
Text Classifiers Evolved on a Simulated DNA Computer

Sun Kim, Min-Oh Heo, and Byoung-Tak Zhang

Abstract— The use of synthetic DNA molecules for comput-
ing provides various insights to evolutionary computation. A
molecular computing algorithm to evolve DNA-encoded genetic
patterns has been previously reported in [1], [2]. Here we
improve on the previous work by studying the convergence
behavior of the molecular evolutionary algorithm in the context
of text classification problems. In particular, we study the
error reduction behavior of the evolutionary learning algorithm,
both theoretically and experimentally. The individuals represent
decision lists of variable length and the whole population takes
part in making probabilistic decisions. The evolutionary process
is to change each individual towards correct classification
of training data, which is based on an error minimization
strategy. The evolved molecular classifiers show a performance
competitive to the standard algorithms such as naı̈ve Bayes
and neural network classifiers on the data set we studied. The
possibility of molecular implementation by use of DNA-encoded
individuals combined with simple molecular operations on a
very big population distinguishes this approach from other
existing evolutionary algorithms.

I. INTRODUCTION

DNA computing is a computational paradigm that uses
synthetic or natural DNA molecules as information stor-
age media [3]. DNA molecules for computing applications
were suggested by Adleman [4] and have now become a
well-established field of biomolecular computing [5]. The
techniques of molecular biology, such as polymerase chain
reaction (PCR), gel electrophoresis, and enzymatic reac-
tions, are used as computational operators for copying,
sorting, and splitting/concatenating the information in the
DNA molecules, respectively. Potential applications range
from massively parallel computations, to new manufacturing
techniques in nano-technology [6], [7], [8], [9], the creation
of memories that can store very large data sets in minuscule
spaces, and biological data processing in vitro. This differs
significantly from the conventional computers, where basic
operations are very fast, but each operation is executed se-
quentially. DNA computing performs each operation slowly,
but in a massively parallel manner. The enormous capacity
of DNA (over million fold compared to current electronic
media) and the advances in recombinant biotechnology to
manipulate DNA in vitro in the last 20 years, make this
approach attractive and potentially very promising [10].

Classification is a typical problem in machine learning
with a wide range of applications such as data mining,
information retrieval, and bioinformatics. Text classification
is the task of assigning one or more predefined categories (or
class) to text documents [11]. In automatic text classification
using machine learning techniques, the classifiers are learned

The authors are with the School of Computer Science and Engineering,
Seoul National University, Seoul 151-744, Korea (email: skim@bi.snu.ac.kr;
moheo@bi.snu.ac.kr; btzhang@bi.snu.ac.kr).

using training documents and then assign labels to new
documents. Due to the properties of document set, the text
classification have the following issues [12], [13], [14]: (1)
High-dimensional feature space. If distinct words occurring
in the training documents are all used, text classification
problems with a few thousand training examples can lead
to 30,000 and more attributes. (2) Sparse document vectors.
While there are huge number of features, each document
contains only a small number of attributes. (3) Heterogeneous
use of terms. Even though two documents are in the same
class, the usage of terms can be different. (4) High level of
redundancy. While there are many different attributes, often
some of them is partly redundant. Based on the issues, DNA
computing has the strength to find the category concepts
from text documents, by operating given tasks in a massively
parallel manner on a large hypothesis space derived from
high storage density.

If one builds a molecular library which represents the
probability distribution of training data, the library can be
utilized as a classifier. In the library, training examples
are encoded as DNA molecules by certain rules, and the
frequency of molecules is maintained to be proportional to
the probability of observed features from the examples. The
probabilistic library model [1], [2] is based on this idea. The
molecular library can be used as a probabilistic classifier
by maintaining the library to represent the joint probability
distribution of training examples and their class. The class
label of new data is decided by computing the conditional
probability of each class, and it is automatically performed by
the library’s own nature. To find the probabilistic distribution
from training examples, they provide a learning procedure
based on the Bayesian evolutionary update rule [15].

