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Abstract— It is sometimes useful to provide intelligent agents
with some degree of stochastic behavior, particularly when
used in games and simulators. The less-predictable behavior
that results from the randomness can make the agents seem
more believable, and would encourage the players or users to
address the genuine problems presented by a game or simulator
rather than simply learning to exploit the embedded agents’
predictability. However, such randomized behavior should not
harm performance in the agents’ designated tasks. This paper
introduces a method, called stochastic sharpening, for training
artificial neural networks as stochastic controllers for agents in
discrete-state environments. Stochastic sharpening reinforces the
representation of confidence values in the outputs of networks
with localist encodings, and thus produces networks that recom-
mend alternative actions on the basis of their expected utility.
Such networks can be used to introduce stochastic behavior with
minimal disruption of task performance, resulting in agents that
are more believable and less subject to exploitation based on
predictability.

Keywords: Agents, Multi-Agent Systems, Adaptive Team
of Agents, Games, Simulators,Legion II, Randomness,
Stochastic Behavior, Stochastic Sharpening, Neuroevolution

I. I NTRODUCTION

A very common problem with the behavior of computerized
game opponents – the so-called game AI – is that they are
brittle because they are predictable. With repeated play, players
learn to predict the behavior of the AI and take advantage of
it. Such predictability takes much of the fun out of the game.
It becomes, as the saying goes, too much like shooting fish in
a barrel.

A similar concern arises with simulations that are used
for training humans, or as interactive tools for investigating
phenomena such as traffic or water management. If the AI-
controlled agents in such systems are fully predictable, the
human trainees or investigators may simply learn to beat the
system rather than solve the intended problem. It is therefore
desirable to have AI-controlled agents that behave stochasti-
cally, yet still intelligently, in both games and simulators.

Recently, neuroevolution with fitness determined by game
play has been found useful in training artificial neural networks
as agent controllers in strategy games and simulators [1],
[2], [3], [4]. The designs of these systems provide egocentric
agents, that is, agents that decide on their own actions based
on their own localized knowledge, rather than being moved
around as passive game objects by a simulated player. For
egocentric agent behavior, an artificial neural network can be
used to map the agent’s sensory inputs onto a set of controller

outputs, which are interpreted by the game engine or simulator
as the agent’s choice of action for the current time step.

For discrete-state games and simulators that choice of
actions can be implemented in an artificial neural network
with action unit coding. That is, with a localist encoding
that associates each of the network’s outputs with a choice
of one of the possible discrete actions (figure 1). Whenever
a decision must be made, the agent’s sensory inputs are
propagated through the network and the output unit with the
highest resulting activation is taken to be that agent’s decision
for which action to take. This deterministic winner-take-all
decoding of the network’s outputs results in fully deterministic
behavior for the agent.

Fig. 1. Output activations as confidence values.In these screenshots, a
network’s output activations are shown graphically, with a vertical white bar
showing each neuron’s activation value on a scale of[0, 1] and a symbolic
code for the action-unit encoded interpretation beneath.Left: An output
activation pattern plausibly interpretable as confidence values, with a high
confidence for output optionW , substantially less confidence for optionSW ,
and no discernible level of confidence for any of the other options.Right: An
output activation pattern only dubiously interpretable as confidence values,
since over half the options are fully or near-fully activated. The network
that produced these outputs was trained with deterministic winner-take-all
decoding, and did not develop activation behaviors suitable for interpretation
as confidence values.

The question then arises, can such a system be modified to
provide stochastic behavior in an agent, without degrading its
performance excessively? A simple and intuitive solution is
to interpret the network’s outputs stochastically, treating the
relative activation levels of the various outputs as confidence
values, i.e. indications of how strongly the network evaluates
the corresponding action as being appropriate for the current
context [5]. If an action is chosen with confidence-weighted
decoding, i.e. with probability proportional to the correspond-
ing action unit’s activation level, the network will provide
stochastic behavior and the stochastic choices will be biased
toward the optimal, potentially minimizing any degradation of
the agent’s performance.

