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Abstract— This paper describes the so-called Differential
Ant-Stigmergy Algorithm (DASA), which is an extension of
the Ant-Colony Optimization for a continuous domain. An
experimental evaluation of the DASA on a benchmark suite
from CEC 2005 is presented. The DASA is compared with
a number of evolutionary optimization algorithms, including
the covariance matrix adaptation evolutionary strategy, the
differential evolution, the real-coded memetic algorithm, and
the continuous estimation of distribution algorithm. The DASA
is also compared to some other ant methods for continuous opti-
mization. The experimental results demonstrate the promising
performance of the new approach. Besides this experimental
work, the DASA was applied to a real-world problem, where
the efficiency of the radial impeller of a vacuum cleaner was
optimized. As a result the aerodynamic power was increased
by twenty per cent.

I. INTRODUCTION

Real-parameter optimization is an important issue in many
areas of human activities. The general problem is to find a set
of parameter values, x = (x1, x2, . . . , xD), that minimizes a
function, f(x), of D real variables, i.e.,

Find: x∗ | f(x∗) ≤ f(x), ∀x ∈ IRD.

In the past two or three decades, different kinds of opti-
mization algorithms have been designed and applied to solve
real-parameter function optimization problems. Some of the
popular approaches are real-parameter genetic algorithms
[20], evolution strategies [4], differential evolution [16],
particle swarm optimization [9], classical methods such as
quasi-Newton method [14], other non-evolutionary methods
such as simulated annealing [10], tabu search [7] and lately
ant-colony based algorithms.

Algorithms inspired by model of ant colony behavior
are increasingly successful among researches in computer
science and operational research. A particular successful
metaheuristic—Ant Colony Optimization (ACO)—as a com-
mon framework for the existing applications and algorithmic
variants of a variety of ant algorithms has been proposed by
Dorigo and colleagues [5]. However, a direct application of
the ACO for solving real-parameter optimization problem is
difficult. The first algorithm designed for continuous func-
tion optimization was continuous ant colony optimization
(CACO) [2] which comprises two levels: global and local.
CACO uses the ant colony framework to perform local
searches, whereas global search is handled by a genetic
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algorithm. Up to now, there are few other adaptations of ACO
algorithm to continuous optimization problems: continuous
interacting ant colony (CIAC) [6], ACO for continuous and
mixed-variable (eACO) [15], and aggregation pheromone
system [18].

In this paper we will introduce a new approach to the
real-parameter optimization problem using an ACO-based
algorithm that uses the pheromonal trail laying—a case of
stigmergy—as a means of communication between ants.

The remainder of this paper is organized as follows. In
Section II we introduce the optimization algorithm called
the Differential Ant Stigmergy Algorithm. We round up
with experimental evaluation on benchmark functions in
Section III, followed by the application of the algorithm
to the design of a radial impeller for vacuum cleaner in
Section IV. Finally, we conclude the paper in Section V.

II. THE DIFFERENTIAL ANT STIGMERGY APPROACH

A. The Fine-Grained Discrete Form of Continuous Domain

In the following, a process of transformation from contin-
uous domain into fine-grained discrete form is presented.

Let x′
i be a current value of the i-th parameter. During the

searching for optimal parameter value, the new value, xi, is
assigned to the i-th parameter as follows:

xi = x′
i + δi. (1)

Here, δi is a so-called parameter difference and is chosen
from the set

Δi = Δ−
i ∪ {0} ∪ Δ+

i ,

where

Δ−
i = {δ−i,k| δ−i,k = −bk+Li−1, k = 1, 2, . . . , di}

and

Δ+
i = {δ+

i,k| δ+
i,k = bk+Li−1, k = 1, 2, . . . , di}.

