected the latter approach
for its simplicity. In our approach, category knowledge (a
concept) is represented by a vector of Rules (i.e., a rule is
a gene). For an N-dimensional binary stimulus set, there are
(3N − 1) possible rules for each category (Note that those
rules are not necessarily mutually exclusive). That is, each
dimension can be either one of three possible values – one
(e.g. �) or the other (e.g. ©) or not important (represented
by ’∗’) – but no NULL rule (i.e., a rule with all ∗) is allowed
(see Table 1). In HySEP, a concept vector j or ρj consists of
two subvectors – one subvector for Category A (i.e., ρA

j ) and
another for Category B (i.e., ρB

j ). Thus, ρj = [ρA
j : ρB

j ].
A concept vector consists of two elements either ”1”

(i.e., the corresponding rule is applicable), or ”0” (i.e., the
corresponding rule is NOT applicable). Each rule can be
represented with N elements. Table 1 shows all possible
rules for a two-dimensional binary stimulus set and an
example concept vector. For category structure [Category A
if Dim2 = � and Category B if Dim1=©], after successful
learning, HySEP would acquire the following concept vector:
[1000000:0001000], where the first element corresponds to
Rule 1 (Rl in Table 1) for Category A, the second to R2, and
so forth. The acquired concept vector indicates that R1 (i.e.,
Dim2 = �) is applicable for classifying Category A and R4
(i.e., Dim1=©) for Category B. Note that in our modeling
framework, it is assumed that more complex rules (i.e., rules
defined by more features or less wildcards ’∗’) always appear



later within subvectors.
As shown above, in order to have multiple rules and/or to

acquire Rule-plus-exception type knowledge, we need to in-
corporate a sufficiently long vector (i.e., 3N −1) to represent
knowledge. Although it might appear that this representation
approach suggests that human knowledge representation is
cumbersome, we do not think this is true. In fact, we assume
the opposite. As will be discussed in detail in the following
sections, we incorporate the simplicity principle, making sim-
ulated humans prefer simple-sufficient-accurate knowledge
over complex but marginally-more-accurate knowledge. In
particular, we assume that humans’ initial mental states are
more likely to be described by many zeros in the rule vec-
tor(s), and our learning algorithm is more likely to generate
and accept simpler rules over complex ones. Note that we
assumed that the processing of 0s in rule vectors requires
very little, if any, effort. For example, for the abovemen-
tioned category structure, HySEP would acquire a rule vector
similar to [1000000:0001000], where only two active rules
need to be processed. Thus, this apparently more-complex-
than-necessary representation approach is to accommodate
human cognitive capacity, which, with sufficient training (and
motivation), could acquire very complex concepts. In future
research we may be able to simplify the representation by
incorporating a rule operator in the concept vector.

IV. CATEGORIZATION & DECODING

In HySEP, it is assumed that humans would first apply the
most complex rules (i.e., a rule defined by more features),
followed by simpler rules. That is, HySEP starts comparing
an input stimulus with an active rule from the end of the rule
vector. For example, for a three dimensional stimulus set,
HySEP would apply any active 3D-rules (i.e., ”exceptions”
or exemplars) first followed by 2D-rules, then 1D-rules.
This type of rule (or exception) applying behavior has been
empirically suggested [17]. If the input stimulus matches an
active rule, then HySEP searches and determines if there is
another rule with the same complexity level that is applicable
for the current input. If all applicable active rules with
the same dimensionality suggest a consistent categorization,
HySEP deterministically categorizes according to the rules.
In the case of inconsistent applicable active rules, HySEP
categorizes probabilistically.

The following equation describes output for category A
(OA) for input stimulus x and j-th concept vector (ρj):

OA

(
x, ρj

)
=

∑
∀i∈H

I(ρA
ji = 1)∑

∀i∈H

I(ρA
ji = 1) +

∑
∀i∈H

I(ρB
ji = 1)

(1)

where indicator function I(expression) returns 1 if expression
is satisfies, or 0, otherwise. H indicates the active rule(s) with
the highest dimensionality that is applicable to input x. The
output for category B is obtained in the same manner.

