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Another related and important issue in EDAs is how the

features of the search space are reflected in the learned

probability models. This issue, which has received attention

from the EDA community [10], [13], [14], [15], is essential

to understand the mechanisms that allow EDAs to efficiently

sample the search space during the optimization process.

However, the question of analyzing the relationship between

the search space and the structure of the learned probabilistic

models becomes difficult due to two main reasons: The

stochastic nature of EDAs’ search, and the fact that methods

used for learning the models are, in general, able to find only

approximate, suboptimal, structures.

In this paper we present an alternative that allows one to

study the effect that learning accurate models of the popu-

lation produce in the behavior of EDAs based on Bayesian

networks. Additionally, our contribution serves as a solution

to extract more accurate information about the relationship

between the problem structure, the search distributions and

the probabilistic dependencies learned during the search.

Our approach is based on the use of recently published

methods for learning optimal (exact) Bayesian networks [16],

[17], [18], [19]. Methods that do exact Bayesian structure

learning compute, given a set of data and a prespecified

score (in our case, the BIC score [20]), the network structure

that optimizes the score. Since the problem of learning the

optimal Bayesian network is NP-hard [21], these methods

set constraints on the maximum number of variables and/or

cases they can deal with. Usually, dynamic programming

algorithms are used to learn the structure.

The paper is organized as follows. In the next section

Bayesian networks are presented, the general procedures to

learn these networks from data are discussed. In Section III,

we focus on the type of search strategies used to find the

Bayesian network structure. Approximate and exact learning

methods are analyzed. Section IV introduces the EBNA

algorithm. In Section V, the functions used to evaluate

the exact and local learning methods used by EBNA are

introduced. This section presents and discusses the results

of the different experiments conducted. Work related to our

proposal is analyzed in Section VI. The conclusions of our

paper are presented in Section VII.

II. BAYESIAN NETWORKS

A. Notation

Let X be a random variable. A value of X is denoted x.

X = (X1, . . . , Xn) will denote a vector of random variables.

We will use x = (x1, . . . , xn) to denote an assignment to

the variables. We will work with discrete variables. The joint
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de Lardizábal 1, 20080 San Sebastián - Donostia, Spain. email:
(ja.lozano@ehu.es, cechegoyen001@ikasle.ehu.es, rsantana@si.ehu.es, pe-
dro.larranaga@ehu.es)



probability mass function of x is represented as p(X = x) or

p(x). p(xS) will denote the marginal probability distribution

for XS . We use p(Xi = xi | Xj = xj) or, in a simplified

form, p(xi | xj), to denote the conditional probability

distribution of Xi given Xj = xj .

Formally, a Bayesian network [22] is a pair (S, θ) repre-

senting a graphical factorization of a probability distribution.

The structure S is a directed acyclic graph which reflects the

set of conditional (in)dependencies among the variables. The

factorization of the probability distribution is codified by S:

p(x) =
n∏

i=1

p(xi|pai)

where pai denotes a value of variable Pai, the parent set

of Xi (variables from which there exists an arc to Xi in the

graph S). On the other hand, θ is a set of parameters for the

local probability distributions associated with each variable.

If the variable Xi has ri possible values, x1
i , . . . , x

ri

i , the

local distribution p(xi|pa
j
i , θi) is an unrestricted discrete

distribution:

p(xk
i |pa

j
i , θi) ≡ θijk

where pa1
i , . . . ,pa

qi

i denote the values of Pai and the term

qi denotes the number of possible different instances of the

parent variables of Xi. In other words, the parameter θijk

represents the probability of variable Xi being in its k-th

value, knowing that the set of its parent variables is in its

j-th value. Therefore, the local parameters are given by θi =
(((θijk)ri

k=1
)qi

j=1
).

B. Learning Bayesian networks from data

There are different strategies to learn the structure of a

Bayesian network. We focus on a method called “score +

search” which is the one used in the experiments presented in

this paper. In this strategy, given a database D and a Bayesian

network whose structure is denoted by S, a value (score)

which evaluates how well the Bayesian network represents

the probability distribution of the database D is assigned.

Different scores can be used. In this work we have used the

Bayesian Information Criterion score (BIC) [20] (based on

penalized maximum likelihood).