However, it turns out that evolved networks do not auto-
matically learn to represent confidence values in their outputs.
When training with the commonly used winner-take-all decod-
ing method described above, there is no penalty for secondary
activations at inappropriate action units, so evolution does
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not learn to suppress them. The network learns only what
is useful in solving the problem, and thus its behavior is
constrained only by the specific algorithm used to detect the
peak output (figure 1). As a result, decoding the network’s
activations stochastically, as if they were confidence levels,
severely degrades the agent’s performance (figure 2).
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Fig. 2. Effect of stochastic decoding during testing.Box-and-whisker
plots show the median, quartile, and extremum values obtained by testing 31
networks using deterministic winner-take-all decoding, vs. testing the same
networks using confidence-weighted stochastic decoding. (Lower test scores
are better.) The stochastic decoding greatly degrades the networks’ perfor-
mance, suggesting that the patterns of output activations do not accurately
reflect confidence or expected utility for the various options.

In this paper a method is proposed for evolving networks
to produceutility confidence valuesin their outputs. That
is, networks learn to produce patterns in their outputs such
that the relative activation levels of the various action units
reflect the networks’ estimates of the relative utility of the
associated actions. The training method, calledstochastic
sharpening, discourages spurious output activations by inter-
preting the network’s activation patterns as utility confidence
values whenever it is evaluated during training. Networks with
inappropriate activations will thus choose inappropriate actions
more frequently than others, and consequently perform poorly
on the training task. As a result they receive lower fitness
scores, and are eventually bred out of the population.

The rest of this paper evaluates the concept of stochastic
sharpening experimentally, and examines how sharpened net-
works can be used to introduce a controlled amount of random-
ness into the behavior of game agents. Section II introduces
the game used as the target problem for testing stochastic
sharpening, and describes the underlying neuroevolutionary
algorithm. Section III describes the experiments and their
results. Section IV evaluates the findings and considers the
possibilities for further work.

II. T HE TEST ENVIRONMENT

Stochastic sharpening was tested in a game/simulator called
Legion II, which is a slight modification of theLegion I game
described in [1].Legion II is a discrete-state strategy game
designed as a test bed for multi-agent learning problems, with
legions controlled by artificial neural networks acting as the
intelligent agents in the game.

A. The Legion II game/simulator

The Legion II game/simulator is played on a map that
represents a province of the Roman empire, complete with
several cities and a handful of legions for its garrison (figure
3). Gameplay requires the legions to minimize the pillage
inflicted on the province by a steady stream of randomly
appearing barbarian warbands. The barbarians collect a small
amount of pillage each turn they spend in the open countryside,
but a great deal each turn they spend in one of the cities.

Fig. 3. The Legion II game. A large hexagonal playing area is tiled with
smaller hexagons in order to quantize the positions of the game objects.
Legions are shown iconically as close pairs of men ranked behind large
rectangular shields, and barbarians as individuals bearing an axe and a smaller
round shield. Each icon represents a large body of men, i.e. a legion or a
warband. Cities are shown in white, with any occupant superimposed. All
non-city hexes are farmland, shown with a mottled pattern. The game is a
test bed for multi-agent learning methods, wherein the legions must learn to
contest possession of the playing area with the barbarians. (An animation
of the Legion II game can be viewed athttp://nn.cs.utexas.edu/
keyword?ATA .)

The game is parameterized to provide enough legions to
garrison all the cities and have a few left over, which can
be used to disperse any warbands they find prowling the
countryside. The original purpose of this parameterization was
to require the legions to learn an on-line division of labor
between garrisoning the cities and patrolling the countryside,
in a multi-agent cooperative architecture called anAdaptive
Team of Agents[1]. The game is used to test stochastic
sharpening because it is a challenging learning task where the
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Fig. 4.A legion’s sensor architecture.Each sensor array for a legion consists
of three sub-arrays. A single-element sub-array (left) detects objects colocated
in the map cell that the legion occupies. Two six-element sub-arrays detect
objects in the six radial fields of view; one only detects adjacent objects, and
the other only detects objects farther away. The legions are equipped with
three complete sensor arrays with this structure, one each for detecting cities,
barbarians, and other legions. The three 13-element arrays are concatenated to
serve as a 39-element input layer for an artificial neural network that controls
the legion’s behavior (figure 5).

varying utility of the legions’ choices of action can be put to
good use.

