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Abstract— The problem of the automatic development of
controllers for vehicles for which the exact characteristics
are not known is considered in the context of miniature
helicopter flocking. A methodology is proposed in which neural
network based controllers are evolved in a simulation using a
dynamic model qualitatively similar to the physical helicopter.
Several network architectures and evolutionary sequences are
investigated, and two approaches are found that can evolve very
competitive controllers. The division of the neural network into
modules and of the task into incremental steps seems to be a
precondition for success, and we analyse why this might be so.

I. INTRODUCTION

A. The helicopter platform

The work described in this paper is part of the UltraSwarm

project, a research effort that aims to produce a flock of

miniature helicopters able to perform cluster computation

across a wireless network [10][7]. The two main areas of

research are coordinated flight using nearest neighbor rules

(i.e. flocking) and mobile cluster computing. At this stage we

are interested in developing an indoor “proof of concept”

system; the development of a suitable autonomous aerial

vehicle is the first step towards the goal of coordinated flight.

1) Characteristics of the helicopter: The aerodynamic

design of the vehicle is not among our primary objectives,

so to speed up the development a commercially available

electric model helicopter is being used (see [2]). The advan-

tages of using model helicopters for our project are many:

they are generally cheap, easily available, and robust. Cost

competition ensures simplicity of design, but also limits the

overall quality standard, and differences in flying qualities are

therefore common even between helicopters of the same type.

In addition, since these helicopters are not designed to carry

any payload, we expect to see variations in their dynamic

characteristics when loaded with the additional hardware

needed in our experiments.

As is often the case in the model toy market, the design

of these helicopters is largely the result of the experimental

work of a committed designer, rather than a conventional

engineering effort; this means that no adequate dynamic

model of these novel helicopters is available. Under these

circumstances, it is clear that the methodologies of control

system design traditionally used in the aircraft control com-

munity become very difficult to apply. This paper examines

in some detail a controller design methodology more suited

to these circumstances, in that it does not require a detailed

knowledge of all the characteristics of the helicopter.

2) Onboard sensing and computation: Given the limited

payload (approximately 40g), only a small computer and a

limited set of sensors can be carried. The chosen computer,

a Gumstix Basix400, weighs 8g; a 15g digital IMU (inertial

measurement unit), consisting of 3 accelerometers and 3 rate

gyroscopes installed in orthogonal x,y,z directions, will be

used as the main sensor for stabilization. For navigation

purposes, the absolute position of the helicopter will be

estimated by an infrared tracking system installed in our test

arena. The inertial and positional data, appropriately fused

onboard using a Kalman filter, will permit the full estimation

of the helicopter state [x, y, z, u, v, w, φ, θ, ψ, p, q, r]1.

3) Simulation environment: We are currently awaiting the

full installation of the infra-red tracking system which will

be used to obtain the flight data necessary for deriving the

dynamic model of our helicopter. As an interim measure

to enable a preliminary validation of our approach, we

are currently using the freely available helicopter simulator

included in the Autopilot software suite [1]. This simulator

accurately reproduces the dynamics of the XCell 60 model

helicopter. Blade element theory is used as the basis for the

computation of rotor thrust and drag forces, and the main

rotor dynamics and stabilizing bar are modelled as proposed

in Mettler et al. It updates its state and receives a new

command from the controller every 20 ms (50 Hz), while the

dynamic equations are integrated with a timestep of 10 ms.

[13]. The simulator outputs the same state variables as will be

available from the Hirobo helicopter, and accepts the same

flight control inputs. Although qualitatively similar to the

Hirobo in all essential respects, the simulated helicopter is

much less stable (it is almost unflyable manually), and so it

definitely constitutes a challenging test bench for our design

approach.

B. System identification

In order to develop a good controller, we need to be able to

evaluate its performance, but testing a controller directly on

a real helicopter is prohibitively time-consuming, and may

1The state vector follows the conventional notation used in the aircraft
control community; x, y, z and u, v, w are respectively the position in
the inertial reference frame and the velocity in the helicopter’s frame
of reference, while φ, θ, ψ and p, q, r are respectively the rotations and
rotational velocity about the axis of the helicopter



be unsafe in the early stages. Whether the controller is to be

designed manually or automatically, it is necessary to be able

to predict its performance using a good model. Unfortunately,

although nowadays there exists a well-established body of

knowledge concerning the modeling of fixed-wing aircraft,

this is not true of rotary-wing aircraft, especially at small or

micro-scales.

