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Abstract— High-throughput microarrays inform us on differ-
ent outlooks of the molecular mechanisms underlying the func-
tion of cells and organisms. While computational analysis for the
microarrays show good performance, it is still difficult to infer
modules of multiple co-regulated genes. Here, we present a novel
classification method to identify the gene modules associated
with cancers from microarray data. The proposed approach is
based on ‘hypernetworks’, a hypergraph model consisting of
vertices and weighted hyperedges. The hypernetwork model
is inspired by biological networks and its learning process
is suitable for identifying interacting gene modules. Applied
to the analysis of microRNA (miRNA) expression profiles on
multiple human cancers, the hypernetwork classifiers identified
cancer-related miRNA modules. The results show that our
method performs better than decision trees and naive Bayes.
The biological meaning of the discovered miRNA modules has
been examined by literature search.

I. INTRODUCTION

High-throughput gene expression profiling has been used
as one of the most important and powerful approaches in
biomedical research [1], [2], [3]. While traditional methods
only allow one or a few genes to be examined at once,
the microarray techniques measure the expression level of
thousands of genes or potentially the whole-genome scale
simultaneously. This has allowed to make a systemic analysis
of the particular disease mechanism such as cancers at the
molecular level. Recently, the analysis of gene expression
data at the level of biological modules, rather than indi-
vidual genes, is recognized as important for understanding
the cancer regulatory mechanisms [4]. This analysis has a
biologically important meaning that the joint regulation genes
can detect significant expression changes even in the case
where the expression of individual genes are not meaningful.
However, it is difficult to infer cancer-related pathways by
inducing modules of co-regulated genes [5].

Finding cancer-related genes from the microarray analysis
is typically based on the correlations between each gene
and particular samples. The highly correlated genes have
properties that their expression patterns are separated into
two distinct parts corresponding to cancer and normal tissues,
hence it became a popular method to find peculiar expression
patterns between different types of diseases. Nevertheless,
they can be inappropriate for systemic analysis because they
do not identify synergistically interacting genes.
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Recently, machine learning methods have been success-
fully used in microarray data analysis, and most of them use
large margin classification techniques such as support vector
machines (SVMs) [6], [7] and boosting [8], [9]. The margin
serves as a decision boundary separating gene expression
patterns into classes of samples (or tissues). However, the
performance of such methods is limited to identify the
optimum solutions in the nonlinear classification problems.
Furthermore, the relationship among selected genes cannot
be easily explained, as well as their combined role is not
interpretable. To address such problems, several efforts have
been made to analyze gene expression data at the level
of biological modules, rather than individual genes [10],
[11], [12], [13]. However, inferring modules of multiple co-
regulated genes directly from the microarray data remains a
difficult problem.

In this paper, we propose a novel approach to identify
the gene modules associated with cancers from microarray
data. The proposed approach is based on hypernetworks [14],
[15], a random hypergraph model [16] with weighted edges.
The concept of the hypernetworks originated in biomolecular
networks which maintain the stability, while rapidly adapt-
ing to the cellular environmental changes. This property is
useful for analyzing complicated and large-scale biological
problems such as cancer regulatory mechanisms. In addition,
the hypernetwork classifiers naturally provide understandable
causes behind their predictions. In the hypernetwork frame-
works, learning is performed by an evolutionary algorithm
[17], [18] to find best combinations of higher-order features
and their weights.

In experiments, we apply the hypernetwork classifiers to
microRNA (miRNA) expression profiles related to human
cancers [19]. The goal is to identify miRNA pairs, whose
expression patterns can predict the presence of cancer with
high accuracy. Our experimental results show that the hy-
pernetwork classifiers provide a competitive performance to
neural networks and support vector machines, and outper-
form decision trees and naive Bayes. We also examine the
relevance of the discovered miRNA modules to causes of
cancers.