Here di = Ui − Li + 1. Therefore, for each parameter
xi, parameter difference, δi, has a range from bLi to bUi ,
where b is so-called discrete base, Li = �lgb(εi)�, and
Ui = �lgb(max(xi) − min(xi))�. With the parameter εi, the
maximum precision of the parameter xi is set. The precision
is limited by the computer’s floating-point arithmetics.
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Fig. 1. Differential graph

B. Graph Representation

From all the sets Δi, 1 ≤ i ≤ D, where D represents
the number of parameters, a so-called differential graph
G = (V, E) with a set of vertices, V , and a set of edges,
E, between the vertices is constructed. Each set Δi is repre-
sented by the set of vertices, Vi = {vi,1, vi,2, . . . , vi,2di+1},
and V =

⋃D

i=1 Vi. Then we have that

Δi = {δ−i,di
, . . . , δ−i,di−j+1, . . . , δ

−
i,1︸ ︷︷ ︸

Δ−

i

, 0, δ+
i,1, . . . , δ

+
i,j , . . . , δ

+
i,di︸ ︷︷ ︸

Δ+
i

}

is equal to

Vi = {vi,1, . . . , vi,j , . . . , vi,di+1︸ ︷︷ ︸
0

, . . . , vi,di+1+j, . . . , vi,2di+1},

where

vi,j
δ−→ δ−

i,di−(j−1),

vi,di+1
δ−→ 0,

vi,di+1+j
δ−→ δ+

i,j ,

and j = 1, 2, . . . , di. To enable a more flexible movement
over the search space, the weight ω is added to Eq. 1:

xi = x′
i + ωδi (2)

where ω = RandomInteger(1, b − 1).
Each vertex of the set Vi is connected to all the vertices

that belong to the set Vi+1 (see Fig. 1). Therefore, this is a
directed graph, where each path ν from start vertex to any

of the ending vertices is of equal length and can be defined
with vi as:

ν = (v1v2 . . . vi . . . vD),

where vi ∈ Vi, 1 ≤ i ≤ D.
The optimization task is to find a path ν, such that f(x) <

f(x′), where x′ is currently the best solution, and x = x′ +
Δ(ν) (using Eq. 1). Additionally, if the objective function
f(x) is smaller than f(x′), then the x′ values are replaced
with x values.

C. The Differential Ant Stigmergy Algorithm (DASA)

The optimization consists of an iterative improvement of
the currently best solution, x′, by constructing an appropriate
path ν, that uses Eq. 2 and returns a new best solution. This
is done as follows:

1) A solution x′ is manually set or randomly chosen.
2) A search graph is created and an initial amount of

pheromone, τ0
Vi

, is deposited on all the vertices from
the set Vi ⊂ V, 1 ≤ i ≤ D, according to a Gaussian
probability density function

Gauss(x, μ, σ) =
1

σ
√

2π
e−

(x−μ)2

2σ2 ,

where μ is the mean, σ is the standard deviation, and
μ = 0, σ = 1 (see Fig. 2).

3) There are m ants in a colony, all of which begin simul-
taneously from the start vertex. Ants use a probability
rule to determine which vertex will be chosen next.
More specifically, ant α in step i moves from a vertex
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Fig. 2. Initial pheromone distribution

in set Vi−1 to vertex vi,j ∈ {vi,1, . . . , vi,2di+1} with a
probability given by:

pj(α, i) =
τ(vi,j)∑

1≤k≤2di+1 τ(vi,k)
,

where τ(vi,k) is the amount of pheromone on vertex
vi,k. The ants repeat this action until they reach the
ending vertex. For each ant, solution x is constructed
(see Eq. 2) and evaluated with a calculation of f(x).
The best solution, xb, out of m solutions is com-
pared to the currently best solution x′. If f(xb) is
better than f(x′), then x′ values are replaced with
xb values. Furthermore, in this case the pheromone
amount is redistributed according to associated path
νb = (vb

1 . . . , vb
i−1v

b
i . . . vb

D). New probability density
functions have maxima on vertices vb

i and the standard
deviations are inversely proportioned to the improve-
ments of the solutions (see Fig. 3).

4) Pheromone evaporation is defined by some predeter-
mined percentage ρ on each probability density func-
tion as follows:

μNEW = (1 − ρ)μOLD

and

σNEW =

⎧⎨
⎩

(1 + ρ)σOLD (1 + ρ)σOLD < σmax

σmax otherwise
.

