
 

 

Abstract— Chemotaxis can be defined as an innate behavioural 

response by an organism to a directional stimulus, in which 

bacteria, and other single-cell or multicellular organisms direct 

their movements according to certain chemicals in their 

environment. This is important for bacteria to find food (e.g., 

glucose) by swimming towards the highest concentration of food 

molecules, or to flee from poisons. Based on self-organized 

computational approaches and similar stigmergic concepts we 

derive a novel swarm intelligent algorithm. What strikes from 

these observations is that both eusocial insects as ant colonies and 

bacteria have similar natural mechanisms based on stigmergy in 

order to emerge coherent and sophisticated patterns of global 

collective behaviour. Keeping in mind the above characteristics 

we will present a simple model to tackle the collective adaptation 

of a social swarm based on real ant colony behaviors (SSA 

algorithm) for tracking extrema in dynamic environments and 

highly multimodal complex functions described in the well-know 

DeJong test suite. Then, for the purpose of comparison, a recent 

model of artificial bacterial foraging (BFOA algorithm) based on 

similar stigmergic features is described and analyzed. Final 

results indicate that the SSA collective intelligence is able to cope 

and quickly adapt to unforeseen situations even when over the 

same cooperative foraging period, the community is requested to 

deal with two different and contradictory purposes, while 

outperforming BFOA in adaptive speed. Results indicate that the 

present approach deals well in severe Dynamic Optimization 

problems. 
 

Index Terms—Swarm Intelligence and Perception, Social 

Cognitive Maps, Social Foraging, Self-Organization, Distributed 

Search and Optimization in Dynamic Environments.  

 

I. INTRODUCTION 

WARM Intelligence (SI) is the property of a system 

whereby the collective behaviors of (unsophisticated) 

entities interacting locally with their environment cause 

coherent functional global patterns to emerge. SI provides a 

basis with which it is possible to explore collective (or 

distributed) problem solving without centralized control or the 
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provision of a global model (Stan Franklin, Coordination 

without Communication, talk at Memphis Univ., USA, 1996). 

The well-know bio-inspired computational paradigms know as 

ACO (Ant Colony Optimization algorithm [5]) based on trail 

formation via pheromone deposition / evaporation, and PSO 

(Particle Swarm Optimization [14]) are just two among many 

successful examples. Yet, and in what specifically relates to 

the biomimicry of these and other computational models, much 

more can be of useful employ, namely the social foraging 

behavior theories of many species, which can provide us with 

consistent hints to algorithmic approaches for the construction 

of social cognitive maps, self-organization [1,6], coherent 

swarm perception and intelligent distributed search, with direct 

applications in a high variety of social sciences and 

engineering fields [25→30]. In the present work, we will 

address the collective adaptation of a social community to a 

cultural (environmental, contextual) or informational 

dynamical landscape, represented here – for the purpose of 

different experiments – by several 3D mathematical functions 

that change over time. Our precise and final goal will be to 

keep track of extrema on those environments. For instance, 

typical applications of evolutionary optimization in static 

environments involve the approximation of the extrema of 

functions. On the contrary, for dynamic environments, the 

interest is not to locate the extrema but to follow it as closely 

as possible [12].   

Flocks of migrating birds and schools of fish are familiar 

examples of spatial self-organized patterns formed by living 

organisms through social foraging. Such aggregation patterns 

are observed not only in colonies of organisms as simple as 

single-cell bacteria, as interesting as social insects like ants 

and termites as well as in colonies of multi-cellular vertebrates 

as complex as birds and fish but also in human societies [8]. 

Wasps, bees, ants and termites all make effective use of their 

environment and resources by displaying collective “swarm” 

intelligence. For example, termite colonies build nests with a 

complexity far beyond the comprehension of the individual 

termite, while ant colonies dynamically allocate labor to 

various vital tasks such as foraging or defense without any 

central decision-making ability [5]. Slime mould is another 

perfect example. These are very simple cellular organisms with 

limited motile and sensory capabilities, but in times of food 

shortage they aggregate to form a mobile slug capable of 

transporting the assembled individuals to a new feeding area. 