The Legion II map is in the shape of a large hexagon,
divided into small hexagonal cells to discretize the placement
of game objects such as legions and cities (figure 3). Moves
are taken in sequential turns. During a turn each legion makes
a move, and then each barbarian makes a move. All moves
are atomic, i.e. during a game agent’s move it can either elect
to remain stationary for that turn or else move into one of the
six hexagons of the map tiling adjacent to its current position.

Only one agent, whether legion or barbarian, can occupy
any map cell at a time. A legion can bump off a barbarian by
moving into its cell as if it were a chess piece; the barbarian is
then removed from play. Barbarians cannot bump off legions:
they can only hurt the legions by running up the pillage score.
Neither legions nor barbarians can move into a cell occupied
by one of their own kind, nor can they move off the edge of
the map.

A game is started with the legions and cities placed at
random positions on the map; the combinatorics allow a vast
number of distinct game setups. The barbarians enter play
at random unoccupied locations, one per turn. If the roving
legions do not eliminate them they will accumulate over time
until the map is almost entirely filled with barbarians, costing
the province a fortune in goods lost to pillage.

Play continues for 200 turns, with the losses to pillage
accumulated from turn to turn. At the end of the game the
legions’ score is the amount of pillage lost to the barbarians,
rescaled to the range[0, 100] so that the worst possible score
is 100. Lower scores are better for the legions, because they
represent less pillage. The learning method described in this
paper allows the legions to learn behaviors that reduce the
score to around 4 when tested on a random game setup never
seen during training (i.e. to reduce pillage to about 4% of what
the province would suffer if they had sat idle for the entire
game).

The barbarians are programmed to follow a simple strategy
of approaching cities and fleeing legions, with a slight prefer-
ence for the approaching. The are not very bright, which suits
the needs of the game and perhaps approximates the behavior
of barbarians keen on pillage.

The legions must be trained to acquire appropriate behav-
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Fig. 5. A legion’s controller network. During play the values obtained by a
legion’s sensors are propagated through an artificial neural network to create
an activation pattern at the network’s output. This pattern is then interpreted as
a choice of one of the discrete actions available to the legion. When properly
trained, the network serves as the controller for the legion as an intelligent
agent.

iors. They are provided with sensors that divide the map
up into six pie slices centered on their own location. All
the relevant objectsi in a pie slice are sensed as a single
scalar value, calculated as

∑
i 1/di. This design provides only

a fuzzy, alias-prone sense of what is in each sector of the
legion’s field of view, but it works well as a threat/opportunity
indicator: a few barbarians nearby will be seen as a sensory
signal similar to what would be seen of a large group of
barbarians further away.

There is a separate sensor array for each type of object in
play: cities, barbarians, and other legions. There are sensors
within each array to provide more detail about what is in the
map cells adjacent to the sensing legion, or colocated in the
legion’s own cell (figure 4). In practice only a city can be
in the legion’s own cell, but for simplicity the same sensor
architecture is used for all three object types.

The scalar sensor values, 39 in all, are fed into a feed-
forward neural network with a single hidden layer of ten
neurons and an output layer of seven neurons (figure 5). A
fixed-value bias unit is also fed into each of the neurons in
the network. The size of the hidden layer was chosen by
experimentation. The output neurons are associated with the
seven possible actions a legion can take in its turn: remain
stationary, or move into one of the six adjacent map cells.
This localist action unit codingis decoded by selecting the
action associated with the output neuron that has the highest
activation level after the sensor signals have been propagated
through the network.

B. Neuroevolution with enforced sub-populations (ESP)

The legions inLegion II are trained with the ESP neu-
roevolutionary algorithm [6], [7], using gameplay for the
fitness evaluations. The distinctive feature of ESP is that
the “chromosome” representations manipulated by the genetic
algorithm represent individual neurons rather than entire net-
works. Moreover, a separate breeding population is maintained
for the position of each neuron in the complete network
(figure 6). Breeding is only done within each population,
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Fig. 6. Neuroevolution with ESP. In neuroevolution with enforced sub-populations(ESP), a separate breeding population is maintained for each neuron in a
network. For theLegion II controller network there are 17 such populations, shown in this figure as{P1, P2, ..., P17}. Networks are assembled by drawing
one chromosome at random from the population associated with each position in the network and instantiating the neurons the chromosomes represent (gray
arrows). The resulting network is tested in the environment and its fitness is ascribed back to each of the chromosomes that specified its neurons. The process
is repeated until a fitness score has been determined for every chromosome in all of the sub-populations, at which time an evolutionary generation is complete.
Each population is then updated by selective breeding with random crossovers and mutations, independently of the other populations. As generations pass,
the sub-populations co-evolve to produce chromosomes describing neurons that work well with the others in the network.