1) Modelling from first principles: Because of its com-

plexity and severe nonlinearity, the understanding of heli-

copter aerodynamics is still relatively poor, and the direct

estimation of model parameters from experimental flight data

still remains the only reliable method for producing accurate

models. However, a suitable mathematical representation of

the helicopter model can be used to embed specific domain

knowledge about the helicopter dynamics to some extent. In

[13] and [11] a nonlinear helicopter model is derived on the

basis of aerodynamic principles, and from its linearization a

state model is derived. A global optimization of the model

parameters to fit the flight data in the frequency domain is

then conducted. By making provision for the selection of

meaningful data, and by enabling the possibility of including

several equilibrium points in the flight envelope, a sufficiently

accurate helicopter model can be produced.

2) Principles-agnostic modeling: In an alternative ap-

proach, Abbeel et al. [3] present a more general time domain

identification method. The originality of the approach lies in

the idea of predicting physical accelerations instead of the

direct state coordinates. Linear regression is then applied in

the time domain, allowing the system to learn the free param-

eters of the model that best fit the acceleration data collected

during flight. Subsequent integration and appropriate changes

of coordinates then lead to the full helicopter state descrip-

tion. Special attention is devoted to producing good long

term estimates by minimizing the prediction error several

steps ahead. Learning to predict the model‘s accelerations

proved to be particularly effective in modeling the inertial

effects, since they are of course the direct consequences of

acceleration.

These two methods, although similar in many respects,

have different strengths. A general model is of much broader

potential use since it does not assume any knowledge of

the peculiarities of a specific helicopter. Such a model

is particularly suitable for controller design; the automatic

learning of a control policy is a typical example where the

use of domain knowledge is inherently limited. In contrast,

the specific contributions of the design characteristics to

the dynamic model are more clearly revealed by modelling

based on first principles, where every estimated parameter

has a clear physical meaning. Since we do not presently

have access to suitable design information about our chosen

vehicle, in this project we will use the approach of Abbeel

et al. [3]

C. The orthodox approach to helicopter autopilots

Probably the simplest way to approach helicopter control is

by controlling the four helicopter inputs by means of modular

control logic in the form of multiple SISO (single-input

single-output) control loops (see for example [20] or [4]);

the PID controller that comes with the helicopter simulator

is of this type. Unfortunately this methodology has limited

capability for handling uncertainty, disturbance, and coupling

among channels. There is a clear trade-off between design

simplicity (in the form of independently designed control

loops) and the performance of the controller.

To improve the tracking performance when executing

complex trajectories, controllers must be designed to exploit

the full state vector, and to compute the control outputs

taking account both of the nonlinear characteristics, and of

the coupling between modes. The control system literature

presents a variety of suitable techniques (e.g. H∞ [12],

nonlinear model predictive control [20]), with well known

strengths and weaknesses. These analytical methods are

known to produce effective controllers, but the insight of

the control system engineer and his knowledge of the vehicle

characteristics often play a major role in achieving successful

results.

D. Neuroevolution as a method of developing controllers

The term neuroevolution refers to the practice of using

evolutionary algorithms to define the weights, and sometimes

also the topology, of a neural network [24]. Neuroevolution

has proven to be an effective methodology for designing con-

trollers for simple robotics problems [18] involving legged

or wheeled robots, and also for agents in computer games

[21][23]; both problem domains are similar to the problem

of helicopter control in that they involve the time-critical

control of objects in real or simulated physical space.

E. Previous machine learning approaches to helicopter con-

trol

Ng et al. [15][16], used reinforcement learning to learn

to fly a large model helicopter using a simulation built

around the acceleration based model described in section I-B.