A general formula for a penalized maximum likelihood

score can be written as follows:

log p(D|S, θ̂) − f(N)dim(S)

where dim(S) is the dimension –number of parameters

needed to specify the model– of the Bayesian network with

a structure given by S. Thus:

dim(S) =

n∑
i=1

qi(ri − 1)

and f(N) is a non negative penalization function. The

Jeffreys-Schwarz criterion, sometimes called BIC [20] takes

into account f(N) = 1

2
log N . Thus the BIC score can be

written as follows:

BIC(S, D) = log
N∏

w=1

n∏
i=1

p(xw,i|paS
i , θ̂i)

−
1

2
log N

n∑
i=1

qi(ri − 1) (1)

To find the Bayesian network that optimizes the score

implies solving an optimization problem. This can be done

with exhaustive or heuristic search algorithms. In Section III,

we analyze two variants for finding the Bayesian network

structures. Each structure is evaluated using the maximum

likelihood parameters.

C. Learning of the parameters

Once the structure has been learned, the parameters of the

Bayesian network are calculated using the Laplace correc-

tion:

θ̂ijk =
Nijk + 1

Nij + 2
. (2)

where Nijk denotes the number of cases in D in which

the variable Xi has the value xk
i and Pai has its jth value,

and Nij =
∑ri

k=1
Nijk.

III. METHODS FOR LEARNING BAYESIAN NETWORKS

Once we have defined a score to evaluate Bayesian net-

works, we have to set a search process to find the Bayesian

network that maximizes the score given the data. Approxi-

mate and exact methods can be used.

A. Learning an approximate model

In practical applications, we need to find an adequate

model structure as quickly as possible. Therefore, a simple

algorithm which returns a good structure, even if not optimal,

is preferred. An algorithm that fulfills these criteria is Algo-

rithm B [23] which is typically used by most of Bayesian-

network based EDAs. Algorithm B is a greedy search which

starts with an arc-less structure and, at each step, adds the arc

with the maximum improvement in the score. The algorithm

finishes when there is no arc whose addition improves the

score.

B. Learning the exact model

Since learning the Bayesian network structure is an NP-

hard problem, for a long time the goal of learning exact

Bayesian networks was constrained to problems with a very

reduced number of variables. In [17], an algorithm for

learning the exact structure in less than super-exponential

complexity with respect to n is introduced for the first time.

The time complexity of this method is O(n2n +nk+1C(m))
where k is a constant maximum in-degree, and C(m) is

the cost of computing a single local marginal conditional

likelihood for m instances.



Singh and Moore [19] present a more efficient method

called OPTORD which is feasible for n < 22 and is shown

to work with n = 22. The method is compared to local search

heuristic to learn Bayesian networks in a number of datasets,

obtaining better scoring solutions that the alternatives tested.

In [18], a more efficient method is presented. The algo-

rithm was shown to learn a best network for a data set of 29
variables. Algorithm 1 presents the main steps of the method.

Algorithm 1: Exact learning algorithm

1 Calculate the local scores for all n2n−1 different
(variable, variable set)-pairs.

2 Using the local scores, find best parents for all
n2n−1 (variable, variable set)-pairs.

3 Find the best sink for all 2n variables.
4 Using the results from Step 3, find a best ordering

of the variables.
5 Find a best network using results computed in

Steps 2 and 4.

The total score of the Bayesian structure can be decom-

posed in the computation of local scores. Therefore, in the

first step only local scores are computed. On the other hand,

the concept of sink, and specifically the best sink of the

Bayesian network, plays an important role in the algorithm.

A sink is a node with no outgoing arcs (i.e. a node that is

not a parent of any other node). Every directed acyclic graph

(DAG) has at least one sink. The identification of sinks by

Algorithm 1 allows one to obtain best ordering in reverse

order and this fact is used to find the best parents following

the order computed. More details about the algorithm can be

found in [18].

We use an implementation1 of Algorithm 1. The com-

putational complexity of the algorithm is o(n22n−2). The

memory requirements of the method is 2n+2 bytes and the

disk-space requirement is 12n2n−1 bytes.