Should food shortage persist, they then form into a fruiting 

body that disperses their spores using the wind, thus ensuring 

the survival of the colony [18].  
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New research suggests that microbial life can be even richer: 

highly social, intricately networked, and teeming with 

interactions. Bassler [2] and other researchers have determined 

that bacteria communicate using molecules comparable to 

pheromones, as ant colonies so often do. By tapping into this 

cell-to-cell network, microbes are able to collectively track 

changes in their environment, conspire with their own species, 

build mutually beneficial alliances with other types of bacteria, 

gain advantages over competitors, and communicate with their 

hosts - the sort of collective strategizing typically ascribed to 

bees, ants, and people, not to bacteria. Eshel Ben-Jacob [4] 

indicate that bacteria have developed intricate communication 

capabilities (e.g. quorum-sensing, chemotactic signalling and 

plasmid exchange) to cooperatively self-organize into highly 

structured colonies with elevated environmental adaptability, 

proposing that they maintain linguistic communication. 

Meaning-based communication permits colonial identity, 

intentional behaviour (e.g. pheromone-based courtship for 

mating), purposeful alteration of colony structure (e.g. 

formation of fruiting bodies), decision-making (e.g. to 

sporulate) and the recognition and identification of other 

colonies – features we might begin to associate with a bacterial 

social intelligence. Such a social intelligence, should it exist, 

would require going beyond communication to encompass 

unknown additional intracellular processes to generate 

inheritable colonial memory and commonly shared genomic 

context. Moreover, Eshel [3] argues that colonies of bacteria 

are able to communicate and even alter their genetic makeup in 

response to environmental challenges, asserting that the lowly 

bacteria colony is capable of computing better than the best 

computers of our time, and attributes to them properties of 

creativity, intelligence, and even self-awareness. These self-

organizing distributed capabilities were also found in plants. 

Peak and co-workers [23] point out that plants may regulate 

their uptake and loss of gases by distributed computation – 

using information processing that involves communication 

between many interacting units (their stomata). As described, 

leaves have openings called stomata that open wide to let CO2 

in, but close up to prevent precious water vapour from 

escaping. Plants attempt to regulate their stomata to take in as 

much CO2 as possible while losing the least amount of water. 

But they are limited in how well they can do this: leaves are 

often divided into patches where the stomata are either open or 

closed, which reduces the efficiency of CO2 uptake. By 

studying the distributions of these patches of open and closed 

stomata in leaves of the cocklebur plant, Peak et al. [23] found 

specific patterns reminiscent of distributed computing. Patches 

of open or closed stomata sometimes move around a leaf at 

constant speed, for example. What’s striking is that it is the 

same form of mechanism that is widely thought to regulate 

how ants forage. The signals that each ant sends out to other 

ants, by laying down chemical trails of pheromone, enable the 

ant community as a whole to find the most abundant food 

sources. Wilson [32] showed that ants emit specific 

pheromones and identified the chemicals, the glands that 

emitted them and even the fixed action responses to each of 

the various pheromones. He found that pheromones comprise a 

medium for communication among the ants, allowing fixed 

action collaboration, the result of which is a group behaviour 

that is adaptive where the individual’s behaviours are not.  

II. SELF-ORGANIZATION AND STIGMERGY 

Many structures built by social insects are the outcome of a 

process of self-organization [27,28], in which the repeated 

actions of the insects in the colony interact over time with the 

changing physical environment to produce a characteristic end 

state [11]. A major mediating factor is stigmergy [31], the 

elicitation of specific environment-changing behaviors by the 

sensory effects of local environment changes produced by 

previous and past behavior of the whole community. 