A. Processing a rule vector

In HySEP, there are always multiple rule vectors in its
conceptual space because of the nature of its evolutionary

learning algorithm. These concept vectors are processed
individually when their concept utilities are calculated for the
Selection process in learning. However, in order to determine
a categorization response, we may need to restrict HySEP to
a single response behavior, because people in general can
perform only one set of actions at a given instant. That
is, when humans are asked to categorize an object, they
answer with a single category in a particular level of the
category hierarchy. In other words, concepts-to-action is most
likely a many-to-one mapping scheme. This in turn raises a
theoretical question: how and what concept vectors would
humans choose to use in order to categorize stimuli? The
following is a list of possible options:
Option A: Select the best fit concept vector
Option B: Select a concept vector randomly
Option C: Create and use the average concept vector

In HySEP, we assume that people would create and utilize
the (dichotomized) average concepts for categorizing objects
(i.e., Option C) because this approach is less sensitive to mu-
tation. Our preliminary modeling studies showed it was less
likely to exhibit ”all correct” responses when we incorporated
Options A or B because of continuing concept mutation.
This, however, does not imply that we are trying to reduce
the effect of the Mutation process in learning (it is still very
important in learning). Rather, by incorporating the Option
C method, we reduce its effect in categorization behaviors.
That is, HySEP’s asymptotic performance in categorization
is most similar to human performance when we incorporate
Option C in the preliminary studies. Therefore, we apply the
following method to create the average concept vector:

ρA
i =

{
1, if 1

N

∑
j I(ρA

ji = 1) > 0.5
0, otherwise

(2)

where ρA is the average concept subvector for Category A,
and N is the number of concept vectors in a mind set. The
average concept subvector for Category B is calculated in
the same manner, and ρ = [ρA : ρB]

V. LEARNING ALGORITHM: MULTIOBJECTIVE GA

HySEP assumes that learning is driven by an optimization
of the subjectively and contextually defined utility of knowl-
edge being acquired, rather than by a simple classification
error minimization routine [18]. Thus, the learning objective
can be represented by the following general utility function
U:

U(ρj) = E(ρj) +
M∑
m

λmQm(ρj) (3)

where E defines the accuracy of concept or knowledge, each
Q in the second term characterizes contextual factors, and
λs are scalars weighting different factors. There are many
functions or set of functions appropriately defined for de-
scribing a variety of contextual factors including motivation.
This utility function is used as the basis for defining fitness
for the concept vectors.

Recent multiobjective GA applications often search for a
Pareto-optimal set rather than a solution based on arbitrary



weights [19]. However, because of the heuristically operating
nature of human high-order cognitive processes [20], we
doubt that ordinarily humans in ordinarily situations would
search for a Pareto-optimal set of concepts. Rather, we
believe that humans would utilize a heuristic, subjective, and
context-dependent weighting scheme to find a set of con-
cepts. Thus, we incorporate the latter simpler and ”arbitrary”
approach because of its resemblance to human cognition
[20].

A. Estimating Accuracy of Concept

We believe learning occurs in an instance-by-instance basis
in humans (e.g. [21] [22] [23]). Thus for each training
instance, HySEP needs to generate and test a set of concepts.
However, if the accuracies of concepts are estimated on the
basis of the current training instance alone, then HySEP
may over-generalize, even though genetic algorithm can be
considered to have a memory effect (ideas persist in the
gene pools). There are several ways we can make HySEP
acquire correct concepts with instance-based learning. In the
present paper, we apply a modified version of Anderson
and Schooler’s [24] (also see also [25]) memory retention
model proposed by Matsuka & Chouchourelou [22] [23].
By incorporating their model, the concept accuracy function
E can be formulated as:

E(ρj) =
G∑

g=1

[
Ξ

(
x(g)

) [
d(g)

c − Oc

(
x(g), ρj

)]2
]

(4)

where c indicates the correct category, g indicates particular
training exemplars, G is the number of unique exemplars in
the training set, d is the desired output, and Ξ is (training)
exemplar retention function, defining the strength of retaining
training exemplar x(g). The exemplar retention function is
given as:

Ξ
(
x(g)

)
=

∑
∀i|x(i)=x(g)

(τ (i) + 1)−D

∑
g

∑
∀i|x(i)=x(g)

(τ (i) + 1)−D
(5)

where D is a memory decay parameter controlling for the
speed of memory decay, and τ indicates how many in-
stances were presented since x(g) appeared, with the current
training being represented with ’0’. Thus, τ = 1 indicates
x(g) appeared one instance before the current trial. The
denominator in the exemplar retaining function normalizes
the retention strengths, and thus it controls the relative effect
of the training exemplar, x(g), in evaluating the accuracy of
the concept.