Here, we further study the convergence behavior of the
probabilistic library model (PLM) in terms of classifica-
tion problems. We propose an evolutionary learning method
to converge into the minimum error for the probabilistic
molecular classifiers. The individuals of the library represent
decision lists of variable length and the whole population
takes part in making probabilistic decisions. The evolution-
ary process is to adjust the number of multiple copies of
each individual towards perfect classification. This strategy
is based on the error minimization by stochastic gradient
descent, which ensures the convergence to the local minimum
error.

We have performed text classification tasks using Reuters-
21578 test collection on a simulated DNA computer. The
experimental results show the molecular classifiers using
our evolutionary learning approach provides a comparable
performance to other conventional methods such as naı̈ve
Bayes and neural network classifiers.

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

2646

The remainder of the paper is organized as follows. In
Section 2, the probabilistic molecular classifiers in DNA
computing are described. The new evolutionary learning
method for the DNA molecular classifiers is described in
Section 3. In Section 4, experimental results on text data
sets are reported. Conclusions are drawn in Section 5.

II. PROBABILISTIC MOLECULAR CLASSIFIERS

A classifier is to build a decision-making system f that
outputs a label y given an input x = (x1, . . . , xn). It is
convenient to assume there exists a (unknown) target system
f∗ as an ideal model for f . Since we do not know the
exact form of f∗ the only information we can get is training
examples collected from the input-output pairs of f∗. Given
training data D of K labeled examples in the form

D = {(xi, yi)}Ki=1 (1)

xi = (xi1 , xi2 , . . . , xin) ∈ {0, 1}n (2)

yi ∈ {0, 1}, (3)

where xi represents the DNA markers (set of features) in
example i and yi is its associated label.

Here, a library of DNA molecules represents individuals
or decision rules and the library is maintained to classify
new examples. Each individual is a conjunction of binary
variables xi and a label y, where we can refer to as a decision
list. For instance, the individual z = (x, y) = (x1 = 1, x2 =
0, x3 = 1, y = 1), where the commas are interpreted as
logical ANDs. The order of an individual is defined as the
number of input variables in it. Thus, the individual z is of
order 3.

We can represent each input variable as a sequence of
nucleotides (A, T, G, and C). The output label can also
be encoded as a DNA sequence. For example. if we use
10-mer to encode each binary variable and if there are 30
variables for inputs and one variable for class label, then
DNA molecules of length 310-mer can represent an instance
of training data or decision lists. The whole population con-
sists of multiple copies of the decision lists and the number
of copies is proportional to the importance of the decision
list. The learning procedure of the molecular classifier is to
update the number of copies to correctly discriminate training
examples. The classifier works like a look-up table, but the
probabilistic distribution of the data in the library facilitates
classification computation. Keeping multiple copies of data
items can also contribute to the robustness and fault-tolerance
of the molecular computing system [16], [17].

Essentially, the DNA library represents the joint prob-
ability P (X, Y) of the input pattern X and the output
class Y . Since each individual, i.e. decision list, has a class
label, given a query the decision can be made based on the
individuals. Here, the whole population of decision lists can
be considered as a single genetic program. By the genetic
interpretation, the final decision is made by a consensus of
the decisions of the individuals in the population. Since each
individual is labeled either 0 or 1, the whole population is

• 1. Let the library L represent the current empirical
distribution P (X, Y).

• 2. Present an input pattern x.
• 3. Classify x using L as follows:

– 3.1 Extract all library molecules matching with x
into M .

– 3.2 From M separate the molecules into classes:

∗ Extract the molecules with label Y = 0 into
M0.

∗ Extract the molecules with label Y = 1 into
M1.

– 3.3 Compute y∗ = arg maxY ∈{0,1} |MY |/|M |.
Fig. 1. The procedure of the molecular classifier to determine class labels
based on DNA-encoded genetic programs.

partitioned into two clusters. Given a new example, the class
is determined by matching it against each and every decision
list in the population and taking its majority class. This
approach naturally makes use of the huge number of decision
lists produced by the molecular genetic programming process
to make decisions robust.