IV. ESTIMATION OF DISTRIBUTION ALGORITHMS BASED

ON BAYESIAN NETWORKS

The estimation of Bayesian networks algorithm (EBNA)

allows statistics of unrestricted order in the factorization of

the joint probability distribution. This distribution is encoded

by a Bayesian network that is learned from the database

containing the selected individuals at each generation. It has

been applied with good results to a variety of problems [24],

[25], [26], [27], [28]. Other algorithms based on the use of

Bayesian networks have been proposed in [6], [7], [8]. A

pseudocode of EBNA is shown in Algorithm 2.

In the experiments presented in this paper, EBNA uses

truncation selection and the number of selected individuals

equals half of the population. The best solution at each

generation is passed to the next population, therefore, at each

generation N−1 new solutions are sampled. The stop criteria

changed according to the type of experiments conducted.

1The c++ code of this implementation is available from
http://www.cs.helsinki.fi/u/tsilande/sw/bene/download/

Algorithm 2: EBNABIC

1 BN0 ← (S0, θ
0) where S0 is an arc-less DAG,

and θ
0 is uniform

2 p0(x) =
∏n

i=1
p(xi) =

∏n

i=1
1

ri

.

3 D0 ← Sample M individuals from p0(x).
4 t ← 1
5 do {

6 DSe
t−1 ← Select N individuals from Dt−1.

7 S∗

t ← Using a search method find one network
structure according to the BIC score.

8 θ
t← Calculate θt

ijk using DSe
t−1 as the data set.

9 BNt ← (S∗

t , θt).
10 Dt ← Sample M individuals from BNt.

11 } until Stop criterion is met.

V. EXPERIMENTS

The experiments are oriented to compare the EBNA ver-

sions that use the two different Bayesian network learning

schemes described in Section III. We call them EBNA-Exact

and EBNA-Local.

We used three different criteria to compare the algorithms.

The time complexity, the convergence reliability and the way

in which probabilistic dependencies are represented in the

structure of the Bayesian network. A set of test functions

that represent different classes of problems are chosen for

the experiments. First, we introduce the functions that will

be used in our experiments. Then, experiments that illustrate

the relationship between the number of evaluations and the

behavior of the EBNA with the different learning algorithms

are shown. We then present experiments on the convergence

reliability of the algorithms. Finally, experiments that show

the evolution of the networks learned at different iterations

of the algorithm are presented.

A. Function benchmark

Let u(x) =
∑n

i=1
xi, f(x) is a unitation function if

∀x,y ∈ {0, 1}
n
, u(x) = u(y) ⇒ f(x) = f(y). A unitation

function is defined in terms of its unitation value u(x), or in

a simpler way u.

Function OneMax:

OneMax(x) =

n∑
i=1

xi = u(x) (3)

Unitation functions are also useful for the definition of a

class of functions where the difficulty is given by the inter-

actions that arise among subsets of variables. One example

of this class of deceptive functions is f3deceptive [3].

f3deceptive(x) =

i= n

3∑
i=1

f3
dec(x3i−2, x3i−1, x3i) (4)

where f3
dec is defined as:



f3
dec(u) =

⎧⎪⎪⎨
⎪⎪⎩

0.9 for u = 0
0.8 for u = 1
0.0 for u = 2
1.0 for u = 3

For function Checkerboard the goal of the problem is

to create a checkerboard pattern of 0’s and 1’s in an NxN

grid. Only the primary four directions are considered in the

evaluation. For each position in an (N − 2)(N − 2) grid

centered in an NxN grid, +1 is added for each of the four

neighbors that are set to the opposite value. The maximum

evaluation for the function is 4(̇N − 2)(N − 2).

Function FourPeaks is a modification of the SixPeaks

problem [29] and it can be defined mathematically as:

FFourPeaks(x, t) = (5)

max{tail(0,x), head(1,x), tail(1,x), head(0,x)}+ R(x, t)
(6)

where

tail(b, x) = number of trailing b’s in x

head(b, x) = number of leading b’s in x

R(x, t) =

⎧⎨
⎩

n if tail(0, x) > t and head(1, x) > t or

tail(1, x) > t and head(0, x) > t

0 otherwise .