so that each will evolve neurons specific to one position
in the network. During training, the populations co-evolve
functionality complementary to one another; as a result the
algorithm is able to converge quickly on solutions to problems
that were formerly considered difficult [7].

For fitness evaluations, one chromosome is drawn at random
from each population and the neurons represented by the
selected chromosomes are assembled into a network. The
network is then evaluated at its assigned task, i.e. as the
controller for the legions during one complete game. The
fitness value that is measured for the network – the game
score – is recorded for each neuron that participated. This
scoring method is somewhat noisy because the “real” fitness of
a neuron can be brought down by the bad luck of being chosen
to participate in a network with other incompetent neurons, or
it can be brought up by being chosen for network with superior
neurons. To minimize such evaluation noise, each neuron is
tested three times in each generation, participating in a network
with a different random selection of peers each time. The three
scores are then averaged to approximate the neuron’s unknown
“real” fitness.

Within each sub-population, chromosomes are selected for
breeding by a method that favors the ones with the best fitness
scores but still allows selection of less-fit chromosomes with
low probability. The chromosomes are first sorted from best
to worst. Then each is replaced by breeding, starting from the
end of the list and working back to the front. An index keeps
track of the current position; the position is filled by selecting
two chromosomes at random from anywhere on the list ahead
of the current neuron and breeding them. I.e., both the parents
are at least as good as the one being replaced. The index is then
moved forward to point to the next better chromosome. Since
replacement is done from worst to best, the better neurons
have more more opportunities to be selected than the worse,
so selection probabilistically favors the best neurons. However,
the probabilities are based on fitness rank rather than on fitness

value.
Each neuronal chromosome lists a neuron’s input weights

as floating point numbers in a flat array. During breeding, 1-
point and 2-point crossover are used with equal probability,
and point mutations are applied with a low probability at each
position in the resulting chromosome. Point mutations add a
delta to the weight stored at that position in the chromosome;
the deltas are drawn from the exponential distribution so that
very small deltas occur with high probability and large deltas
occur with low probability. The delta is flipped to be negative
with a 50% chance.

ESP has previously been used for training continuous-state
controllers for pole balancing and other standard benchmark
tasks [8]. It was also effective on an earlier version of the
Legion II problem, and therefore was used to test stochastic
sharpening as well.

III. E XPERIMENTAL EVALUATION

In evaluating stochastic sharpening experimentally two is-
sues need to be studied: (a) its effect on learning performance,
and (b) its effect on interpreting output patterns as utility
confidence values. These requirements are covered by train-
ing several networks with and without stochastic sharpening
and applying appropriate metrics to their performance during
testing.

A. Experimental methodology

Fitness scores are obtained by playing the learners against
randomly generated game setups; the set of possible game
setups is so large that none ever have to be reused. However,
for fairness of evaluation every neuron in ESP needs to be
evaluated against the same game setup before moving on to
the next game. Therefore, the internal state of the random
number generator that generates the training games is saved
just before generating a new setup, and restored whenever the
same game is required again.



Each neuron is evaluated on three different games per gen-
eration, and the three resulting fitness scores are averaged. The
associations of the neurons into networks are re-randomized
before each of the three games so that the averaged fitness
scores will reflect the quality of a given neuronper semore
than the quality of the other neurons it happened to be associ-
ated with in the network. Each of the three evaluations uses a
different game setup, and all of the neurons are evaluated on
the same three game setups during the generation.