The class is determined by computing the probability of
each class conditional on the input x, and then determining
the class whose conditional probability is the highest, i.e.

y∗ = arg max
Y ∈{0,1}

P (Y |x) (4)

= arg max
Y ∈{0,1}

P (Y,x)
P (x)

, (5)

where P (Y,x) = P (Y |x)P (x) and Y represents the candi-
date classes.

A method for realizing Equation (4) is to initialize the
library with nth order decision lists and evolve their distribu-
tions. That is, the empirical probability distribution P (X, Y)
can be represented by a set of point estimators that constitute
the DNA library L of decision lists:

P (X, Y) ≈ 1
|L|

|L|∑

i=1

f
(n)
i (X1, X2, . . . , Xn, Y), (6)

where f
(n)
i (X1, X2, . . . , Xn, Y) is the ith decision list of

order n and |L| is the library size. This approximation can be
made arbitrarily accurate by increasing the library size |L|.
More theoretical background of the probabilistic classifier
can be found in [2].

Figure 1 summarizes the procedure for decision making
using the molecular genetic programs in a test tube. Given
an input x all the molecules that match the input is extract
from the library. These molecules will have class labels
from which the majority label is decided as the class of
the input pattern. A class label is a sequence appended
to denote the class to which the pattern belongs. In silico
implementation of this method, the given query has to be
matched against each and every element of the library. In

2647

vitro molecular computation this can be done in a massively
parallel fashion. Instead of a single x, multiple copies (up
to the number of population size) of it is used so that they
can be matched with library elements in parallel. In addition,
the input pattern x = (x1, x2, . . . , xn) can be chopped into n
DNA pieces representing x1, x2, . . . , xn, respectively, so that
each of them can be matched separately to decision lists. The
decision can be made by comparing the number of elements
in class 1 with those in class 0.

In Step 3.1, the count c(x) of x in M approximates the
probability of observing the pattern:

c(x)/|L| = |M |/|L| ≈ P (x). (7)

Step 3.2 essentially computes the frequencies c(Y |x)
of molecules belonging to different classes Y . These are
an approximation of the conditional probabilities given the
pattern, i.e. a posteriori probabilities:

c(Y |x)/|M | = |MY |/|M | ≈ P (Y |x). (8)

Thus, the protocol computes the maximum a posteriori
(MAP) criterion:

y∗ = arg max
Y ∈{0,1}

c(Y |x)/|M | (9)

= arg max
Y ∈{0,1}

c(Y |x) (10)

≈ arg max
Y ∈{0,1}

P (Y |x). (11)

It is worth noting that for classification purposes only the
relative frequency or concentration of the molecular labels
are important.

III. EVOLUTIONARY LEARNING METHODS FOR

IMPROVED CLASSIFICATION PERFORMANCE

In the previous section it is assumed that the library
represents the proper probability distribution of input patterns
and their classes. The probabilistic update procedure has been
proposed by Zhang and Jang [1], [2]. Our method basically
follows the same procedure, which is motivated from in
vitro evolution [18], [19], [20]. In vitro evolution starts
with a library of molecules and evaluates their goodness.
Then, the fitter ones are selected as the basis for generating
mutants that build the next generation of library. The iteration
of the selection-amplification cycle can come up with the
identification of molecules that best fits to the target function.

The key idea in our approach is to use gradient descent to
find a proper probability distribution of the library that best
fits in the training examples. In the molecular classifiers, each
individual is maintained in multiple copies, and the learning
procedure is to adjust the number of copies to reduce the
magnitude of the classification error. It is a similar problem
to find optimal weight vectors in machine learning methods.

For the input pattern xi and its label yi, the total quantity
c for a class Y is given by

c(Y |xi) =
|L|∑

j=1

(cj + δj)Izj=(x,Y) + ε, (12)

where Izj=(x,Y) ∈ {0, 1} denotes the indication function that
is one if the individual zj = (x, Y), and zero otherwise, cj is
the number of copies for the zj , δj is the cross-hybridization
error occurred by mismatches between the input example and
the library elements due to the potential for formation of
double-stranded DNA duplexes, and ε is the detection error
occurred by inaccurate quantity measurement of hybridized
elements. In particular, δj is closely related to DNA sequence
design, and it can be reduced by finding non-crosshybridizing
sequences [21]. To make the description simple, we here
assume δj and ε are very small enough to be ignored, then
the total quantity c(Y |xi) is simplified to

∑|L|
j=1 cjIzj=(x,Y).