The paper is organized as follows. In Section 2, the
hypernetwork classifiers are explained. Section 3 describes
the connection to evolutionary computation and evolutionary
learning procedure. In Section 4, the experimental results
on miRNA expression profiles are provided. Concluding
remarks and directions for further research are given in
Section 5.
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Hyperedge of cardinality 3

G={X,E}

X={x1, X2, X3, ***, X7}
E={E1, Ez, E3, E4, Es}
Ei={x1, x3, x4}
Ex={x1, x4}

Es={x2, X3, X6}
Es={x3, X4, X6, X7}
Es={xa, X5, X7}

Hypergraph

Fig. 1.  An example hypergraph consisting of seven vertices and five
hyperedges of variable cardinality.

II. HYPERNETWORK CLASSIFIERS

Hypernetworks are a graphical model which is naturally
implemented as a library of interacting DNA molecular struc-
tures. Here, we briefly introduce the hypernetwork classifiers.

A hypergraph is an undirected graph G whose edges con-
nect a non-null number of vertices [20], i.e., G = {X,E},
where X = {Xl,XQ .. .,Xn}, E = {El,EQ .. .,Em},
and E; = {zi,,®iy,...,z; }. E; is called the hyperedges.
Mathematically, F; is a set and its cardinality (size) is k > 1,
i.e., the hyperedges can connect more than two vertices while
in ordinary graphs the edges connect maximum two vertices,
i.e., k < 2. A hyperedge of cardinality k£ will be referred
to as a k-hyperedge. The use of these hyperedges allows
for additional degrees of freedom in representing a network
while preserving the mathematical methods provided by the
graph theory. Figure 1 shows a hypergraph consisting of
seven vertices X = {X3,Xs...,X7} and five hyperedges
E ={Ey,E,...,Es} each having a different cardinality.

Hypernetworks are a generalization of the hypergraphs
by assigning weights to its hyperedges, so that it can rep-
resent how strong vertex sets are attached. Formally, we
define a hypernetwork as a triple H = (X, E, W), where
X = {X,X.... X, },F = {E,Ey...,E,}, W =
{w1, w2 ..., wy}. An k-hypernetwork consists of a set of X
of vertices, a subset of F of X [k], and a set W of hyperedge
weights, where E = X[k] is a set of subsets of X whose
elements have precisely k¥ members. A hypernetwork H is
said to be k-uniform if every edge E; in E has cardinality
k.

From the aspect of biological network, the hyperedges
in a hypernetwork can be viewed as building blocks, such
as modules, motifs, and circuits [21], [22]. Particularly,
it is a significant discovery when the hyperedges are of
large weights in the biological problem. In this sense, the
hypernetwork structure can be used to identify massively-
interacting biological modules.

A learning task can be regarded as storing a data set D
at a model, so that the stored data can be retrieved later
by an example. Formally, a hypernetwork can be used as a
probabilistic memory. Let &(x(); W) be the energy of the
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hypernetwork, where x(™) € D denotes the n-th data to store
and W represents the parameters (hyperedge weights) for
the hypernetwork model. Then, the probability of the data
being generated from the hypernetwork is given as Gibbs
distribution

P(x™|w) = exp{—E(x"; W)}, (1)

1
Z(W)
where exp{—&(x(™;W)} is the Boltzmann factor and
Z(W) is the normalizing term.

In classification tasks, a data consists of a set of features
z; and a label y, i.e. (x,y) € D. Here, the hypernetwork
classifiers can be represented by adding a vertex y to the
set of vertices X. At this point, we can formulate the joint
probability P(x,y) as

1
= ——— £ ;W)L 2
Z07) exp{—&(x,y; W)} 2
Given input x, the classifier returns its class by computing
the probability of each class conditional, and then determin-
ing the class whose conditional probability is the highest,
ie.

P(x,y)

y* = argmax P(y|x) (3)
y
P(x,y)
arg max Px) “

where P(x,y) = P(y|x)P(x) and y represents the candidate
classes. Since P(x) can be omitted in the discriminative
model, Equation (4) is rewritten as follows:

. (xy) _
vt = angmax gt = argmax P(x,y)  (5)
1

= argmax 707 exp{—-E(x; W)} (6)
= argmaxexp{—&(x; W)} (N

y
= argmax—&(x; W) 3

y
= arg myin E(x; W). ©

The energy function £(x; W) can be expressed in many
ways such as linear functions, sigmoid functions, and gaus-
sian functions. In effect, a hypernetwork represents a proba-
bilistic model of a data set using a population of hyperedges
and their weights.