Reinforcement learning was used to learn the weights of very

small custom-topology neural networks, which were used as

the controllers. The networks were separated in input and

output space, so that for example only those inputs judged

relevant for pitch were provided to the network dealing with

pitch control; only a few connections between the networks

were present. With this approach, Ng et al. managed to

produce a controller able to fly the real helicopter along

complicated trajectories used in model flying competitions.

In [19] a GA was used to determine the optimal gains

of a predesigned pitch controller for a simulated helicopter.

A floating point representation of the genes appeared to

facilitate the evolution process. However, limiting the study

to the longitudinal channel alone is a drastic simplification

of the general problem.

Evolutionary computation has also been employed to re-

fine the parameters of a predesigned fuzzy rule controller

[9]. Again, separate functional modules (longitudinal, lat-

eral, altitude) were used in the controller. The simultaneous

learning of the weights of all the rules turned out to be

possible only if a suitable initial set of rules was provided.



Giving evolution the freedom to increase the ruleset from a

simple reduced subset demonstrated the ability to produce

an adequate ruleset from scratch, although much of the

controller was still hard-wired.

F. On evolutionary algorithms and reinforcement learning

With a little change of perspective, evolutionary com-

putation can be seen as an alternative to, or a form of,

reinforcement learning. Among the differences are that evo-

lutionary computation is population-based, and that changes

to the controllers are carried out only after the completion

of a trial, rather than continuously as in most classical

reinforcement learning approaches. The relative merits and

applicability of evolutionary computation and reinforcement

learning are a topic of current debate. In this case, however,

there is a clear advantage in using evolutionary methods: Ng

et al. needed to artificially structure the training task into

many “task-segments” in order to balance exploration and

exploitation, whereas by using artificial evolution we can

evaluate performance on the whole task, thus reducing the

human involvement in behavior shaping.

II. METHODS

A. PID controller

The simulator comes with a handcrafted PID controller,

tuned to perform waypoint following. The controller is

designed as four separate parts: two single loop PID modules

for controlling yaw and altitude respectively, and two mod-

ules controlling longitudinal and lateral motion. The lateral

and longitudinal modules each contain two nested PID loops,

the inner controlling the roll angle φ (pitch angle θ in the

case of the longitudinal module), and the outer controlling

the distance from the waypoint in terms of body coordinates

y (x). The controller is completely specified by the values

of the feedback constants; there are eighteen in our case.

This controller, although clearly not optimal, provides a good

baseline against which to compare our evolved solutions.

Its modular structure inspired the topology of the network

presented in section V, and was also useful during the

training phase (see section IV).

Comparing the expressive power of PID controllers with

that of neural networks is far from simple. The PID controller

is linear and therefore its performance degrades significantly

when the system state deviates from the equilibrium point

at which the PID is tuned; the nonlinearities of the system

are clearly difficult to handle. On the other hand, the PID

integrates information over time, correcting for any steady-

state error, something a normal multi-layer perceptron cannot

do but which a recurrent neural network can.

B. Neural networks

The controllers we developed were based on feed-forward

neural networks, using the tanh activation function at all

nodes. Some of the networks were organized as multi-layer

perceptrons (MLPs) with two layers of weights (see fig. 1),

but others used less connected topologies (see fig. 3). The

networks were fed some or all of the helicopter’s 12 state

variables, and were also given information about the position

of the current goal (the next waypoint) relative to the position

of the helicopter. After appropriate scaling, the outputs of the

neural network were treated as some or all of the actuator

commands to be sent back to the simulator.

C. Evolutionary algorithm

1) Selection: The connection weights of the neural net-

works were set by an evolutionary algorithm. The evolution-

ary algorithm was essentially a (10+23) Evolution Strategy,

with occasional self-adaptation. The algorithm worked as

follows: At initialization, the first population was filled

with neural networks with small random weight values. All

networks were evaluated (given a fitness) on the task, and

the population was sorted according to fitness. The worst 23

individuals were then replaced with new individuals formed

from the best-performing 10 individuals (the elite). The

algorithm did not employ recombination; each new individual

was just a mutated copy of a randomly selected member of

the elite.