By introducing a weight vector w, we can approximate the
conditional probability given the input xi as follows:

P (Y |xi) ≈ c(Y |xi)
|M | =

|L|∑

j=1

wjIzj=(x,Y), (13)

where wj = cj/|M |.
For the training example xi and the class Y , an error ei

is defined as follows:

ei = P ∗(Y |xi)− P (Y |xi), (14)

where P ∗(Y |xi) = Iyi=Y ∈ {0, 1} is the target probability
for the training example xi, where Iyi=Y is the indication
function that is one if yi = Y , and zero otherwise. Our
objective is to find the weight vector w minimizing the cost
function E(w), defined in terms of the error ei as follows:

E(w) =
1
2

∑

i∈D

e2
i . (15)

The cost function E(w) can be minimized by using the
gradient descent approach, i.e.

wj ← wj + ∆wj , (16)

where

∆wj = −η
∂E

∂wj
, (17)

and η is the learning rate determining the strength of
reproduction for each generation. Since the ∂E

∂wj
=∑

i∈D(P ∗(Y |xi)− P (Y |xi))(−Izji=(x,Y)), the update rule
for gradient descent is defined as follows:

∆wj = η
∑

i∈D

(P ∗(Y |xi)− P (Y |xi))Izji=(x,Y). (18)

2648

Additionally, we want to perform the weight updates for
each training example. It is easily approached by stochastic
gradient descent, which is to approximate the gradient de-
scent by updating w incrementally, following the calculation
of the error for each example. The modified update process
is given by

∆wj = η(P ∗(Y |x)− P (Y |x))Izj=(x,Y) (19)

≈ ∆cj , (20)

where P ∗(Y |x), P (Y |x), and Izj=(x,Y) are the target value,
the system output, and the indicator for jth individual in the
library respectively. Therefore, the update is to increase or
decrease the number of copies cj with a certain amount of
value, i.e. ∆cj towards the opposite direction of the incorrect
output.

Since the library includes decision lists for input variables,
given the input x and its label y the library L is divided into
four groups, i.e.

L = c(x, y) + c(x, y) + c(x, y) + c(x, y), (21)

where x and y are the complement elements of x and y,
and the library is updated in four different ways based on
the groups. For example, if the input (x1 = 0, y = 0) is
misclassified, i.e. system output y∗ = 1, the copies of (x1 =
0, y = 0) and (x1 = 1, y = 1) should be increased and
the copies of (x1 = 0, y = 1) and (x1 = 1, y = 0) should
be decreased by Equation (13) and Equation (19). Thus, the
update rule for y = 0 is given by

∆L = ∆c(x, 0) + ∆c(x, 1)−∆c(x, 1)−∆c(x, 0). (22)

If the input (x1 = 0, y = 1) is misclassified, i.e. y∗ = 0,
the copies of (x1 = 0, y = 1) and (x1 = 1, y = 0) should
be increased and the copies of (x1 = 0, y = 0) and (x1 =
1, y = 1) should be decreased in the same way. Thus, the
update rule for y = 1 is given by

∆L = ∆c(x, 1) + ∆c(x, 0)−∆c(x, 0)−∆c(x, 1). (23)

According to Equation (22) and Equation (23), the error
correction process is summarized as follows:

L← L + ∆L, (24)

where

∆L = ∆c(x, y) + ∆c(x, y)−∆c(x, y)−∆c(x, y). (25)

Addition process for ∆c can be implemented by polymerase
chain reaction (PCR) and removal can be done by extraction
of the corresponding molecules. The update process relies
upon the reliability of DNA extraction technology.