The goal is to maximize the function. For an even number

of variables this function has 2 global optima, located at the

points:

(

t︷ ︸︸ ︷
0, 0, . . . , 0 1, 1, . . . , 1) (

t︷ ︸︸ ︷
1, 1, . . . , 1 0, 0, . . . , 0)

These points are very difficult to get because they are

isolated. On the other hand, two local optima (0, 0, . . . , 0),
(1, 1, . . . , 1) are very easily reachable. The value of t was

set to n
2
− 1.

Function Cuban5 [30] is a non-separable additive func-

tion. The second best value of this function is very close to

the global optimum.

Cuban5(x) =

F 5
cuban1(s0) +

m∑
j=0

(F 5
cuban2(s2j+1) + F 5

cuban1(s2j+2)) (7)

where

si = x4ix4i+1x4i+2x4i+3x4i+4 and n = 4(2m + 1) + 1

F 3
cuban1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.595 for x = 000
0.200 for x = 001
0.595 for x = 010
0.100 for x = 011
1.000 for x = 100
0.050 for x = 101
0.090 for x = 110
0.150 for x = 111

F 5
cuban1(x) = (8){

4F 3
cuban1

(x1, x2, x3) if x2 = x4 and x3 = x5

0 otherwise

F 5
cuban2(x) =

⎧⎨
⎩

u(x) for x5 = 0
0 for x1 = 0, x5 = 1

u(x) − 2 for x1 = 1, x5 = 1

B. Time complexity analysis

The time complexity analysis experiments were conducted

for functions OneMax and Checkerboard. The objective

is to evaluate the average number of generations to find the

optimum needed by EBNA-Local and EBNA-Exact. We start

with a population of 10 individuals and the population size

is increased by 10 until a maximum population size of 150 is

reached. For each possible combination of function, number

of variables n, and population size N , 100 experiments are

conducted.

0 50 100 150
1

2

3

4

5

6

7

8

9

10

Population size

G
en

er
at

io
n 

nu
m

be
r

EBNA Exact
EBNA Local

Fig. 1. Time complexity analysis for function OneMax, n = 10.

For the OneMax function we conducted experiments for

n ∈ {10, 12, 15, 20}. The idea was to evaluate, under the di-

mension constraints imposed by the exact learning algorithm,

the scalability of both EBNA versions. The results of the

experiments for n ∈ {10, 12, 15} are shown in Figures 1, 2

and 3, respectively. For n = 20, the computational cost of the

experiments was very high and therefore only 50 experiments

were conducted. The average results are shown in Figure 4.
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Fig. 2. Time complexity analysis for function OneMax, n = 12.
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Fig. 3. Time complexity analysis for function OneMax, n = 15.

The analysis of Figures 1, 2, 3 and 4, respectively, re-

veals that both algorithms exhibit the same time complexity

pattern. However, EBNA-Exact needs, in general, a higher

number of evaluations than EBNA-Local to find the optimal

solution for the first time. The difference in the number

of generations is less evident when the population size

approaches 150. For this simple function, it seems that

the error in the learning of the model, introduced by the

approximate learning algorithm, is beneficial for the search.

For the Checkerboard function, we conducted experi-

ments with n = 9 and n = 16. The total number of

experiments was 100, and the average results are shown

in Figure 5 and Figure 6. Also, in this case, EBNA-Exact

needed a higher number of evaluations than EBNA-Local.

Checkerboard is a function with interactions but, at least

for the number of variables considered, it can be optimized

with very simple models (data not shown).
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Fig. 4. Time complexity analysis for function OneMax, n = 20.
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Fig. 5. Time complexity analysis for function Checkerboard, n = 9.
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Fig. 6. Time complexity analysis for function Checkerboard, n = 16.



C. Convergence reliability

The goal of the following experiments was to find the min-

imum population size needed by the two different variants of

EBNA to find the optimum in 20 consecutive experiments.

We investigated the behavior of the algorithms for functions

Cuban5 (n = 13), FourPeaks (n ∈ {10, 12, 14}) and

f3deceptive (n ∈ {9, 12, 15}). The algorithm begins with a

population size N = 16 which is doubled until the optimal

solution has been found in 20 consecutive experiments. The

maximum number of evaluations allowed is 104. For each

function and value of n, 25 experiments are carried out.