2) Mutation: Mutation consisted of adding a random

value (drawn from a Gaussian distribution with mean 0

and standard deviation D) to each connection weight in the

network. D was in general set equal to 0.01, but in some

experiments self-adaptive mutation was used, so D was itself

subject to mutation. This was arranged as follows: Before the

weight mutation was applied, D was mutated by multiplying

it with e to the power of a value drawn from a Gaussian

distribution with mean 0 and standard deviation 1.

D. Tasks

The fitness function used for the evolutionary algorithms

was based on progress along a path defined by an ordered

chain of waypoints; it was similar to the method used in [23],

but was extended to three dimensions. The positions of the

waypoints were randomly generated at the beginning of each

trial, and the waypoint component of fitness (chain progress

Pchain) was proportional to the number of waypoints visited

in the correct order. A waypoint was deemed to be visited if

the centre of the helicopter approached within 1 foot of it; the

mean distance between successive waypoints was 17.5 feet.

The full fitness function (f ) depended not only on progress

along the track, but also on the orthogonal distance from the

shortest path between the waypoints, and on the ability of

the controller to maintain correct altitude and heading:

f =

∑N
i=0 (whPchain | z − znext | − | ψ − ψref |)

N
. (1)

Where N is the number of timesteps allowed to execute the

task (for the evolution N = 1000 was used) and znext, ψref

are respectively the altitude of the next waypoint and the

fixed reference heading. The factor wh is equal to one if

the helicopter is on the shortest path between waypoints and

decays as the cube of the orthogonal distance from it, thus

penalizing controllers that do not follow the shortest path.

The factor wh forces a null instantaneous fitness whenever

a controller is not able to keep a suitable altitude; however,



in the early stages of development, crashes into the ground

were frequent, and if this happened the fitness was set to a

negative value equal to the difference between N and the

number of elapsed timesteps. The controllers that spent the

longest time aloft were selected as members of the elite,

thereby helping the early stages of the evolutionary process.

III. A PARTIAL OVERVIEW OF PRELIMINARY

NON-WORKING APPROACHES

In this section we survey some of the more noteworthy

unsuccessful approaches that eventually led to the successful

methods presented in sections IV and V. In section VIII we

analyse these failed attempts using the conceptual framework

developed by Calabretta et al. [5].

A. (Not) Evolving monolithic networks from scratch

In the first approach, we tried to evolve a full MLP with

two layers of weights, using the standard version of the

evolutionary algorithm presented in section II-C, and a fitness

function based only on progress along the waypoint chain.

The MLP was given all 12 state variables (position, velocity,

angles and rotational velocity), plus the location of the next

waypoint in 3 dimensions, and the network’s four outputs

were used to drive all the control surfaces of the helicopter.

Results were not encouraging. In some cases, no goal-

directed behaviour at all was observed, save that of main-

taining enough altitude not to crash into the ground. In some

other cases, the helicopter drifted slowly towards the first

waypoint, but rarely reached it. In all cases, the helicopter

was continuously spinning around the z axis, though the

speed with which it did this varied.

Guessing that the failures were due to the continuous z-

rotation of the helicopter, we decided to remove yaw control

from the neural network and let part of the original PID

controller handle the yaw, so making sure that the helicopter

was always pointing in the same direction (due north). The

neural network retained control over the three other actuator

dimensions. Controllers evolved with this setup were only

marginally better than those with neurally controlled yaw,

leading us to think that further modularization was needed.

B. (Not) Evolving yaw control together with the rest of the

task

Finding that the monolithic approach above did not work,

we decided to divide up the controller into several small

modules. Throughout a series of experiments, we tried to

evolve the yaw control at the same time as evolving the

control of the other three actuator dimensions.

We tried a variety of network modularizations and hybrid

network-PID solutions which ultimately led us to the network

used in section V. We were indeed able to evolve stable

yaw, but only if the trials lasted for 50 time steps or

less. Evolutionary runs using trials longer than 50 timesteps

did not even achieve yaw stabilization, and consequently

waypoint-following did not occur. We had the clear feeling

that the fitness reward for moving forward in the waypoint

chain was working against the yaw stability as the length of

the trials increased. A variety of alternative fitness functions

were tested, always including progress along the track, but

also trying out such factors as rotational speed, angular

difference between current orientation and due north, and

so on. None of these proved to be really successful.