The update of the library is similar to evolutionary com-
putation with the additional feature that the presentation of

• 1. Let the library L represent the current empirical
distribution P (X, Y).

• 2. Get a training example (x, y).
• 3. Classify x using L as described in the previous

section. Let this class be y∗.
• 4. Update L if y∗ �= y

– Ln ← Ln−1 + ∆c(x, y),
– Ln ← Ln−1 + ∆c(x, y),
– Ln ← Ln−1 −∆c(x, y),
– Ln ← Ln−1 −∆c(x, y).

• 5. Goto step 2 unless the termination condition is met.

Fig. 2. The evolutionary algorithm to adjust the library elements of DNA-
encoded genetic patterns.

a training example proceeds one generation of the library
(or population). This is also a learning procedure since
the library improves its classification performance as new
examples are presented. It would be interesting that the prob-
abilistic molecular model can be seen as a neural network
to minimize an error function by stochastic gradient descent.
In a broader view, patterns appearing on the input or output
nodes of a network are viewed as samples from probability
densities, and a network is viewed as a probabilistic model
that assigns probabilities to the patterns [22]. The learning of
a network is thereby to find weights that look probable in the
light of observed data. However, the probabilistic molecular
classifiers based on ensemble approaches are different from
neural networks by decision making process.

Figure 2 shows the evolutionary process to adjust the
library elements of DNA-encoded genetic patterns, which
is based on the stochastic gradient descent. We start with
a random collection of DNA strands. Each DNA sequence
represents an instance (x, y) of a vector (X, Y) of ran-
dom variables of interest in the problem domain. Without
any prior knowledge the DNA sequences are generated to
represent uniform distribution of input variables. As a new
training example (x, y) is observed, the patterns matching x
is extracted from the library. The class y∗ of x is determined
by the classification procedure described in the previous
section. Then, the matching patterns are modified in their
frequency depending on their contribution to the correct or
incorrect classification of x. If the label y∗ is correct, no
action is performed because current library classifies the
examples correctly. If the label y∗ is incorrect, the library
is modified according to Equation (25).

IV. EXPERIMENTS RESULTS

A. Data Set

For experiments, we performed text filtering tasks using
Reuters-21578 test collection [23], which is widely used
benchmark in text categorization research. The documents
are manually labeled with the 135 pre-defined categories in
‘TOPICS’ set. The number of documents for each category
have been counted and sorted by descending order. The
top-ranked classes, ‘acq’ and ‘earn’ were then chosen to

2649

TABLE I

EVALUATION CONTINGENCY TABLE.

Answer Output as ‘positive’ Output as ‘negative’
Positive a c
Negative b d

create two data set. There were 2,362 documents in ‘acq’
class and 3,944 documents in ‘earn’ class, and they were
pooled into two data set separately as positive examples.
For negative examples, the same number of documents were
randomly selected among the documents which did not
belong to any pre-defined class. As a result, ‘acq’ data set
has total 4,724 examples including 2,362 positive examples
and 2,362 negative examples, and ‘earn’ data set has total
7,888 examples including 3,944 positive examples and 3,944
negative examples.

For document classification, a word is basically considered
as a variable, hence we preprocessed each data set as follows:

1) Remove stop list: remove often used words with no
specific meaning such as ‘a’, ‘an’, or ‘the’.

2) Perform stemming: reduce words to their stem or root
forms.

3) Count the word frequencies in the examples.
4) Remove any word that has below 100 of total fre-

quency in the data set.
5) Set ‘1’ as the word count if the word frequency is not

zero, ‘0’ otherwise.

As a result, we obtained 589 of input variables for ‘acq’
data set and 714 of input variables for ‘earn’ data set. Each
data set naturally has a matrix form that has words (or input
variables) as column and the word counts as row.

B. Performance Measure

When binary scales are used for both answer and system
output, a table can be established showing how the document
set is divided by these two measures (Table I). By the table,
the classification performance is evaluated as follows:

accuracy =
a + d

a + b + c + d

precision =
a

a + b

recall =
a

a + c

C. Simulation Results

For DNA classifier simulations, the data set was divided
into training and test set. 70% of documents was used for
training data and the rest was used for test data. Both training
and test set contained same amount of positive and negative
examples. The simulation was repeated ten times and the
fitness and performance results were averaged.