Stigmergy is a class of mechanisms that mediate animal-animal 

interactions through artifacts or via indirect communication, 

providing a kind of environmental synergy, information 

gathered from work in progress, a distributed incremental 

learning and memory among the society. In fact, the work 

surface is not only where the constituent units meet each other 

and interact, as it is precisely where a dynamical cognitive map 

could be formed, allowing for the embodiment of adaptive 

memory, cooperative learning and perception [25→30]. 

Constituent units not only learn from the environment as they 

can change it over time. Its introduction in 1959 by Pierre-Paul 

Grassé
1
 made it possible to explain what had been until then 

considered paradoxical observations: In an insect society 

individuals work as if they were alone while their collective 

activities appear to be coordinated. The stimulation of the 

workers by the very performances they have achieved is a 

significant one inducing accurate and adaptable response. The 

phrasing of his introduction of the term is worth noting 

(translated to English in [11]): 
 

The coordination of tasks and the regulation of constructions 

do not depend directly on the workers, but on the 

constructions themselves. The worker does not direct his 

work, but is guided by it. It is to this special form of 

stimulation that we give the name Stigmergy (stigma - wound 

from a pointed object, and ergon - work, product of labor = 

stimulating product of labor). 
 

Keeping in mind the above characteristics (section I and II) 

we will present a simple model to tackle the collective 

adaptation of a social swarm based on real ant colony 

behaviors (Swarm Search Algorithm SSA - section III / results 

on section IV). Then, and for the purpose of comparison, a 

recent model of artificial bacterial foraging [22,17] (Bacterial 

Foraging Optimization Algorithm - BFOA) based on similar 

stigmergic features is described and analyzed (section V). 

Final results indicate that the SSA collective intelligence is 

able to cope and quickly adapt to unforeseen situations even 

when over the same cooperative foraging period, the 

community is requested to deal with two different and 

contradictory purposes, outperforming BFOA. 

 
1 Grassé, P.P.: La reconstruction du nid et les coordinations inter-

individuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de 

la stigmergie : Essai d’interpretation des termites constructeurs. Insect 

Sociaux (1959), 6, 41-83.   
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Fig. 1. Three-dimensional views 

(3D) and respective landscapes 

views (2D) of several test functions 

used in our analysis [38]. White 

pixels correspond to high peaks, 

while darker ones represent deep 

valleys (F0-F4) or holes (F6). 

Check table II in section 4. 
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Fig.2. maxF0a. Pheromone 

distribution (Social Cognitive Maps) 

for t=0, 50, 100, 500 and 1000 time 

steps, of 3000 ants exploring 

function F0a on a 100 x 100 

toroidal grid (1st and 3rd column: 

darker pixels correspond to higher 

concentrations). Columns 2 and 4 

correspond to the geographical place 

where agents are situated (each 

black pixel is an ant). At t=100, the 

highest peak is already surrounded 

by agents while convergence 

proceeds. Processing time equals to 

54 s (1200 Mhz Intel Processor). 

t = 50 t = 50 

  
t = 100 t = 100 

  
t = 500 t = 500 

III. A SWARM MODEL FOR FORAGING IN DYNAMIC 

ENVIRONMENTS 

As mentioned above, the distribution of the pheromone 

represents the memory of the recent history of the swarm (his 

social cognitive map), and in a sense it contains information 

which the individual ants are unable to hold or transmit [29]. 

There is no direct communication between the organisms but a 

type of indirect communication through the pheromonal field.  