These results suggested the need to split the evolution

into two different phases: a first short evolution of the yaw

stabilization, which served as a stepping stone for the second

phase in which we evolved waypoint-following. To avoid

rewarding solutions that had poor yaw stability, a fitness gain

for correctness was still included (equation 1) when evolving

waypoint-following.

IV. FIRST WORKING APPROACH: INCREMENTALLY

SUBSTITUTING A PID WITH NEURAL NETWORKS

Given the poor results of the first attempt to evolve a

controller based on a full MLP (see section III), we decided

to use the PID controller delivered with the simulator to

enforce functional separation in the network.

A. Methods

The first phase was the evolution of the yaw controller.

For this purpose a very simple neural network, with four

connections in all, was evolved to stabilize the yaw. This

network was evolved using a fitness function that linearly

penalised deviation from the target heading. Each trial lasted

for only twenty timesteps, and evolution produced a fairly

good solution within several tens of generations. During the

second phase, the yaw network was free to evolve along with

the rest of the controller.

The second phase was divided into three steps; in all steps

the same fitness function was used. In step 1, a three layer

MLP was substituted for the PID controller’s guidance layer;

it took as its input the distances from the waypoint, and

the velocity of the helicopter, (both in body coordinates)

and had as outputs the desired pitch and roll attitude to the

longitudinal and lateral PID‘s.

In step 2, the two inner PID loops (longitudinal and lateral)

were removed and substituted by two separate MLPs. These

were evolved to act on the information given by the neural

outer layer, and they output helicopter motor commands

(longitudinal and lateral cyclic control, and collective pitch).

After this step, we had a working helicopter controller

consisting solely of neural networks.

In step 3, the outer network layer, which was frozen during

step 2, was allowed to evolve further, along with the inner

network layer. In this way, the networks could coadapt to

each other, potentially allowing them to exploit modes of

cooperation not possible for the purely linear PID controllers.

B. Results

The controller based on the inner network reached a good

fitness level within 200 generations in all ten replications of

the experiment. Evolution of the outer network showed more

variability, but within 500 generations an outer network had

been evolved in all replications which gave the controller a

reasonable, if not good, performance. When both networks
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Fig. 2. Evolving the substitution network in three steps. Best fitness (black
line) and average of the best fitnesses (gray line) over 10 repetitions of the
evolution are shown. Error bars show the standard deviation calculated every
20 generations.

were further evolved together, however, very good perfor-

mance was reached in every replication (see fig. 2).

V. SECOND WORKING APPROACH:

INCREMENTAL/SIMULTANEOUS EVOLUTION OF

MODULAR NETWORKS

A. Methods

The first phase, evolving a simple yaw stabilizer, was

repeated exactly as in the previous working approach.

For the rest of the controller, three relatively simple

custom-topology neural networks (fig. 1) were evolved si-

multaneously using the standard fitness function. The three

networks respectively output longitudinal cyclic control, lat-

eral cyclic control, and the collective pitch; the topologies

of the networks are depicted in figure 3. The longitudinal

network had the following inputs: longitudinal distance to

waypoint (∆x), u, q and θ. Similarly, the lateral network

made use of the lateral distance to the waypoint (∆y), v, p
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Fig. 4. Evolving the modular network. Best fitness (black line) and
average of the best fitnesses (gray line) over 10 repetitions of the evolution
are shown. Error bars show the standard deviation calculated every 20
generations.

and φ. The collective pitch network used the difference in

altitude of the waypoint (∆z) and ż.

B. Results

The experiment was replicated ten times. The variability

in fitness within the first few hundred generations was quite

high, but within 500 generations very good performance was

reached in all ten replications, as shown in figure 4.

VI. EVOLVING PID GAINS

In order to obtain a controller to serve as a meaning-

ful standard of comparison in our performance tests, we

evolved the gains of PID controllers structurally identical

to the handcrafted controller shipped with the simulator.

The evolutionary runs proceeded by setting all the gains

of the controllers to 0, and then first evolving the yaw

control component of the PID. The fitness function and

trial length were as described in section IV for the yaw

stabiliser. Evolution produced fairly good solutions within

several tens of generations. Without this preliminary step, the

continuous z-rotation of the helicopter prevented evolution

from obtaining successful controllers as similarly reported

in section III. The rest of the PID was then unfrozen, and

all the gains were evolved together to perform the full task.