Since the training game setups differ continually from gen-
eration to generation, learning progresses somewhat noisily:
a neuron that performs well on the training games in one
generation may not perform well on the new training games
of the following generation. Therefore the learning algorithm
uses a validation set mechanism to decide what network to
deliver at the end of the run, rather than just returning whatever
is produced at the end of the final generation of learning. The
validation set is simply another set of randomized game setups
on which the learner is tested at the end of each generation. It
is created independently for each run of the learning algorithm,
but once created the same set of games is used each generation
throughout the run. A 10-game validation set is deemed large
enough to provide sufficient variety of game setups in order to
compare fitnesses between generations fairly; excessively large
validation sets greatly increase the run time of the learning
algorithm and contribute little to the quality of the result.

The combinatorics between the populations of neurons
make it infeasible to test every possible network obtainable
from the populations at the end of a generation, so anominal
best networkis defined as the network composed of the
highest-fitness neuron from each population, and only the
nominal best network is tested. If that network scores better
on the validation set than the nominal best network of every
preceding generation it is saved as the provisional output of
the learning algorithm. At the end of the run, the most recently
saved network is returned as the actual output of the algorithm,
regardless of which generation produced it.

When testing the trained networks the same test set is used
for all the training runs, regardless of training method, so that
any differences in the test scores will be the result of variations
in training rather than variations in the test set. A separate seed
is used to generate the test set games, different from any of the
seeds used to generate the training and validation games. For
convenience, the progress of learning during a run is examined
by testing the learner on the test set at each generation where
an improved score is obtained on the validation set. However,
to ensure that the learner does not become biased toward the
test set, the learning algorithm is not allowed to make any
decisions on the basis of the resulting scores; they are merely
spilled to a data file for later examination.

Parametric statistical tests such as the Studentt-test require
sufficiently many samples (i.e. 30) so that the distribution
of the t-statistic is approximately normal [9]. Thirty-one
independent runs are used in the experiments to satisfy that
requirement, plus one extra to give an odd number, so that
there is always a clearly defined median performer if ever a
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Fig. 7.Typical learning curves for neuroevolution with ordinary determin-
istic training and stochastic sharpening.Learning progress is shown for the
median performer of 31 runs for training with deterministic winner-take-all
decoding and with stochastic sharpening. The plotted points are the average
scores on the test set for the nominal best network at various times during
training. Since learning is noisy, points are plotted only for the generations in
which progress was made on the validation set, and then connected to make
the plot easier to interpret. Other than some noisiness early on, learning with
stochastic sharpening progresses similarly to learning with the deterministic
winner-take-all method.

single run needs to be singled out as “typical” for plotting or
analysis.

The 31 training runs for each learning method need to be
independent, so a different training seed is used for each. The
stream of random numbers resulting from each choice of seed
controls all the non-deterministic learning decisions, such as
initializing the values for the input weights of the neurons
in the initial populations, generating training and validation
game setups during the run, and randomizing crossovers and
mutations during the breeding step of each generation. As
a result, the 31 runs represent independent random samples
from the space of all possible runs of the training algorithm
with a given parameterization (i.e., all possible sequences of
random decisions during a run), and statistical tests applied to
the results of those runs can be used to infer the distribution
of results for that universe of possible runs of the algorithm.
Due to the very long streams of random numbers required for
evolutionary learning, the Mersenne Twister [10] is used to
avoid repeats in the streams of generated numbers.

When 31 networks have been trained for each method to be
evaluated, a program is run that uses the networks to play the
games in the test set and spill various run-time metrics to data
files, for analysis and plotting with theR statistical computing
environment [11]. Those results are presented in the following
sections.

B. Learning with stochastic sharpening

Stochastic sharpening is implemented in neuroevolution by
using confidence-weighted decoding during training. That is,
at each move during the training games a legion’s sensory
inputs are propagated through the controller network being
evaluated, to obtain a pattern of activations at the seven action-
unit outputs. Those activations are normalized so that their
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Fig. 8. Effect of stochastic sharpening on performance.Box-and-whisker
plots show the performance when using deterministic winner-take-all decoding
for both training and testing (left) vs. using stochastic sharpening for training
and either stochastic or deterministic decoding during testing (center and right,
respectively). Stochastic sharpening improved the performance of the resulting
networks and reduced the variability of the result as well. It also caused the
networks to suppress most secondary activations, so there is little difference
in the networks’ behavior whether stochastic or deterministic decoding is used
during testing (cf. figure 2; note the different scale on the y-axis).

sum is 1.0, and the normalized value of each is treated as the
probability that its associated action should be selected for
the legion’s current move. Thus the behavior of the legion –
and ultimately the game score – depends on thepattern of
activations that the controller network produces, rather than
on the peak activation alone. Since a network’s evolutionary
fitness is derived from the game score, evolution ultimately
rewards networks that produce “good” patterns and punishes
networks that produce “bad” patterns, where good patterns
assign high probabilities to contextually appropriate moves
and bad patterns assign high probabilities to contextually
inappropriate moves.