Table I shows the mean and standard deviation of the critical

population size found.

TABLE I

MEAN AND STANDARD DEVIATION OF THE CRITICAL POPULATION SIZE

FOR DIFFERENT FUNCTIONS AND NUMBER OF VARIABLES.

function n EBNA − Exact EBNA − Local
mean std mean std

Cuban5 13 118.40 53.07 109.44 57.26

FourPeaks 10 153.60 52.26 215.04 109.11
FourPeaks 12 209.92 110.11 389.12 249.19
FourPeaks 14 312.32 133.64 604.16 318.97

f3deceptive 9 135.68 38.40 168.96 60.94
f3deceptive 12 168.96 60.94 261.12 86.50
f3deceptive 15 220.16 58.66 296.96 95.79

Table I shows that for function Cuban5, EBNA-Exact

requires a slightly higher population size than EBNA-Local.

The picture is drastically changed for functions FourPeaks

and f3deceptive, for which EBNA-Exact needs a much smaller

population size. This difference is particularly evident for

function FourPeaks. Another observation is that the stan-

dard deviation of EBNA-Local is always higher than that

of EBNA-Exact. Since the only difference between EBNA-

Exact and EBNA-Local is in the class of algorithm used to

learn the models, the difference of behaviors is due to the

ability of EBNA-Exact to learn a more accurate model of the

dependencies. Therefore, at least for functions FourPeaks

and f3deceptive, learning a more accurate model determines

a better performance of EBNA.

D. Analysis of the Bayesian network structures

We go deeply into the analysis of the dependencies learned

by the two learning algorithms. The objective of this section

is to show how the evolution of the dependencies in both

variants of EBNA is and to investigate the way in which the

problem structure is encoded in the probabilistic model.

First of all, and in order to illustrate the behavior of EBNA-

Exact, Figure 7 shows a typical example of a run of EBNA-

Exact for function FourPeaks. In the first generation, the

pattern of the interactions is not clear. However, as the

evolution advances, there is a clear path of dependencies

between adjacent variables.

To investigate, the type of dependencies learned by EBNA-

Exact and EBNA-Local, we saved the structures of the

Bayesian networks learned by both variants of the algorithm

in the first and last (population where the optimum was
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Fig. 7. Evolution of the dependencies learned by EBNA-Exact for function
FourPeaks.

reached) for functions FourPeaks, and f3deceptive. We

chose 30 experiments in which the optimum was found

by the algorithms and where they did not converge in the

first generation. The frequency in which each arc appeared

in the Bayesian network was calculated. Since we are not

interested in the direction of the dependencies, we add the

frequency of the two arcs that involves the same pair of

variables. Frequencies are represented using matrices where

lighter colors indicate a higher frequency.

Figures 8 and 9 show the matrices obtained. The first

fact that can be observed is the strong relationship be-

tween the structure of the functions and the structure of

the Bayesian network. This relationship is specially evident

in the networks learned at the last generation of EBNA-

Exact for function FourPeaks for which the interactions

between adjacent variables are clearly captured. For function

f3deceptive, both algorithm exhibit a similar behavior. In gen-

eral, the approximate learning algorithm misses dependencies

that are relevant to the search. Therefore, research on more

accurate, still computationally simple search strategies is an

area worthy of further research.

VI. RELATED WORK

Our work is part of an ongoing research trend that in-

vestigates the relationship between the problem structure

and the class of structure learned during the search by the

probabilistic models. A different but related issue is the effect

that the application of EDAs which use probabilistic models
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Fig. 8. Matrices of the frequencies of the arcs learned by EBNA-Exact and EBNA-Local for function FourPeaks. (a) EBNA-Exact, first population.
(b) EBNA-Exact, last population. (c) EBNA-Local, first population. (d) EBNA-Local, last population.
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Fig. 9. Matrices of the frequencies of the arcs learned by EBNA-Exact and EBNA-Local for function f3deceptive. (a) EBNA-Exact, first population. (b)
EBNA-Exact, last population. (c) EBNA-local, first population. (d) EBNA-Local, last population.

with different representation capabilities (e.g. no interactions,

bivariate models, Bayesian networks, mixtures of probability

distributions, etc.) has for one prespecified problem.