Reasonable performance was usually reached within the first

two hundred generations (see fig. 5).

VII. PERFORMANCE COMPARISON

The fitnesses reached by the evolved controllers during

the evolution process can serve as a useful first comparison

among the solutions obtained. However, to better understand

the peculiarities of the different controllers, additional tests

were performed on four tasks differing from the one used in

the evolutionary process:
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1) Task 1, Sparse waypoints: The first test was simply a

repetition of the task used for the controller evolution, but

over a much longer timespan. The extra time allowed for

values of Pchain bigger than 1.0 since the helicopter was

able to fly the whole waypoint chain more than once.

2) Task 2, Close waypoints: Closer waypoints were cho-

sen for the second task, with the average distance between

the waypoints now set to 6 feet.

3) Task 3, Sparse waypoints in presence of wind: The

waypoints were chosen with the same criteria used for task

1, but an external disturbance in the form of wind gusts was

added to the simulation in order to test the robustness of the

controller. The wind was simulated as a time varying vector

([0, 10] ft/s) added to the helicopter velocity.

4) Task 4, Sparse waypoints with varying gross weight:

This task provided an understanding of the controllers’ ability

to handle variations in the helicopter’s weight (and mass).

The maximum random weight variation was set to fifty

percent since the payload of a small helicopter can often

reach this limit.

In addition, since the compound fitness used for evolution

(equation 1) gives only limited insight into the specific

abilities of the controllers, three more specific performance

indices were developed:

• progress along the waypoint chain Pchain (higher is

better),

• mean deviation from the shortest path ep =
∑N

i=0 | wh |
(lower is better),

• mean heading error eh =
∑N

i=0 | ψ−ψnext | (lower is

better).

Table I shows the results of the tests; the best values are

printed in bold. The waypoint layout was randomly generated

at the start of every evaluation, and each task was repeated

20 times; the average value (and standard deviation) of the

performances obtained is shown (in parentheses). The penalty

for crashing into the ground was a fitness of 0, rather than

a negative fitness as during evolution. On the wind task, the

number of crashes in 20 trials is given; this is a measure

of the ability of the controller to maintain stable flight. In

all the test tasks the performance was evaluated during a

predefined period of 3000 timesteps (corresponding to 60s

of flight time).

Figures 6 and 7 show the trajectories of an evolved PID

controller and an evolved modular neural network controller

respectively, performing the same task (task 1) for 1100

timesteps. The PID exhibited a very conservative strategy,

TABLE I

PERFORMANCE OF THE VARIOUS CONTROLLERS ON DIFFERENT TASKS

Handcrafted Evolved Substitution Modular

PID PID Network Network

Close waypoints

Pchain 0.96 (0.077) 1.85 (0.091) 2.27 (0.182) 2.38 (0.106)

ep 0.95 (0.216) 0.40 (0.048) 1.04 (0.21) 0.34 (0.044)

eh 0.005 (0.003) 0.010 (0.002) 0.457 (0.002) 0.013 (0.001)

Sparse waypoints [10, 25ft]

Pchain 0.46 (0.121) 0.74 (0.273) 1.35 (0.127) 1.64 (0.081)

ep 1.61 (0.265) 0.84 (0.192) 2.5 (0.748) 0.63 (0.242)

eh 0.007 (0.001) 0.015 (0.004) 0.459 (0.003) 0.018 (0.002)

Sparse waypoints with wind [0, 10ft/s]

Pchain 0.27 (0.231) 0.49 (0.330) 0.95 (0.434) 1.07 (0.565)

ep 1.99 (3.705) 2.58 (2.880) 3.54 (3.097) 1.33 (1.651)

eh 0.069 (0.083) 0.160 (0.216) 0.430 (0.146) 0.062 (0.049)

Crash 7 2 2 4

Sparse waypoints with variable weight [±50%]

Pchain 0.54 (0.128) 0.83 (0.235) 1.3 (0.170) 1.53 (0.137)

ep 1.68 (0.271) 0.80 (0.153) 2.28 (0.503) 0.618 (0.112)

eh 0.012 (0.002) 0.017 (0.005) 0.48 (0.02) 0.031 (0.017)

slowing down when still far away from the waypoint and al-

most stopping when close to it. The network-based controller

instead retained a better control over the helicopter speed that

produced a more linear trajectory and better progress along

the waypoint chain.