Pheromone dispersion has a similar effect as a
pheromone evaporation in classical ACO algorithm.

5) The whole procedure is then repeated until some
ending condition is met. Through the iterations of the
algorithm we slowly decrease the maximum standard
deviation, σmax, and with it improve the convergence
(an example of daemon action).

We named the search algorithm presented in this section
as Differential Ant Stigmergy Algorithm (DASA).

Fig. 3. Pheromone distribution after a new best solution is found

It is a well known that ant-based algorithms have problems
with convergence. This happens when on each step of the
walk there is a large number of possible vertices from which
ant can choose from. But this is not the case with the
DASA where Gaussian distribution of pheromone over each
parameter was used. Namely, such distribution reduces the
width of the graph to only few dominant parameter values
(i.e., vertices). On the other hand, with proper selection of
the discrete base, b, we can also improve the algorithm’s
convergence (larger b reduces the search graph size).

III. AN EXPERIMENTAL EVALUATION

A. The Experimental Environment

The computer platform used to perform the experiments
was based on AMD OpteronTM2.6-GHz processors, 2 GB of
RAM, and the Microsoft R©Windows R©XP operating system.

The DASA has three parameters: the number of ants, m,
the pheromone disperse factor, ρ, and the maximum param-
eter precision, ε. Their settings were: m = 10, ρ = 0.1, and
ε = 1 e−12. We must note that during the experimentation we
did not fine-tune the algorithms parameters, but only make
a limited number of experiments to find satisfying settings.

B. Test Benchmark Suite

The DASA was tested on four benchmark functions of
dimension 30. The complete definition of the CEC 2005 test-
suit is available in [17]. Function f3 (Shifted Rotated High
Conditional Eliptic Function) is unimodal and function f9

(Shifted Rastrigin’s Function) is multi-modal. Functions f13

(Expanded Extended Griewank’s plus Rosenbrock’s Func-
tion) and f15 (Hybrid Composition Function) result from the
composition of several functions. To prevent exploitation of
the symmetry of the search space and of the typical zero
value associated with the global optimum, the local optimum
is shifted to a value different from zero, and the function
value of the global optimum is non-zero.
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TABLE I

ALGORITHM COMPLEXITY (FUNCTION f3 , D = 30)

Algorithm The system Complexity

CMA-ES Pentium 4 3GHz T0 = 0.40

1GB RAM T1 = 41.0

Red Hat Linux 2.4 T̂2 = 24.00∗

MATLAB 7.0.1 T̂2−T1
T0

= −

DE AMD Sempron 2800+ T0 = 0.29

1GB RAM T1 = 7.64

Mandrake Linux 10.1 T̂2 = 8.49

C T̂2−T1
T0

= 2.94

MA Pentium 4 2.8GHz T0 = 0.42

512MB RAM T1 = 8.63

Linux kernel v. 2.6 T̂2 = 13.45

C++ with GCC 3.3.2 T̂2−T1
T0

= 11.48

EDA Xeon 2.4GHz T0 = 6.93∗∗

1GB RAM T1 = 1.45

Windows XP (SP2) T̂2 = 5.22

MATLAB 6 T̂2−T1
T0

= 0.54

DASA AMD Opteron 2.6GHz T0 = 0.19

2GB RAM T1 = 58.94

Windows XP (SP 2) T̂2 = 59.20

Delphi T̂2−T1
T0

= 1.37

∗ The large number of T1 reflect the large number of objective

function calls, while for T2 a complete, eventually large,

population is evaluated (serially) within a single function call.
∗∗ Due to poor loop implementation in MATLAB 6.

C. Compared Algorithms

The DASA was compared to four well-known algorithms:
A restart Covariance Matrix Adaptation Evolution Strategy

with increasing population size (CMA-ES) [1]: The CMA-ES
introduced by Hansen and Ostermeier [8] is an evolutionary
strategy that adapts the full covariance matrix of a normal
search (mutation) distribution. By increasing the population
size for each restart—as is suggested in [1]—the search
characteristics become more global after each restart.