As in the original Anderson and Schooler [24] [25] mem-
ory retention model, this modified retention model simul-
taneously accounts for Power Law of Forgetting [26] and
the Power Law of Learning [27]. Given the Power Law of
Forgetting and the Power Law of Learning, E(θ) is strongly
influenced by training exemplars shown more recently in
early training trials, but it more evenly accounts for various
exemplars in later training trials.

VI. INCORPORATING HUMAN-LIKE CHARACTERISTICS

A. Simplicity Bias

Recently, a number of cognitive scientists suggested the
importance of incorporating a principle of simplicity in high-
order human cognition from both theoretical and empirical
points of views (e.g. [14] [28] [29]). Therefore, we incor-
porate the simplicity principle in HySEP. However, for our
framework, there are at least three ways to do so: by ma-
nipulating initial conceptual complexity, by manipulating the
probabilities of mutation for rules with different complexity,
and by incorporating a utility function accounting for the
simplicity bias.

1) By Initialization: Intuitively it is difficult to believe
that humans initially possess many higher dimensional rules
for unknown categories. Furthermore, Johansen and Palmeri
[30] recently observed that subjects applied simple rules for
categorization tasks in early learning trials and then their
strategies changed and they applied more complex rules (e.g.
exemplars). HySEP, therefore, incorporates the initial bias
toward simpler rules by manipulating the probabilities of
particular rules to be initially activated depending on the
dimensionality of rules. In particular, we only allow HySEP
to have a one-dimensional rule before learning starts.

2) By Mutation: The aforementioned empirical study [30]
showed the more complex rules (e.g. exemplars) emerge at
later stages of learning. This might have been caused by
initial bias. Alternatively it might have caused by differential
emergence rates (i.e., probabilities of mutations) for rules
with different dimensionality. That is, in early stages of
learning, humans would more extensively develop and test
hypotheses based on simpler or lower dimensional rules than
on complex rules. Although this interpretation is plausible,
there is some empirical evidence against it. For example,
Sakamoto and Love [17] observed that ”exceptions”, which
are objects that do not share a categorization rule with many
other objects within the same category, are memorized with
higher accuracy than other objects. (Note that an ”exception”
is often a rule of its own defined by the highest dimensional
rule.) That is, instead of creating and testing incrementally
more complex rules, humans can create complex rules in
a short amount of time, depending on the structure of
categories or concepts. Because of our uncertainty about the
cognitive mechanisms associated with a differential mutation
process, we have not included such a process in our model.

3) By Utility Function: We assume that as the dimen-
sionality of a rule increases then the complexity of the
rule increases geometrically. Therefore the complexity of a
concept vector (Π) can be formulated as:

Π(ρj) =
∑

i

I(ρji �= 0) · γδi (6)

where δi is the dimensionality of rule i in rule vector j, and γ
is a constant that controls the speed of complexity increment.
Thus, if the utility of a concept is defined by its accuracy
and simplicity, then

U(ρj) = E(ρj) + λΠ(ρj) (7)



Note that HySEP is framed as minimization problem, thus a
smaller value in Eq. 7 indicates better utility.

VII. SIMULATIONS

In order to test the descriptive validity of HySEP, simu-
lation studies were conducted. In particular, we simulated a
classical study of categorization [9] which is often used as a
benchmarking stimulus set [10]. The stimulus structures are
shown in Table I. There were a total of 8 training instances
defined by 3 binary feature dimensions (i.e., shape, color, and
size). Human subjects were trained to learn to classify those
instances into the correct categories with corrective feedback.
Shepard et al. [9] created 6 category structures of varying
complexity of rules for correct categorization. The results of
previous empirical studies showed [9] [10] that Type 1 (T1)
was the easiest to learn to classify, followed by T2, T3, T4,
T5, and T6 being the most difficult, where the differences in
difficulty for T3, T4, and T5 were not statistically significant.