When stochastic sharpening is used with neuroevolution the
fitness values are initially more random due to the stochastic
decoding of the poorly trained networks during evaluations,
so learning initially progressed with slightly more variation.
However, neuroevolution learns well under noisy fitness eval-
uations, and in the experiments training with stochastic sharp-
ening rapidly converged onto a learning curve very similar
to what was seen for deterministic winner-take-all decoding
(figure 7).

The networks produced with stochastic sharpening ulti-
mately converged to a performance that was better by a
small but statistically significant amount. The 31 networks
trained with deterministic winner-take-all decoding gave a
mean score of 4.439 on the test set; those trained with
stochastic sharpening gave a mean score of 4.086 when
tested with stochastic decoding and 4.092 when tested with
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Fig. 9. Effect of training time on randomness.A behavioral randomness
metric, averaged over the 31 training runs with stochastic sharpening, is
plotted against training time. The randomness with confidence-weighted
stochastic decoding decreases as training progresses. The effect continues even
after task-learning has stalled out (figure 7).

deterministic winner-take all decoding (figure 8). In both cases
the improvement over the deterministic training method was
statistically significant at the 95% confidence value (p = 0.002
andp = 0.003, respectively). The minimal variety in the per-
formance of the sharpened networks under the two decoding
methods suggests that stochastic sharpening greatly suppressed
the secondary output activations, so that confidence-weighted
stochastic decoding almost always picks the same action that
the deterministic decoding does.

Stochastic sharpening also reduced the variance in the per-
formance of the networks by an order of magnitude (figure 8).
The performance of the 31 networks trained with deterministic
winner-take-all decoding had a variance of 0.378; those trained
with stochastic sharpening had a variance of 0.039 when
tested with stochastic decoding and 0.051 when tested with
deterministic winner-take-all decoding. Reduced variance in
the result of a learning algorithm is useful because it increases
the probability that a single run will perform near the expected
value. For commercial application to difficult problems, a large
number of independent runs may not be deemed feasible.

The randomnessof a network tested with stochastic de-
coding can be defined as the percentage of the time that an
output other than the peak activation is chosen. For networks
trained with stochastic sharpening and tested with confidence-
weighted decoding, the randomness was continually reduced
as training continued, even beyond the point where progress
at learning the task had flattened out (figure 9). This fact
also suggests that stochastic sharpening suppresses secondary
activations in the networks, at least for the current application.



C. Inducing stochastic behavior

As a baseline for comparison, a strawman method was
devised for inducing random behavior into the deterministi-
cally trained networks. In the strawman method a parameterp
specifies the amount of randomness desired, with randomness
defined as above. With a100−p percent chance the network’s
activations are decoded according to the standard deterministic
winner-take-all method; otherwise one of the other outputs
is chosen instead. Since the secondary activations of the
deterministically trained networks are not a useful guide for
choosing among them (figure 2), the alternative output is
chosen at random, with an equal probability for each option.

Testing on the networks trained with deterministic winner-
take-all decoding revealed that task performance degraded at
an approximately constant rate asp was increased over the
range0 ≤ p ≤ 15. When the same method was used for
testing the networks trained with stochastic sharpening the
same pattern was seen, though the improved learning obtained
by stochastic sharpening (figure 8) provided a constantly better
performance for allp (figure 10).
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Fig. 10. Tradeoff between randomness and task performance.Coerced
randomness degrades game scores almost linearly as the amount of random-
ness increases, regardless of which training method was used (solid and
dashed lines). However, for networks trained with stochastic sharpening, if
the alternative move is selected by a confidence-weighted choice between
the possibilities, the task performance score degrades far more slowly (dotted
line).