III. EVOLUTIONARY LEARNING FOR HYPERNETWORK
CLASSIFIERS

The hypernetwork classifiers is to choose a label y to
minimize the energy function £, and the learning task is
to adjust the weights of hyperedges to fit in with training
data. We now introduce an evolutionary learning method to
find the optimal hypernetworks that maximize classification
accuracy.
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Hyperedges

Individuals

Ex
x| x

Fig. 2. An example of transforming hyperedges to individuals to be evolved
by an evolutionary learning algorithm. An individual consists of a set of
vertices and a label, which indicates a hyperedge.

For evolving the hypernetworks, we assume that a popula-
tion represents a hypernetwork classifier, and its individuals
represent hyperedges. We express the weight of a hyperedge
by allowing duplicates of an individual in the population. The
learning task of a hypernetwork is now changed to adjust the
number of individuals towards minimizing the classification
errors. Figure 2 shows an example of the individuals. Note
that a hyperedge consists of a set of vertices and a label in
supervised learning problems.

To make an initial population, i.e. a hypernetwork clas-
sifier, we use a random graph model, which is a graph
constructed by a random procedure [15], [16]. For a k-
hypergraph, the number of possible hyperedges are

E|=C(n,k o
|E| = (n’)_m’

where n = | X|. If we denote the set of all graphs as €2, its
size is

10)

|Q| = 26k, (11)

However, || rapidly increases when k and n becomes
large, which is common in real-world problems. Hence, we
use a stochastic approach based on the random graphs to
solve this combinatorial explosion. A hypernetwork gener-
ated from the random graph process is called a random
hypernetwork. A random graph model chooses a graph at
random, with equal probabilities, from the set of all possible
graphs. We consider a probability space

(Q7 f7 P)?

where (2 is the set of all graphs, F is the family of all subsets
of 2, and to every w € ) we assign its probability as

12)

Pw) =2790h), (13)

The probability space can be viewed as the product of
C(n, k) binary spaces. It is a result of C(n, k) independent
tosses of a fair coin, i.e. Bernoulli experiments.
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e 1. Start with the empty hypernetwork H =
(X,E,W)=(0,0,0).

e 2. Get a training sample x with the probability p. Gen-
erate a hypernetwork H' = (X', E',W’) as follows:
Generate hyperedges (individuals), E;, of cardi-
nality k& from x by a random hypergraph process.

- F—FE'U {El}
- W’ — WI U {wl|w, = wmit}.
- X'~ XU {.’E]'|.I'j S EL}
e« 3. H— HUH'
¢ 4. Go to step 2 unless the termination condition is met.

Fig. 3. The procedure for building an initial population.

1. Generate a population by the random hypernetwork
process (Fig. 3).

e 2. Get a training example (x,y).

« 3. Evaluate the fitness by classifying x as described in
the previous section. Let this class be y*.

e 4. Update the population if y* # y,

- cg, < cg;, + Acg,, where cg, is the number
of individuals corresponding the hyperedge E; €
E(x,y)

— Normalize the duplicates of all individuals for the
current population.

¢ 5. Goto step 2 unless the termination condition is met.

Fig. 4. The evolutionary algorithm to adjust the weights of hyperedges
in hypernetwork classifiers.

The random hypernetworks can be generated by a binomial
random graph process. Given a real number p,0 < p <1,
the binomial random graph G(n,p) is defined by taking as
Q and setting

P(G) = plE(G)\(l ,p)C(n,k)—lE(G)\7 (14)

where |E(G)| stands for the number of edges of G. The ran-
dom hypernetworks are generated by repeating the random
hypergraph process.

Figure 3 denotes the procedure for building an initial popu-
lation based on the random hypergraph process. Starting with
the empty hypernetwork, new hypernetwork H' is repeatedly
generated from a training sample x with the probability p.
Alternatively, a random H' (not from x) can be generated
with the probability (1 — p). This alternate case helps to give
a diversity in the population. For every H’, the duplicates
of the hyperedge FE; are added to the initial population,
where the number of duplicates is w;,;;. The procedure is
terminated if the population reaches a predefined size m. The
random hypernetwork results in reducing the population size,
while maintaining its classification performance.