A Differential Evolution (DE) [13]: DE is a stochastic,
population-based optimization algorithm. It was introduced
by Storn and Price [16] and was developed to optimize the
real (float) parameters of a real-valued function. DE resem-
bles the structure of an evolutionary algorithm, but differs
from traditional evolutionary algorithms in its generation of
new candidate solutions and by its use of a “greedy” selection
scheme.

A real-coded Memetic Algorithm (MA) [12]: The MA is
genetic algorithm (GA) that apply a separate local search
(LS) process to refine new individuals. The GA applied to
make the exploration (i.e., to maintain diversity in popula-
tion), the LS applied to improve new solutions (i.e., to exploit
the most promising regions of the domain search). In [12] a
steady-state GA is used.

A continuous Estimation of Distribution Algorithm (EDA)

[21]: The EDA based on probabilistic modeling instead of
classical genetic operators such as crossover or mutation.
The EDA used in [21] employs a multivariate Gaussian
distribution and is therefore able to represent correlation
between variables in the selected individuals via the full
covariance matrix of the system.

D. The Complexity of the Algorithm

To estimate the algorithm’s complexity we have calculated
T̂2−T1

T0
, where computing time T0 is independent of the func-

tion dimension and is calculated by running the benchmark
algorithm below:

for i = 1 to 1,000,000
x = (double) 5.55;
x = x + x;
x = x * x;
x = sqrt(x);
x = ln(x);
x = exp(x);
y = x/x

end

T1 is the computing time for 200,000 evaluations only for
function f3 and T̂2 is the mean time of five executions,
but now considering the complete computing time of the
algorithm for the function f3. The results are included in
Table I.

E. An Evaluation

The function error, f(x) − f(x∗) being with x∗ the opti-
mum, is recorded after 300,000 function evaluations (FEs).
The error value (EV) is collected for 25 runs after which
the trials are ordered from best to worst. The trial mean and
standard deviation as well as the results of best, median, and
worst trial are presented in Table II.

Additionally, in Table III an average convergence after
selected number of FEs is presented.

The results indicate the promising performance of the new
approach. It is clear that our approach performs better than
the rest of the approaches on three out of four test functions.
Since the selected test functions reflect different kinds of
pseudo-real optimization problems, one could expect that
the DASA is applicable to many real-world multi-parameter
optimization problems.

F. Comparison to Other Ant-Based Methods

As we mentioned in the introduction, there are few other
adaptations of ACO algorithm to real-parameter optimiza-
tion. Here, the DASA is compared to results presented by
Socha in [15]. In order to have comparable results, the same
accuracy level was chosen.

The results presented in Table IV are based on 25 indepen-
dent runs of the DASA and show number of FEs to achieve
the fixed accuracy level. The experimental results show that
the DASA has much higher convergence speed than that of
CACO and comparable with eACO.
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TABLE II