Generally, the modular network evolved in section V

performed best in all four variations of the task, as it always

progressed the furthest of the four controllers along the

waypoint chain, and always moved in a more or less straight

line to the waypoint. The substitution network was a close

second as far as progress along the chain was concerned, but

had a more mixed performance when it came to deviation

from the shortest path, and was the only controller that has

any significant problems keeping the desired heading.

The performance of the PID controllers was much worse

than the neural network controllers when it came to progress

along the waypoint chain, except in the situation with the

waypoints closer together, where its performance was com-

parable to (if slightly lower than) the neural networks. This

suggests that the reason for the good performance of the

neural network controllers was not only the superiority of

evolutionary tuning over manual tuning, but also the lack of

nonlinearity in the PID controllers. It simply does not seem

possible to evolve a purely linear controller than is robust

enough to perform well over the various task variations and

performance measures we used here.

VIII. ANALYSIS

Comparing the results of the various approaches we have

tried, it is obvious that the task and controller representations

need to be divided up in some way in order for evolution to

be able to produce adequate controllers. Both when evolving

monolithic controllers building on a PID, and when evolving

modular controllers sequentially, the task was divided up on

a temporal basis, yielding a form of incremental evolution.

In both cases, the controllers could also be said to be divided

spatially, in a mixed serial/parallel way in the first approach,

and in a parallel separated fashion in the second case.



Fig. 6. Trajectory of an evolved PID after completing 1100 timesteps of
a typical sparse waypoint task. In this particular run the progress along the
path (after 3000 timesteps) was 1.14, the mean trajectory error 0.39 and
the mean heading error 0.019. The dots mark the position of the helicopter
every 10 timesteps.

Fig. 7. Trajectory of a modular network controller after completing 1100
timesteps of the sparse waypoint task used in Fig.6. At the and of the run
(3000 timesteps) the progress along the path was 1.70, mean trajectory error
0.38 and mean heading error 0.016.

A. The case for unified tasks and controllers

Helicopter control is a problem where the various input

dimensions are strongly coupled in a nonlinear fashion.

Changing one actuator level - such as the collective -

most often requires a compensatory adjustment of the other

actuator levels. This implies that the best control would be

achieved by an integrated controller in which the parts of the

controller responsible for the different output representations

could communicate with each other; this is in direct contrast

to the state of affairs when using parallel modular networks,

as in our second working approach.

In the context of simpler control problems than helicopter

control, it has been argued that as many decisions as possible

about the structure of the controller should be left to the

evolutionary process [17]. This is because the description of

behaviour from the perspective of the agent’s sensorimotor

system, the proximal description of behaviour, is inherently

more suited to such decisions than the human observer’s

distal description of behaviour, which is couched in high-

level terms which may not be appropriate to the specific

problem at hand.

B. The effects of modularity and task division

Given these indications that a minimum of human tamper-

ing in the structuring of the controller and fitness function

might be desirable, it remains to be explained why we found

the exact opposite in this case.

1) Incremental evolution: Incremental evolution is an

established technique for evolving solutions to hard problems

in control [6][8][22]. This technique developed as a response

to the fact that, for hard problems, all individuals of the first

generation are likely to have the same very low fitness, and

to be far from any region of the fitness space where fitness

would increase; they are effectively in a flat region of fitness

space. Incremental evolution solves this problem by dividing

up the task into simpler subtasks, creating a “pedagogic”

sequence of tasks leading to the full task.