In the original framework of the probabilistic molecular
classifiers, the library elements are initialized to contain
each and every conjunction of all possible order for input

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Number of epochs

change
fix

Fig. 3. Fitness evolution of the population for ‘acq’ data set. ‘change’
indicates the copy rates are changed over generations and ‘fix’ indicates the
copy rates are fixed over generations.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Number of epochs

change
fix

Fig. 4. Fitness evolution of the population for ‘earn’ data set. ‘change’
indicates the copy rates are changed over generations and ‘fix’ indicates the
copy rates are fixed over generations.

variables. Thus, the total number of the different library
elements is

∑n
k=1 nCk ·2k ·2, where nCk denotes the number

of combinations to choose k variables out of n. Each element
is a decision list, and whole population consists of the mul-
tiple copies of the different library elements. However, our
focus is to present a locally converged molecular algorithm,
hence we only use order one variables for the experiments.
The population including order one variables means that the
input variables are conditionally independent for the target
value. Therefore, the population includes (x1 = 0, y =
0), (x1 = 0, y = 1), (x1 = 1, y = 0), (x1 = 1, y =
1), (x2 = 0, y = 0), (x2 = 0, y = 1),.... Since the order one
variables are used to present the whole population, we adapt
an additional individual called bias to increase the flexibility
and performance of linear representation. The bias individual
always votes for ‘y = 1’ in every step, while the copies of
bias are modified in the same manner with other individuals.

Setting the learning parameter ∆c is important to balance
the adaptability and stability of the molecular library as a
probabilistic model for the training data. The larger ∆c is,
the larger gets the change of the distribution, and the smaller
∆c is, the smaller gets the change of the distribution. We

2650

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Number of epochs

None
α = 0.1
α = 0.5

Fig. 5. Fitness evolution of the population for ‘acq’ data set when there
exists the copy noise α in the experiments.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Number of epochs

None
α = 0.1
α = 0.5

Fig. 6. Fitness evolution of the population for ‘earn’ data set when there
exists the copy noise α in the experiments.

define ∆c as the rate of the number of copies to be amplified
or removed. In the experiments, ∆c was started from 0.01 of
copy rate, and it was decreased to half percent of previous
copy rate in every 100 epoch. The number of copies for each
element was set to 106.

Figure 3 and Figure 4 depict the evolution of the fitness
as generation goes on. The graphs show that the fitness
changes are stabilized after 800 epochs and converged to
certain points by our copy rate policy. The fitness curves
are increased gradually by decreasing the copy rate over
generations, and almost fixed after 900 epochs. For the fixed
copy rate policy, we set the copy rate ∆c = 0.01 and
the learning curves show poor classification accuracy. The
fitness is slowly increased with fluctuations for both data
sets, but the convergence cannot be confirmed. It shows
the adjustment of copy rate is important to achieve both
convergence and high accuracy.

Figure 5 and Figure 6 show the fitness changes over
generations when there exists the copy noise α, i.e. a
noise occurred by the incomplete adjustments for the target
elements. The copy rate is randomly generated between 0
and (1+α)∆c in every generation. The experimental results
show no difference in any noise level and the library is

TABLE II

PERFORMANCE COMPARISON OF THE MOLECULAR CLASSIFIER AND

CONVENTIONAL CLASSIFIERS FOR ‘ACQ’ DATA SET

Performance Molecular naı̈ve Bayes BPNN
Accuracy 0.86 0.87 0.87
Precision 0.86 0.85 0.82

Recall 0.85 0.89 0.95

TABLE III

PERFORMANCE COMPARISON OF THE MOLECULAR CLASSIFIER AND

CONVENTIONAL CLASSIFIERS FOR ‘EARN’ DATA SET

Performance Molecular naı̈ve Bayes BPNN
Accuracy 0.88 0.88 0.90
Precision 0.85 0.84 0.86

Recall 0.94 0.95 0.97

converged into almost same points for all cases. It is because
the evolutionary learning tries to fix noise errors by the
stochastic gradient descent method. Even though there exists
mismatch or detection noise, our approach can provide robust
results according to its learning behavior.