Table III shows all 26 possible rules for the stimulus set
used in the present simulation study, along with example
rules that were acquired by HySEP.

T1 was easiest to learn, probably because it only requires
a single one-dimension rule for each category. T2 can be
considered as XOR-logic in Dimensions 1 and 2. T3 –
T5 are one-dimensional rules with two exceptions, one for
each category. T6 was the most complex as it requires
memorization of many if not all exemplars.

A. Methods

Nosofsky et al. [10] collected data on learning curves for
those six category structures, and we use their data for the
present study.

The basic training procedures follow that of the original
study [10]. HySEP was run in a simulated training procedure
with 16 trial blocks, where each block consisted of a random
presentation of the eight unique training exemplars shown in
Table II exactly twice, in order to learn the correct classi-
fication responses for the stimulus set. There are a total of
500 simulated subjects for each category structures. HySEP
configurations and parameters were fixed the same for all
six conditions. The following describes HySEP configuration
and parameters.

1) Population size: The size of concept population was
fixed at 10 throughout the learning process.

2) Selection: We use a tournament method with tourna-
ment size = 2 (without replacement). Eq. 7 defines the utility
(fitness) of each concept vector, and was used for determining
winners of the tournaments.

3) Crossover: The uniform crossover was employed with
the crossover probability for each rule was fixed at 0.50.

4) Mutation: The mutation probability for all rules was
fixed at 0.01.

5) Other parameters: The memory decay parameter, D
was set at 0.3, the complexity parameter γ was set at 1.05,
and λ, which controls the relative importance of concept
complexity, was set at 0.5. All model parameters were
selected arbitrarily.

TABLE II

SCHEMATIC REPRESENTATIONS OF THE STIMULUS STRUCTURES USED

IN THE SIMULATION STUDY

Stim. Categories
D1 D2 D3 T1 T2 T3 T4 T5 T6
� � � A B A A A A
� � © A B A A A B
� © � A A A A A B
� © © A A B B B A
© � � B A B A B B
© � © B A A B B A
© © � B B B B B A
© © © B B B B A B

TABLE III

ALL RULES FOR THE THREE-DIMENSIONAL BINARY STIMULUS SET

AND EXAMPLE RULES FOR EACH STIMULUS TYPE

D1 D2 D3 T1 T2 T3 T4 T5 T6
R1 � ∗ ∗ A 0 A A A A
R2 ∗ � ∗ 0 0 0 0 0 0
R3 ∗ ∗ � 0 0 0 0 0 0
R4 © ∗ ∗ B 0 B B B 0
R5 ∗ © ∗ 0 0 0 0 0 0
R6 ∗ ∗ © 0 0 0 0 0 B
R7 � � ∗ 0 A 0 0 0 0
R8 � ∗ � 0 0 0 0 0 0
R9 ∗ � � 0 0 0 0 0 0

R10 © © ∗ 0 A 0 0 0 0
R11 © ∗ © 0 0 0 0 0 0
R12 ∗ © © 0 0 0 0 0 0
R13 � © ∗ 0 B 0 0 0 0
R14 © � ∗ 0 B 0 0 0 0
R15 � ∗ © 0 0 0 0 0 0
R16 © ∗ � 0 0 0 0 0 0
R17 ∗ � © 0 0 0 0 0 0
R18 ∗ © � 0 0 0 0 0 0
R19 � � � 0 0 0 0 0 0
R20 � � © 0 0 0 0 0 B
R21 � © � 0 0 0 0 0 B
R22 � © © 0 0 B B B 0
R23 © � � 0 0 0 A 0 0
R24 © � © 0 0 A 0 0 A
R25 © © � 0 0 0 0 0 A
R26 © © © 0 0 0 0 A 0

B. Results and Discussion

Figure 1 shows the results of the present simulation
study. HySEP replicated the observed order of difficulties
successfully. It slightly under-predicted the difficulty of T4
category structure at the end. However the figure shows that
HySEP could correctly predict the order of difficulty at the
4th training block. Thus its prediction may improve if the
model parameters were more carefully selected.