EVS FOR THIRTY-DIMENSIONAL f3 , f9 , f13 AND f15 , MEASURED AFTER

300,000 FES

Algorithm

EV CMA-ES DE MA EDA DASA

Function f3

Best 4.07 e−9 5.46 e+4 5.55 e+5 2.27 e+6 1.27 e+5

Med 5.44 e−9 2.43 e+5 7.64 e+5 3.66 e+6 4.32 e+5

Worst 8.66 e−9 9.00 e+5 1.56 e+6 5.88 e+6 8.15 e+5

Mean 5.55 e−9 2.89 e+5 8.77 e+5 3.75 e+6 4.59 e+5

Std 1.09 e−9 1.93 e+5 5.81 e+4 9.09 e+5 2.02 e+5

Functionf9

Best 4.35 e−6 0.00 e+0 7.78 e−9 2.10 e+2 0.00 e+0

Med 9.95 e−1 0.00 e+0 9.95 e−1 2.30 e+2 0.00 e+0

Worst 4.97 e+0 0.00 e+0 1.99 e+0 2.48 e+2 0.00 e+0

Mean 9.38 e−1 0.00 e+0 6.81 e−1 2.30 e+2 0.00 e+0

Std 1.18 e+0 0.00 e+0 1.21 e−1 9.44 e+0 0.00 e+0

Function f13

Best 1.10 e+0 2.31 e+0 1.33 e+0 3.82 e+1 9.62 e−1

Med 2.61 e+0 3.89 e+0 2.54 e+0 6.86 e+1 1.93 e+0

Worst 3.20 e+0 1.39 e+1 1.03 e+1 1.29 e+2 2.56 e+0

Mean 2.49 e+0 4.51 e+0 3.96 e+0 7.36 e+1 1.88 e+0

Std 5.13 e−1 2.26 e+0 5.38 e−1 2.36 e+1 3.99 e−1

Function f15

Best 2.00 e+2 4.75 e+2 2.00 e+2 4.35 e+2 0.00 e+0

Med 2.00 e+2 4.81 e+2 3.00 e+2 4.59 e+2 3.00 e+2

Worst 3.00 e+2 5.86 e+2 5.00 e+2 5.63 e+2 5.00 e+2

Mean 2.08 e+2 4.84 e+2 3.56 e+2 4.81 e+2 2.33 e+2

Std 2.75 e+1 2.14 e+1 1.51 e+1 4.67 e+1 1.58 e+2

Even though it was shown that the DASA performs well on
benchmark functions, one always wonders how the algorithm
will work on solving real-world applications. This question
is answered in the next section.

IV. A REAL-WORLD PROBLEM

Besides the experimental work described in the previous
section, we also applied the DASA to a real-world problem.
Here, we optimized the radial impeller of a vacuum cleaner.
Radial air impellers are the basic components of many
turbomachines. In the following we will concentrate on
relatively small impellers and subsonic speeds. Our main aim
was to find an impeller shape that has a higher efficiency, i.e.,
greater aerodynamic power, than the one currently used in
production.

A. Modeling

An impeller is constructed from blades, an upper and a
lower side. The sides enclose the blades and keep them
together. The blades, which are all the same, were the main
part of the optimization. The geometry of a blade is shown
in Fig. 4, where the gray color represents the blade. The
method of modeling is as follows: we construct the points at
specific locations, draw the splines through them and spread