In fact, ants are not allowed to have any local memory and 

the individual’s spatial knowledge is restricted to local 

information about the whole colony pheromone density. In 

order to design this behaviour, one simple model was adopted 

[7], and extended due to specific constraints of the present 

proposal, in order to deal with 3D dynamic environments. As 

described by Chialvo and Millonas, the state of an individual 

ant can be expressed by its position r, and orientation .  Since 

the response at a given time is assumed to be independent of 

the previous history of the individual, it is sufficient to specify 

a transition probability from one place and orientation (r,) to 

the next (r
*
,*

) an instant later. In previous works by Millonas 

[21,20], transition rules were derived and generalized from 

noisy response functions, which in turn were found to 

reproduce a number of experimental results with real ants. The 

response function can effectively be translated into a two-

parameter transition rule between the cells by use of a 

pheromone weighting function (Eq.1): 
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TABLE I 

HIGH-LEVEL DESCRIPTION OF THE SWARM SEARCH ALGORITHM PROPOSED 

/* Initialization */ 

For all agents do 

   Place agent at randomly selected site 

End For 

/* Main loop */ 

For t = 1 to tmax do 

   For all agents do 

      /* According to Eqs. 1 and 2 (section 3) */ 

Compute W(σ) and Pik 

Move to a selected neighboring site not 

occupied by other agent 

/* According to Eq. 3 (section 3) */ 

Increase pheromone at site r:  

                       Pr= Pr+[+p(Δ[r]/Δmax)] 

   End For 

   Evaporate pheromone by K, at all grid sites 

End For 

Print location of agents 

Print pheromone distribution at all sites 

/* Values of parameters used in experiments */ 

k = 0.015,  = 0.07, =3.5, γ=0.2, 

p = 1.9, tmax = 500, 600, 1000 or 1150 steps. 

/* Useful references */ 

Check [25], [27], [7], [21] and [20]. 

   

 

 



 

    
t = 1000 t = 1000 t = 250 t = 250 

    
t = 1010 t = 1010 t = 300 t = 300 

    
t = 1080 t = 1080 t = 350 t = 350 
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t = 1150 t = 1150 t = 500 t = 500 

Fig. 3. maxF0a => maxF0b. Social 

evolution from maximizing function 

F0a to maximizing function F0b. In 

the first 1000 time steps the ant 

colony explores function F0a, while 

suddenly at t=1001, function F0b is 

used as the new habitat. Pheromone 

distribution (Social Cognitive Maps) 

for t = 0, 500, 1000, 1010, 1050, 

1080, 1100 and 1150 time steps, of 

3000 ants exploring function F0a 

and F0b on a 100 x 100 toroidal 

grid are shown. Already at t=1010, 

the old highest peak on the right 

suffers a radical erosion, on the 

presence of ants (they start to 

explore new regions).  

Fig. 4. maxF0a => minF0a. 

Maximizing function F0a during 

250 time steps and then minimizing 

it for t  251. Pheromone 

distribution (Social Cognitive Maps) 

for t = 50, 150, 250, 300, 350, 400, 

450 and 500 time steps, of 2000 

ants exploring function F0a on a 

100 x 100 toroidal grid are shown. 

Already at t=300, the highest peak 

on the right suffers a radical erosion, 

on the presence of ants starting to 

explore new regions. As time passes 

the majority of the colony moves to 

the deep valley, on the left. 

Parameters are different from those 

used in Figs. 2-3 (check table III). 

    
t =2 0 t = 20 t = 400 t = 400 

    
t = 100 t = 100 t = 500 t = 500 

    
t = 300 t = 300 t = 600 t = 600 

  

Fig. 5. minF6 => maxF0a. 

Minimizing function F6 during 300 

time steps and then maximizing 

function F0a for t  301. 

Pheromone distribution (Social 

Cognitive Maps) for t = 20, 100, 

300, 320, 400, 500, and 600 time 

steps, of 3000 ants exploring 

function F6 and F0a on a 100 x 100 

toroidal grid are shown. Parameters 

are different from those used in 

Figs. 2-3 (check table III). 

t = 320 t = 320 

 