Table II and Table III present the performance comparison
of the molecular classifier and other conventional methods,
naı̈ve Bayes and backpropagation neural network (BPNN)
classifiers. For ‘acq’ data set, the molecular classifier shows
86% of accuracy, 86% of precision and 85% of recall. It is
slightly better performance than other classifiers in precision
and less performance in recall, but the overall performance
is similar, and has no significant difference. For ‘earn’ data
set, the molecular classifier shows 88% of accuracy, 85% of
precision and 94% of recall. We observe that the molecular
classifier still provides comparable performance in precision
and accuracy for ‘earn’ data set, whereas the recall rate is
relatively low than other methods. As a result, the molecular
classifier tends to focus on improving precision rather than
recall. But, we need to perform further experiments to ensure
it since the difference is very small and there are possibilities
for refinement. Also, for ‘earn’ data set, the molecular
classifiers could overfit the training examples, showing over
95% of classification accuracy. It may cause less performance
on test examples. It should be mentioned that we only used
order one variables as individuals. One strength of molecular
classifiers is to allow the use of huge population size, hence
if higher order variables are used, it would provide better
performance than current results.

To summarize, the simulation results show that the learn-
ing behavior is stable and converged using the copy rate
change policy. The fixed copy rates cause instability of the
convergence behavior, also small learning rates can lead very
slow convergence. The proposed method shows a robustness
under the copy noise, which comes from the error correc-
tion process. The performance comparison of the molecular
classifier and other conventional approaches shows similar
performance. It provides the possibility of in vitro molecular
computing as classifiers.

2651

V. CONCLUSIONS

We presented an evolutionary learning method for the
molecular classifiers on a simulated DNA computer. Using
the stochastic gradient descent method, we derived a learning
procedure for the probabilistic molecular classifiers, which
provides a theoretical background for error minimization in
the classification framework.

The method was used to solve text filtering problems on
the Reuters-21578 test collection. Various policies for biasing
individuals and changing the copy rate were examined to
improve the classification performance. While the results
showed some fluctuations caused by on-line learning, the
fitness curve stabilized after a certain number of epochs. Our
analysis shows that even though the individuals, i.e. decision
lists are simple, their population has a powerful representa-
tion capability equivalent to a disjunctive normal form. The
molecular classifier achieved a comparable performance to
other classifiers such as naı̈ve Bayes and neural networks.
It is remarkable that the decision lists are composed of
boolean variables and the actual output is also boolean.
Nonetheless, the performance results are relatively robust
against incomplete information. Note that naı̈ve Bayes and
neural network classifiers handle real values inside. The
redundancy of DNA-coded genetic patterns and the error
correction process provide a robustness against noise such
as imperfect hybridization and detection errors.

ACKNOWLEDGMENT

This work was supported by the Korea Ministry of Sci-
ence and Technology through National Research Lab (NRL)
project, by the Ministry of Industry and Commerce through
the Molecular Evolutionary Computing (MEC) Project, and
the Ministry of Education and Human Resources Develop-
ment under the BK21-IT Program.

REFERENCES

[1] B.-T. Zhang and H.-Y. Jang, A Bayesian Algorithm for In Vitro
Molecular Evolution of Pattern Classifiers, DNA Computing 10, LNCS
3384, pp. 458–467, 2005.

[2] B.-T. Zhang and H.-Y. Jang, Molecular Programming: Evolving Genetic
Programs in a Test Tube, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2005), 2, pp. 1761–1768, 2005.

[3] J.Y. Lee, S.-Y. Shin, T.H. Park, and B.-T. Zhang, Solving Traveling
Salesman Problems with DNA Molecules Encoding Numerical Values,
Biosystems, 78, pp. 39–47, 2004.