2) Neural interference: The paper by Calabretta et al. [5]

addresses the issue of evolving behaviourally complex organ-

isms. Their arguments are based on experiments attempting

to evolve neural networks for an abstract neuroscientifically-

inspired task, in which the network has to perform two

related but different tasks using the same input. Two reasons

for the poor performance of monolithic neural networks on

such tasks are advanced: neural interference, and genetic

interference. Neural interference is the consequence of the

fact that, if the same neural connections can potentially be

used by more than one mechanism, they probably will be

so used. Whichever mechanism is learned first might exploit

those connections in such a way that a second mechanism

cannot be learned without disrupting the first mechanism.

This effect can be eliminated, as Calabretta et al. and others

have shown, by dividing up the network into modules that

are interconnected only when they really need to be.

3) Genetic interference: Genetic interference is a conse-

quence of genetic linkage. With any reasonably high mu-

tation rate, several mutations are made in every generation

at different positions in every genome. This means that a

beneficial mutation in one part of the genome is likely to be

accompanied by a disadvantageous mutation in another part

of the genome, meaning that the individual with this genome

gets a low fitness, and that the beneficial mutation is likely to

be lost. Calabretta et al. managed to alleviate this problem to

some extent by coevolving two separate neural modules, each

responsible for implementing one of the two mechanisms

required to solve their task; a similar approach is used in the

SANE neuroevolution method, amongst others [14].

4) Search space dimensionality: Another factor which

should not be forgotten is the sheer reduction in search space

dimensionality due to the absence of intermodular connec-

tions. In a fully connected neural network, we have O(n2)
connections; in a network consisting of several modules with

only limited interconnections this number will in general be

much smaller.

C. An expressivity/learnability tradeoff?

There are thus ample theoretical indications that the divi-

sion of tasks and networks into subtasks and subnetworks that

proved successful in our experiments above should actually

improve the chances of evolving good solutions. However,

given the nature of the control problem, this strategy may



at the same time decrease final fitness, as the human de-

signers will have imposed constraints on the evolutionary

mechanism. This points to a trade-off between the ease of

development and the theoretical maximum performance of

a controller when developed by an evolutionary algorithm.

This trade-off echoes a similar trade-off when designing

controllers manually, as described in section I-C, a similarity

which might be more than coincidental.

IX. CONCLUSION

A. Competitiveness of the controllers

Both of the two approaches we tried for evolving neural

networks generated very capable controllers that significantly

outperformed the human-designed PID controller. They also

outperformed the attempts by the authors of the article to

control the vehicle manually. It is interesting to note that

the evolved neural networks were quite robust when the

parameters of the task, vehicle and environment were varied,

something that could not be said about the PID controllers.

This may be due to two factors: evolution is better at tuning

weights and gains than are humans; and the nonlinearity

of neural networks makes them better suited for handling

such variations than linear controllers. Such robustness is

obviously important when transferring controllers to real

vehicles.

B. Effects of modularity and incrementality on evolvability

Without incorporating some domain knowledge in the

evolutionary process, we have not been able to evolve a con-

troller for doing anything more advanced than not crashing.

Domain knowledge has been introduced either by using parts

of a hand-designed PID controller, or by using knowledge of

which inputs should be relevant to which outputs. Another

form in which human judgement (though not really domain

knowledge) was used was that the yaw control network

always had to be evolved before the rest of the controller.

Similar phenomena have been reported by several researchers

in evolutionary neural networks, who have found both mod-

ularity of the controller and incrementality of the task to

be necessary for evolving solutions to complex problems

[22][5]; they can be at least partially explained with the

models they have provided. But this approach also resonates

well with common wisdom in manual controller design: the

simpler and less interconnected a controller is, the easier it is

to tune. Whether and how artificial evolution can be made to

overcome this phenomenon is still an open research question.

C. Future work

The work presented in this paper aimed at developing a

methodology for the UltraSwarms project, which will now

go on to develop the physical helicopter platform further, to

refine the system identification method, and to try the method

proposed in this paper on the real vehicles. Ultimately, the

project aims to use the neural networks evolved in this

way as the lowest software layer in a complex system

supporting flocking and cluster computation. As a related

research topic, it could be interesting to investigate the per-

formance of algorithms that allow neural network topologies,

including modular separation, to be evolved together with

the connection weights; the helicopter control problem is a

challenging problem with obvious real-world applications,

and a successful solution could have wide applicability.
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