However, the hypothesis that stochastic sharpening produces
networks with useful utility confidence values in their output
activations suggests an alternative method of obtaining random
behavior. This method works like the strawman method, except
that whenever an alternative action must be selected it is
chosen based on a confidence-weighted interpretation of the
secondary output activations. That is, the activation levels
other than the peak are normalized so that they total to 1.0,
and then one is selected with probability proportional to the

normalized values. When using this method task performance
degraded at only about half the rate of the strawman method,
as randomness was increased. The method allows significantly
more randomness to be introduced into the agents’ behavior
before their game performance suffers excessively (figure 10).
An observer notices the legions making sub-optimal moves
slightly more often as the level of induced randomness is
increased, but there is no qualitative change in their behavior.
(Animations of the randomized behavior can be viewed at
http://nn.cs.utexas.edu/keyword?ATA .)

IV. D ISCUSSION AND FUTURE WORK

The experiments show that it is possible to introduce
stochastic behavior into game agents without degrading their
task performance excessively. Moreover, the stochastic sharp-
ening used to train the agents for stochastic behavior pro-
vided an absolute improvement in learning performance over
the conventional deterministic method. The combination of
stochastic sharpening with managed randomization allows
agents in theLegion II game to choose a non-optimal move
about 5% of the time and still perform as well as the
fully deterministic agents trained by the conventional method.
Greater or lesser amounts of randomness can be obtained by
a direct trade-off against the agents’ ability to perform their
task well (figure 10).

The coerced-randomness method, with stochastic sharpen-
ing and confidence-weighted choice among alternative moves,
provides the best trade-off options of the methods examined
here. It is also flexible, since the randomness parameter is set
at run time; no re-training is required for changing the amount
of randomness displayed by the agents. Indeed, the amount of
randomness can be adjusted during the course of a game or
simulation, by simply changing the current value ofp.

The improved learning performance for stochastic sharpen-
ing was an unexpected side benefit. There are two reasons
for this effect. First, when stochastic sharpening is used, even
the peak output activations are somewhat low, whereas the
deterministic method tends to produce networks that saturate
their outputs. Saturated outputs tend to generate a race con-
dition among a network’s weights during training, which is
generally detrimental to learning. Stochastic sharpening pushes
the network’s activations back away from the saturation point,
and thus avoids the race condition in tuning the weights.
Second, the stochastic decoding used during training serves
as a self-guiding shaping mechanism [12], [13]. That is, a
partially trained network does not have to maximize the correct
output in order to perform well; it merely needs to activate
it enough to be selected with some probability. A partially
trained network that does the right thingsometimesmay
show a higher evolutionary fitness than a network that stakes
everything on being able to pick the right choicealways.

It must be noted that stochastic sharpening does not depend
on the choice of neuroevolutionary algorithm; it relies only
on the use of action-unit output codings. Thus it should be
possible to deploy stochastic sharpening as an add-on to
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neuroevolutionary methods other than ESP, such as CMA-
ES [14] and NEAT [15]. Indeed, it may be applicable even
apart from the use of artificial neural networks, so long as
the decision engine can represent a choice between discrete
options with scalar utility confidence values.

In the future, methods must be developed for inducing
stochastic behavior in games and simulators that operate in
continuous space and time, such as the NERO machine-
learning strategy game [4]. Since controllers for those envi-
ronments generally select by degree – what angle or how fast
– rather than selecting from among distinct options, operations
in those environments will provide a different sort of challenge
for randomizing behavior intelligently.

V. CONCLUSIONS

It is sometimes desirable to introduce randomness into the
behavior of AI-controlled agents in games and simulators, in
order to increase the challenge to players, learners, and inves-
tigators. When those agents are controlled by artificial neural
networks, randomized behavior can be induced by means of
stochastic interpretation of the networks’ outputs. This paper
offers a simple method for stochastic decoding in action-
unit coded networks, and provides a training mechanism to
improve the performance of that method. The mechanism,
called stochastic sharpening, allows partially randomizing an
agent’s behavior with minimal harm to its task performance.
Agents with such behavior will make games and simulators
more believable, and will challenge players, trainees, and
investigators to find solutions to the intrinsic challenges of
the games and simulators, rather than merely exploiting the
predictability of AI-controlled agents.
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