Figure 4 presents the evolutionary algorithm to adjust the
number of individuals of the population. We start with a
random hypernetwork. As a new training example (x,y) is
observed, the population is evaluated by classifying x. The
class y* of x is determined by the classification procedure
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described in the previous section. If the label y* is correct, no
action is performed because the current population correctly
classifies the example. If the label y* is incorrect, the
population is modified by adding a number of hyperedges,
Acg,, where E; € E(x,y).

It is interesting that the evolutionary learning performs gra-
dient search to find an optimal hypernetwork for the training
examples. Given x and y, where x = (21,%2,...,%,) €
{0,1}" and y € {0, 1}, let us assume that the energy function
E(x™ ;W) is a sigmoid function

1
1+ exp(—f(x, W))’

Ex; W) = 15)

where

|E|
f(x,W) :Zwilig...iwi‘lﬁ'lxig Ty (16)
i=1
Note that z;, @i, ... %; , | is a combination of k& elements
of the data x which is represented as a k-hyperedge in the
network. We can then write down the error function

N
GW) = - Z(y(") InE(x™; W) +
n=1
(1—y™)In(1 - E";W)). A7)
Here, the derivative g = 0G/JW is given by
06 &
_9G _NT _(0) _ yy) 18
9= 50 ; " —y)x (18)

Since the derivative G /OW is a sum of g(™, we can
obtain an online algorithm by putting each input at a time,
and adjusting W in a direction opposite to g(™). (3y(") —y*(")
is the error on an example, and W is changed only if the
classifier is incorrect. According to Equation (18), we show
that the evolutionary algorithm in Figure 4 is a simplified
version of the on-line gradient search. More details related
to the derivation can be found in [23].

IV. EXPERIMENTAL RESULTS

For experiments, we performed the miRNA expression
classification using the microarray dataset in [19]. It includes
the expression profiles of 151 miRNAs on 89 samples,
which consists of 68 multiple human cancer tissues and 21
normal tissues. We use a set of data (x,y), where x =
(z1,22,...,2y) € {0,1}" and y € {0,1}. i.e. a binary
dataset. Although the hypernetwork classifiers can accept any
attribute such as integers or real numbers, the discretized ex-
pression data provides flexibility for extending to molecular
computation [14]. Moreover, the hypernetwork classifiers are
easily implemented in silico with binary numbers. Hence, we
divide the expression levels of the miRNA data into binary
numbers based on medians on each sample.
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miRNAs Expression Data Set
(151 miRNAS x 89 samples) ‘
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(2-uniform Hypemetwork Classifier)
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Evolutionary Learning

miR-15 | miR-151 class
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------

Discovery of miRNA modules
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1

miR-151 class
cancer

miR-7 miR-21 class
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miR-15 | miR-21 class
1 1 cancer

miR-35 miR-89 class
1 1

normal

normal
miR-151 class
1 normal

miR-21 miR-29 class
) 5]

miR-15
)

Fig. 5. The procedure for building a hypernetwork classifier from
miRNA expression data set. The hypernetwork is represented as a collection
of hyperedges which are then encoded as a population for evolutionary
learning. A population represents the hypernetwork, where the weights of
hyperedges are encoded as the number of duplicates of the individuals.

Figure 5 presents the whole procedure for building a
hypernetwork classifier, i.e. a population. We use a 2-uniform
hypernetwork to classify the miRNA expression profiles.
The initial population is generated using the random hy-
pernetwork process. The individuals are selected from the
training examples with the probability p = 0.5. Unless the
training examples are selected, the individuals are sampled
from random examples. The individuals are set to 50, 000,
and the number of duplicates is initialized to 1,000. We use
a sigmoid function as the energy function £(x; W) of the
hypernetwork classifier.

Setting the learning parameter n = Acg,/cg, in Figure
4 is important to balance the adaptability and stability of
the population. The larger 7 is, the larger gets the dis-
tribution changes of the population. In the experiments,
learning parameter 7 is started from 0.01, and decreased to
n = 0.75 x n when the whole accuracy of current epoch
drops compared than that of previous epoch. The learning
procedure is stopped after 40 epochs.