TABLE III

AVERAGE EVS FOR THIRTY-DIMENSIONAL f3 , f9 , f13 AND f15 ,

MEASURED AFTER 1,000, 10,000, 100,000, AND 300,000 FES

Algorithm

FEs CMA-ES DE MA EDA DASA

Function f3

1 e+3 1.07 e+9 5.53 e+8 2.94 e+8 1.25 e+9 3.10 e+8

1 e+4 6.11 e+6 8.15 e+7 4.14 e+7 2.76 e+8 1.16 e+7

1 e+5 5.55 e−9 1.52 e+6 5.51 e+6 3.49 e+7 1.23 e+6

3 e+5 5.55 e−9 2.89 e+5 8.77 e+5 3.75 e+6 4.59 e+5

Functionf9

1 e+3 2.53 e+2 3.77 e+2 2.99 e+2 4.80 e+2 9.29 e+1

1 e+4 4.78 e+1 9.85 e+1 1.05 e+2 3.62 e+2 2.95 e+0

1 e+5 6.89 e+0 6.68 e−8 7.55 e+0 2.50 e+2 0.00 e+0

3 e+5 9.38 e−1 0.00 e+0 6.81 e−1 2.30 e+2 0.00 e+0

Function f13

1 e+3 1.14 e+2 1.62 e+5 3.95 e+3 7.50 e+5 2.12 e+5

1 e+4 3.80 e+0 1.02 e+2 1.51 e+1 3.08 e+5 7.02 e+0

1 e+5 2.89 e+0 4.55 e+0 8.66 e+0 4.52 e+3 2.04 e+0

3 e+5 2.49 e+0 4.51 e+0 3.96 e+0 7.36 e+1 1.88 e+0

Function f15

1 e+3 6.69 e+2 1.08 e+3 7.62 e+2 1.13 e+3 5.89 e+2

1 e+4 3.87 e+2 7.04 e+2 4.41 e+2 6.88 e+2 2.40 e+2

1 e+5 2.25 e+2 5.20 e+2 3.56 e+2 5.38 e+2 2.33 e+2

3 e+5 2.08 e+2 4.84 e+2 3.56 e+2 4.81 e+2 2.33 e+2

TABLE IV

COMPARISON OF THE AVERAGE NUMBER OF FES UNTIL THE ACCURACY

IS REACHED

Algorithm

Function∗ CACO [2] CIAC [6] eACO [15] DASA

Sphere 22,050 50,000 695 832

Goldstein & Price 5,320 23,391 364 991

Rosenbrock 6,842 11,797 2,905 137

Zakharov — — 401 182

∗ http://iridia.ulb.ac.be/∼ksocha/extaco04.html

the area on the splines. Once a blade is made an air channel
must be constructed in a similar way.

In Fig. 4(a) the point 1 has two parameters: the radius
r1 and the angle ϕ1r. Similarly, the points 2, 5 and 6 have
parameter pairs r2, ϕ2r; r5, ϕ5r and r6, ϕ6r. The points 3 and
4 are fixed on the x axis. This is because the impeller must
have a constant outer radius, rout, and the outer side of the
blade must be parallel to the z axis. On the other hand, the
outer angle of the blade, ϕout, and the angle of the spline at
points 3 and 4, can be varied. Analogously, the angles ϕ1in

and ϕ6in are the inner-blade angles for the upper and lower
edges of the blade at the input, respectively.

In Fig. 4(b) the points 1, 2, and 3 form the upper spline,
and the points 4, 5, and 6, the lower spline. Between the
points 1 and 6 is the point 7, which defines the spline of the
input shape of the blade. In this figure, the points 1, 2, 5,

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 161



(a)

(b)

(c)

Fig. 4. Parametric modeling: (a) top view; (b) side view; (c) 3D view

and 6 have the parameters h1, h2, h5, and h6, respectively,
describing their heights. Point 3 stays on the x axis and point
4 has a constant height, hout. In other words, the designer of
the impeller must know at least the outer diameter, rout, and
the height, hout. The parameters ϕ1h and ϕ6h describe the
input angles of the lower and upper parts of the blade with
respect to the r− z plane. Similarly, the parameters ϕ3h and
ϕ4h describe the outer blade angle with respect to the same
plane.

In Fig. 4(c) the meaning of point 7 is explained more
precisely. The parameters r7, h7, and ϕ7r define the radius,

height, and angle, respectively. The radius and angle dictate
where the point should appear with respect to the x−y plane
and the height with respect to the r − z plane. Similarly,
the angles β1u, β2u, β1d, and β2d are needed to define the
starting and ending angles of the spline constructed between
the points 1, 7, and 6.

If we look closely at Fig. 4(b) then we can see the
contour surrounding the blade. This is the air channel with
the following parameters: the inner radius, rs (see Fig. 4(a)),
which is needed for the hexahedral mesh (explained later),
the air intake radius, rup, the air outflow radius, rp, the bolt
radius, r10, the bolt height, hdwn, and the impeller height,
hup.

In this way we have successfully modeled the impeller
geometry with 34 parameters. For each parameter we have
a predefined search interval with a given discrete step.
Therefore, the size of the search space can be obtained as
the product of the number of possible settings over all the
parameters. It turns out that there are approximately 3 e+34
possible solutions.

B. Estimation of Results

An example of the classical impeller (currently used in
production) with nine blades and the corresponding air chan-
nel between the two blades are shown in Fig. 5. The mesh is
constructed with more than 6,000 hexahedral elements. The
boundary conditions are zero velocity at all the solid regions
and symmetry boundary conditions at the fluid regions. At
the influx and outflux (see Fig. 4(b)) the intake velocity, vin,
and reference pressure, pref, are defined, respectively. The
intake velocity is parabolically distributed, because we expect
that the intake flow is laminar and so:

vin = v(Φ(t))
6r

rup

(
r

rup
− 1

)
.