The results of the original study by Shepard et al. [9] and
its replication study by Nosofsky et al. [10] have long been
interpreted as showing that category learners can selectively
allocate attention to stimulus features on a dimension-by-
dimension basis, and that they can learn to allocate attention
in an optimal or near-”optimal” manner across stimulus
dimensions. However, the results of the present simulation
study cast doubt on this interpretation, because HySEP
without any explicit selective attention mechanisms could
replicate the observed phenomena. Our interpretation of the
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Fig. 1. Results of the Simulation Study.

present simulation study is that a preference for simple-
yet-sufficiently-accurate concepts was the key mechanism
for the phenomena, resulting in HySEP acquiring simpler
concepts (e.g., T1 & T2) faster than more complex ones (e.g.,
T3 – T6). However, we acknowledge that interdependencies
between simplicity bias and selective attention exist. Thus, it
might have been that the selective attention process operating
via the simplicity bias led HySEP to successfully replicate
the phenomena.

VIII. DISCUSSION

Previous research has show that exemplar theory provides
a plausible theory of human categorization. While prototype
theory is currently out of favor, we have recently demon-
strated that, augmented with a local attention mechanism,
prototype theory can replicate human subject experiments
[13] [14]. We have shown here that a rule-based approach
will also replicate human subject experiments.

Assuming all three theories are plausible, what does this
say about human categorization? We can think of several
alternatives. First, one of the theories may correctly charac-
terize the way humans categorize, and the others don’t. Or
it could be that all researchers, including us, are overfitting
theories to data. If so, it is even possible that none of the
current theories match human mechanisms.

However, it is also possible that all the theories are in some
way equivalent. Perhaps we can transform one to the other
in simple but not currently obvious ways. If this is the case,
then nature may have just picked one. Or nature may use all
three: our minds may use alternative strategies depending on
the situation.

This idea is worthy of consideration, for in the field
of human decision making, there is a strong body of evi-
dence that humans use alternative decision strategies [31].
Sometimes people seem to optimize their self interest. We
might see this as computational strategy akin to exemplar or
prototype theory: humans calculate the distance to exemplar

or prototypical outcomes, and then decide what to do. But
other times, people make decisions based on rules.

If our lower level categorization processes are at all
analogous to our higher level decision processes, then we
might use alternate categorization techniques. The question
becomes: do we use these in parallel? Or do pick our
categorization technique to fit the context?

Our hypothesis is that there might be a hierarchy of (sub-
jective) optimization problems. One level, for example, is for
choosing an ”optimal” representation mode (e.g. exemplar,
prototype, or rule representation) while another level, given
the selected representation method, optimizes knowledge or
coefficients (for example, finding a good set of rules or
adjusting association and attention weights), while still other
levels optimize additional important resources (e.g. memory).

Alternatively, there may be a single level of optimization
processes where various types of operations and concepts are
simultaneously optimized.

A. Extension

There are several ways in which HySEP can be ex-
tended. As stated above, it could be built with multiple
levels of optimization processes in order to acquire robust
and situationally suitable concepts, possessing the ability to
adapt its representation mode, memory usage, and association
weighting strategy.

Another potentially significant extension is to integrate
self-adaptive learning strategies into HySEP. Several pa-
rameters in HySEP’s learning method are static, but in
order to make it a more realistic cognitive model, a greater
degree of self-adaptability may be needed. For example, the
population size and the rates of mutation and crossover can
be dynamically self-adjusted depending on the success of
the learning process, so that more dedicated or motivated
learning behaviors are exhibited only when there is a real
need for knowledge.

IX. CONCLUSIONS

The present paper introduced a new model of human
category learning based on simulated evolutionary processes.
A notable contribution of our model, called HySEP, includes
(a) a capability of modeling human learning with both the
modification and combination of concepts, (b) a capability
of optimizing concept utility on the instance-by-instance
basis (vs. batch learning), (c) being sensitive to subjective
and contextual factors in multiobjective learning, and (d)
a capability of incorporating a discontinuous knowledge
utility hypersurface. A simulation study was conducted and
showed that HySEP, without any explicit selective attention
mechanisms, reliably replicated a classic empirically study
on human category learning whose results have long been
interpreted as evidence for selective attention processes in
human cognition [9] [10].
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