Figure 6 depicts the performance evolution of the popu-
lation as generation goes on. Since the evolution progresses
in on-line manner, we present the performance evolution by
taking the classification accuracy at each epoch. Note that the
actual fitness is measured every time a training example is
observed. The performance curves are increased gradually,
and stabilized after 20th epoch. The early generations are
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Fig. 6. Performance evolution of the population representing the hypernet-
work for the miRNA expression dataset. Shown are the average classification
rates of leave-one-out cross validation.

TABLE I
PERFORMANCE COMPARISON OF THE HYPERNETWORKS AND
CONVENTIONAL ALGORITHMS FOR THE miRNA EXPRESSION DATASET

Algorithms Accuracy (%)
Backpropagation Neural Networks 92.13
Hypernetworks 91.46
Support Vector Machines 91.01
Decision Trees 88.76
Naive Bayes 83.14

the process to explore candidate hypernetworks for better
miRNA classification. As the generation progresses further,
the increment of the performance falls down because the
population is converged to the optimal hypernetwork.

A. miRNA Expression Classification

Table I presents the performance comparison of the hy-
pernetworks and other machine learning methods, backprop-
agation neural networks (BPNNs), support vector machines
(SVMs), decision trees, and naive Bayes. Using leave-
one-out cross validation, the hypernetwork classifier shows
91.46% of accuracy. It is better than decision trees and
naive Bayes, while providing competitive performance to
the SVM or BPNNs. Compared to the SVM or BPNNs,
the hypernetwork classifiers feature the ability of analyzing
significant gene modules.

As mentioned before, the hypernetwork classifiers can be
used in molecular computation, which allows huge popu-
lation size. Therefore, higher-order hypernetwork classifiers
can be implemented by the molecular computing for better
classification performance and analysis of more sophisticated
gene interactions.

B. miRNA Module Discovery

The hypernetwork classifiers naturally can be used for
microarray analysis to discover significant gene modules.
Table II shows the high-ranked miRNA modules among
ten experiments. hsa-miR-215 is located in the region with
DNA copy number gains in ovarian and breast cancers
[24]. It is because DNA copy number alterations may be
a critical factor affecting expression of miRNAs in cancers.
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TABLE 1T
HIGH-RANKED miRNA MODULES RELATED TO CANCERS

miRNA modules

a b

hsa-miR-147 hsa-miR-296

hsa-miR-215 hsa-miR-7

hsa-miR-130b hsa-miR-23b

hsa-miR-105 hsa-miR-133a

hsa-miR-147 hsa-miR-206
TABLE III

GO TERMS WERE EXTRACTED FOR THE mRNAS IN MODULE 1.
OVERREPRESENTED TERMS WERE CHOSEN BY HYPERGEOMETRIC
TESTING AND MULTIPLE TESTING ADJUSTMENT USING THE FALSE

DISCOVERY RATE (FDR) PROCEDURE (p < 0.01). * ADJUSTED p-VALUE

BY FDR.
GO ID Term Ontology *p-value Genes
GO0:0050794 Regulation of cellular BP 2.63E-18
physiological process BCL3,
GO:0050789 Regulation of BP 6.43E-18 BCL6,
physiological process CCNDI,
GO:0005634  Nucleus Ccc 1.52E-17 CCND2,
GO:0065007 Biological regulation BP 1.60E-16 CDHI,
GO0:0031323 Regulation of cellular BP 3.73E-16 DDXG6,
metabolic process ETVe,
GO:0045449 Regulation of BP 3.91E-16 FGFRI,
transcription MYCLI,
GO:0005515  Protein binding MF 4.36E-16 IRF4NF2,
GO:0019219 Nucleobase, nucleotide BP 7.22E-16 NRAS,
and nucleic acid PDGFB
metabolism

hsa-miR-23b is located in one of two regions on 9q, where
genomic deletion is found [25]. It is known that there is the
genomic alteration in a human cancer. Furthermore, hsa-miR-
147 is located near (<2Mb) to the markers with the highest
rate of LOH (loss of heterozygosity) [25]. The LOH is a
major mechanism in the genomic alteration that transforms
a normal cell into an unregulated tumor cell.