[4] L.M. Adleman, Molecular Computation of Solutions to Combinatorial
Problems, Science, 266, pp. 1021–1024, 1994.

[5] A. Neel, M. Garzon, and P. Penumatsa, Soundness and Quality of
Semantic Retrieval in DNA-based Memories with Abiotic Data, Proceed-
ings of the IEEE Conference on Evolutionary Computation (CEC-2004),
pp. 1889–1895, 2004.

[6] R.S.Braich, N. Chelyapov, C. Johnson, P.W.K. Rothemund, and L.
Adleman, Solution of a 20-Variable 3-SAT Problem on a DNA Computer,
Science, 296, pp. 499–502, 2002.

[7] C.C. Maley, DNA Computation: Theory, Practice, and Prospects, Evo-
lutionary Computation, 6, pp. 201–229, 1998.

[8] E. Winfree, F. Liu, L.A. Wenzler, and N.C. Seeman, Design and Self-
assembly of Two-dimensional DNA Crystals, Nature, 394, pp. 539–544,
1998.

[9] S. Liao and N.C. Seeman, Translation of DNA Signals into Polymer
Assembly Instructions, Science, 306, pp. 2072–2074, 2004.

[10] M.H. Garzon, K.V. Bobba, and A. Neel, Efficiency and Reliability of
Semantic Retrieval in DNA-Based Memories, DNA Computing 9, LNCS
2943, pp. 157–169, 2004.

[11] N. Kushmerick, E. Johnston, and S. McGuinness, Information Extrac-
tion by Text Classification, In IJCAI-2001 Workshop on Adaptive Text
Extraction and Mining, 2001.

[12] T. Joachims, A Statistical Learning Model of Text Classification
for Support Vector Machines, Proceedings of the ACM Conference on
Research and Development in Information Retrieval (SIGIR-01), pp.
128–136, 2001.

[13] F. Sebastiani, Machine Learning in Automated Text Categorization,
ACM Computing Surveys, 34, pp. 1–47, 2002.

[14] T. Liu, Z. Chen, B. Zhang, W. Ma, and G. Wu, Improving Text
Classification using Local Latent Semantic Indexing, Proceedings of the
IEEE International Conference on Data Mining (ICDM-2004), pp. 162–
169, 2004.

[15] B.-T. Zhang, A Unified Bayesian Framework for Evolutionary Learn-
ing and Optimization, Advances in Evolutionary Computation, Chapter
15, pp. 393–412, 2003.

[16] J. Reif and T. LaBean, Computationally Inspired Biotechnologies:
Improved DNA Synthesis and Associative Search Using Error-Correcting
Codes and Vector-Quantization, Lecture Notes in Computer Science,
2054, pp. 145–172, 2001.

[17] E. Winfree and R. Bekbolatov, Proofreading Tile Sets: Error Correction
for Algorithmic Self-Assembly, DNA Computing 9, LNCS 2943, pp.
126–144, 2004.

[18] M.C. Wright and G.F. Joyce, Continuous In Vitro Evolution of
Catalytic Function, Science, 276, pp. 614–617, 1997.

[19] D.S. Wilson and J.W. Szostak, In Vitro Selection of Functional Nucleic
Acids, Annual Review of Biochemistry, 68, pp. 611–647, 1999.

[20] J. Chen, E. Antipov, B. Lemieux, W. Cedeño, and D.H. Wood,
DNA Computing Implementing Genetic Algorithms, Proceedings of the
DIMACS Workshop on Evolution as Computation, pp. 39–49, 1999.

[21] M.H. Garzon and R.J. Deaton, Codeword Design and Information
Encoding in DNA Ensembles, Natural Computing, 3, pp. 253–292, 2004.

[22] M.I. Jordan and C.M. Bishop, Neural Networks, ACM Computing
Surveys, 28, pp. 73–75, 1996.

[23] D.D. Lewis, Reuters-21578 text categorization test collection, Distri-
bution 1.0, http://www.daviddlewis.com/resources/testcollections.

2652