Here, v(Φ(t)) is a velocity dependent on the stream, which
further depends on time, as we shall see later, rup is the upper
radius, defined before, and r is the radius within the limits
from rs to rup. The reference pressure, pref, is set to zero.

Fig. 5. Geometry of the blades (left) and the hexahedral mesh of a periodic
air channel (right)

So far we have defined the geometry, the mesh and the
boundary conditions. For the computational fluid dynamics
(CFD) we will not give the theoretical background, which
can be found in a lot of literature [3], [11], [19]. In our case,
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for the CFD we used the ANSYS R©FLOTRANTMpackage.
With respect to the maximum time, tmax, the flux is:

Φ(t) = vAin
t

tmax
,

where Ain is the influx area and t is the current time. A
relative pressure, as a result of the CFD calculation, is shown
in Fig. 6.

Fig. 6. Relative pressure [Pa]

The distribution of the relative pressure can be used to
estimate the cost function. The average pressure, pin, is
chosen from the air-intake area. Finally, the aerodynamic
power, Wair, which represents the cost function, is as follows:

Wair = (pout − pin)Φ(topt),

where pout is the output pressure at the radius rout and
Φ(topt) = 40 l/s is the flux near the desired optimum perfor-
mance of the impeller. Our goal is to find such parameter-
value settings, where Wair is maximized.

Fig. 7. Measured and calculated aerodynamic power distribution of the
classical impeller at ω = 40,000 rpm

Figure 7 shows the distribution of the aerodynamic power
of the classical impeller. Here, we can see that the calculated
values (solid line) of the aerodynamic power distribution
closely match the measured values (dashed line). Both curves
are interpolated from 10 points at different fluxes and a
constant angular velocity ω = 40,000 rpm. This result
indicates that the selected CFD can be used for evaluation
purposes.

C. Results

The optimization was performed on the same computer
platform as the benchmark suite test in Section III. The
DASA settings were: m = 10, ρ = 0.2, with ε dependent on
the discrete step of each parameter.

The optimization method was run 10 times and each run
consisted of 2,000 CFD calculations. A single CFD calcula-
tion takes approximately seven minutes. The obtained results,
in terms of aerodynamic power, are presented statistically in
Table V.

TABLE V

OPTIMIZED IMPELLER’S AERODYNAMIC POWER AFTER 2,000 CFD

CLACULATIONS

Φ = 40 l/s Classical Optimized impeller

ω = 40, 000 rpm impeller Worst Mean Best

Aerodynamic power [W] 411.00 452.00 472.00 483.00
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Fig. 8. Aerodynamic power distribution of the classical and the optimized
impeller at ω = 40,000 rpm

Figure 8 shows the aerodynamic power distribution of the
classical and the optimized impeller (best of 10 runs) at ω =
40,000 rpm. Here, we can see that at Φ(topt) = 40 l/s the
optimized impeller outperforms the classical one by 72 W.

Finally, Fig. 9 shows a 3D view of the optimized impeller.
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Fig. 9. The optimized impeller

V. DISCUSSION AND CONCLUSION

In this paper we introduced a new ACO-based metaheuris-
tic called the Differential Ant-Stigmergy Algorithm (DASA)
for continuous global optimization. As seen in Section II,
the DASA is generally applicable to global optimization
problems. In addition, it makes use of neither derivative nor
a-priori information, making it an ideal solution method for
black-box problems.

While it sometimes requires many function evaluations,
Section III shows that for a selected set of CEC 2005 test
functions, the DASA almost always converges to the global
optimum in a reasonable time. Section IV shows the ability
of the DASA to solve more challenging problems with real-
world applications, thus making it a well-suited approach for
solving global optimization problems from many fields of the
physical sciences.
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