To examine the discovered miRNA modules, we found
the functional correlations between mRNAs by extracting the
gene ontology (GO) terms. The GO has become a standard
to validate the functional coherence of genes. This project
aims to develop three structured, controlled vocabularies
that describe gene products in terms of their associated
biological processes (BP), cellular components (CC), and
molecular functions (MF) in a species-independent manner.
Typically, the validation is accompanied by a statistical
significance analysis. If the discovered miRNA modules are
closely related, the target mRNAs corresponding the miRNAs
might reflect their functional relevance. The analysis using
target genes can be biologically significant because miRNAs
determine the target gene functions in a specific biological
context. We examined significant terms with p-value < 0.01
for the module I, Asa-miR-147 and hsa-miR-296. The results
are shown in Table III. Among common target genes of
two miRNAs, 13 genes (BCL3, BCL6, CCNDI, CCND2,
CDHI, DDX6, ETV6, FGFRI, MYCLI, IRF4, NF2, NRAS,
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TABLE IV
DESCRIPTION OF THE miRNAS AND THEIR TARGET mRNAS
COMPRISING MODULE I

miRNA Chr. Start - End Position Strand
hsa-miR-147  Chr9 122047078-122047149 -
hsa-miR-296  Chr20 56826065-56826144 -

Target mRNA Description

BCL3 B-Cell Leukemia/Lymphoma-3
BCL6 B-Cell Lymphoma-6 (zinc finger protein 51)
CCND1 Cyclin D1
CCND2 G1/S-specific cyclin D2
CDH1 cadherin 1, type 1, E-cadherin (epithelial)
DDX6 DEAD(Asp-Glu-Ala-Asp) box polypeptide 6
ETV6 ets variant gene 6 (TEL oncogene)
FGFR1 fibroblast growth factor receptor 1,
fms-related tyrosine kinase 2, Pfeiffer syndrome
IRF4 interferon regulatory factor 4
MYCLI1 v-myc myelocytomatosis viral oncogene homolog 1,
lung carcinoma derived (avian)
NF2 neurofibromin 2 (bilateral acoustic neuroma)
NRAS neuroblastoma RAS viral oncogene homolog
PDGFB platelet-derived growth factor beta polypeptide,

(simian sarcoma viral (v-sis) oncogene homolog)

and PDGFB) are annotated in a significant level. Overall, the
target genes in the module I belong to characteristic func-
tional categories, which are related to transcription, protein
binding, regulation of cellular, physiological or biological
process. Also, these are all related to cancer progression.

Table IV describes the miRNA module I in detail. It
shows the chromosomal location information of the module
I, and functional description of their shared putative target
mRNAs, which are annotated GO terms with p < 0.01.
As is stated above, hsa-miR-147 is located at 9q.22 with
high frequency of LOH, and the sequence of hsa-miR-
296 maps to human chromosome 20. All annotated target
genes are actively involved in tumorigenesis. For instance,
BCL3 is inducible by DNA damage and is required for the
suppression of persistent p53 activity which regulates the
cell cycle and hence functions as a tumor suppressor [26].
The human proto-oncogene BCL6 suppresses the expression
of the p53 tumor suppressor gene and modulates DNA
damage-induced apoptotic responses in germinal-centre B
cells [27]. Thus, altered expressions of BCL3 and BCL6 lead
to tumorigenic potential and it is functionally essential for
cancer growth and survival. As a result, we conclude that the
hypernetwork classifiers find cancer-related miRNA modules,
which apparently interact with each other.

V. CONCLUSIONS

We proposed a method for detecting gene modules from
microRNA data using hypernetwork classifiers. An evolu-
tionary approach is designed to find best hypernetworks
without exhaustive search in limited resources.

The proposed method was applied to the miRNA expres-
sion profiles on multiple human cancers. The experimental
results show that the hypernetwork classifiers outperform
decision trees and naive Bayes, while providing comparable
performance to neural networks and support vector machines.
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It also shows that the hypernetwork classifiers find biologi-
cally significant miRNA blocks. The hypernetwork structures
are effective since it provides interpretable solutions, as well
as producing good classification performance. Future study
includes the analysis of the order-effect in hypernetworks and
a more detailed analysis of the gene modules discovered.
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