In [31], the question of the necessary conditions for learn-

ing good dependencies (those determined by the interactions

in the fitness function) and avoiding bad interactions (those

due to the selection operator) are theoretically and empir-

ically investigated. This work is extended in [14], where

the probabilistic models learned by hBOA for a separable

deceptive function and the spin glasses problem are analyzed.

For the spin glasses problem, most of the dependencies found

by hBOA are short dependencies between neighbors in the

grid but some long range interactions also appear. We point

out that the approximate learning algorithm may produce

models that are only an approximate representation of the

actual dependencies that arise in the population. The error

introduced by the learning method in the estimation of the

dependencies should be taken into account.

The relationship between problem structure and depen-

dencies is analyzed from two different perspectives in [32].

First, using Pearson’s chi-square statistics as a measure of

the strength of the interactions between pairs of variables in

EDAs, the arousal of dependencies due to the selection op-

erator is shown. Second, it is shown that for some problems,

only a subset of the dependencies (those associated to malign

interactions [33]) may be needed to solve the problem. It is

an open question to investigate which is the composition of

the dependencies represented by exact Bayesian networks in

terms of malign and benign interactions.

Other researchers have studied the most frequent depen-

dencies learned by the probabilistic models in EDAs and

analyzed their mapping with the function structure [9], [10],

[13], [34], [35]. Interesting related ideas are the use of

the dependency relationships represented by the probabilistic

model to define functions with desired degree of interactions

[36] and the comparison between different classes of factor-

izations [37], [38] used for solving a particular function.

VII. CONCLUSIONS

We have proposed the use of exact learning of the Bayesian

network structure in the study of EDAs. Although the results

presented in this paper are still preliminary, we have shown

that the type of learning algorithm (whether exact or approx-

imate) may produce significant differences in the class of

models learned and the performance of the EBNA. This fact

is important because usually Bayesian models learned using

approximate algorithms are thought to accurately reflect the

dependencies that arise in the population. Whenever the size

of the problem is manageable, exact learning of Bayesian

networks is a more appropriate option for theoretical analysis

of the probabilistic dependencies. Finally, we emphasize that

the study of the relationship between the problem structure

and the dependencies captured by the probabilistic model

should provide answers for the fundamental question of how

to select appropriate probabilistic models to optimize a given

problem in the framework of EDAs.
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[1] P. Larrañaga and J. A. Lozano, Eds., Estimation of Distri-

bution Algorithms. A New Tool for Evolutionary Computation.
Boston/Dordrecht/London: Kluwer Academic Publishers, 2002.

[2] H. Mühlenbein and G. Paaß, “From recombination of genes to the
estimation of distributions I. Binary parameters,” in Parallel Problem

Solving from Nature - PPSN IV, H.-M. Voigt, W. Ebeling, I. Rechen-
berg, and H.-P. Schwefel, Eds. Berlin: Springer Verlag, 1996, pp.
178–187, LNCS 1141.

[3] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning. Reading, MA: Addison-Wesley, 1989.

[4] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian
networks: The combination of knowledge and statistical data,” Ma-

chine Learning, vol. 20, pp. 197–243, 1995.
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P. Larrañaga, I. Inza, and E. Bengoetxea, Eds. Springer-Verlag, 2006,
pp. 1–38.

[37] P. A. Bosman and D. Thierens, “Linkage information processing in
distribution estimation algorithms,” in Proceedings of the Genetic and

Evolutionary Computation Conference GECCO-1999, W. Banzhaf,
J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E.
Smith, Eds., vol. I. Orlando, FL: Morgan Kaufmann Publishers, San
Francisco, CA, 1999, pp. 60–67.

[38] R. Santana, E. P. de León, and A. Ochoa, “The edge incident model,”
in Proceedings of the Second Symposium on Artificial Intelligence

(CIMAF-99), A. Ochoa, M. R. Soto, and R. Santana, Eds., Habana,
Cuba, March 1999, pp. 352–359.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