This equation measures the relative probabilities of moving to 

a cite r (in our context, to a cell in the grid habitat) with 

pheromone density (r). The parameter  is associated with 

the osmotropotaxic sensitivity, recognised by Wilson [32] as 

one of two fundamental different types of ant’s sense-data 

processing. Osmotropotaxis, is related to a kind of 

instantaneous pheromonal gradient following, while the other, 

klinotaxis, to a sequential method (though only the former will 

be considered in the present work as in [7]). Also it can be 

seen as a physiological inverse-noise parameter or gain. In 

practical terms, this parameter controls the degree of 

randomness with which each ant follows the gradient of 

pheromone. On the other hand, 1/γ is the sensory capacity, 

which describes the fact that each ant’s ability to sense 

pheromone decreases somewhat at high concentrations. 
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In addition to the former equation, there is a weighting factor 

w(), where  is the change in direction at each time step, 

i.e. measures the magnitude of the difference in orientation. As 

an additional condition, each individual leaves a constant 

amount  of pheromone at the cell in which it is located at 

every time step t. This pheromone decays at each time step at a 

rate k. Then, the normalised transition probabilities on the 

lattice to go from cell k to cell i are given by Pik  (Eq. 2, [7]), 

where the notation j/k indicates the sum over all the 

surrounding cells j which are in the local neighbourhood of k. 

i measures the magnitude of the difference in orientation for 

the previous direction at time t-1. That is, since we use a 

neighbourhood composed of the cell and its eight neighbours, 

i can take the discrete values 0 through 4, and it is sufficient 

to assign a value wi for each of these changes of direction. 

Chialvo et al. used the weights of w0 =1 (same direction), w1 

=1/2, w2 =1/4, w3 =1/12 and w4 =1/20 (U-turn). In addition, 

coherent results were found for =0.07 (pheromone deposition 

rate), k=0.015 (pheromone evaporation rate), =3.5 

(osmotropotaxic sensitivity) and  =0.2 (inverse of 

sensorycapacity), where the emergence of well defined 

networks of trails were possible. Except when indicated, these 

values will remain in the following framework. As an 

additional condition, each individual leaves a constant amount 



 

 of pheromone at the cell in which it is located at every time 

step t. Simultaneously, the pheromone evaporates at rate k, i.e., 

the pheromonal field will contain information about past 

movements of the organisms, but not arbitrarily in the past, 

since the field forgets its distant history due to evaporation in a 

time   1/k. As in past works, toroidal boundary conditions 

are imposed on the lattice to remove, as far as possible any 

boundary effects (e.g. one ant going out of the grid at the 

south-west corner, will probably come in at the north-east 

corner). 

In order to achieve emergent and autocatalytic mass 

behaviours around specific extrema locations (e.g., peaks or 

valleys) on the habitat, instead of a constant pheromone 

deposition rate  used in [7], a term not constant is included. 

This upgrade can significantly change the expected ant colony 

cognitive map (pheromonal field). The strategy follows an idea 

implemented earlier by Ramos [25,26], while extending the 

Chialvo model into digital image habitats, aiming to achieve a 

collective perception of those images by the end product of 

swarm interactions. The main differences to the Chialvo work 

is that ants, now move on a 3D discrete grid, representing the 

functions which we aim to study (fig. 1) instead of a 2D 

habitat, and the pheromone update takes in account not only 

the local pheromone distribution as well as some 

characteristics of the cells around one ant. In here, this 

additional term should naturally be related with specific 

characteristics of cells around one ant, like their altitude (z 

value or function value at coordinates x,y), having in mind our 

present aim. So, our pheromone deposition rate T, for a 

specific ant, at one specific cell i (at time t), should change to a 

dynamic value (p is a constant = 1.93) expressed by equation 

3. In this equation, Δmax = | zmax – zmin |, being zmax the 

maximum altitude found by the colony so far on the function 

habitat, and zmin the lowest altitude. The other term Δ[i] is 

equivalent to (if our aim is to minimize any given landscape): 

Δ[i] = | zi – zmax |, being zi the current altitude of one ant at cell 

i. If on the contrary, our aim is to maximize any given 

landscape, then we should instead use Δ[i] = | zi – zmin |. 

Finally, please notice that if our landscape is completely flat, 

results expected by this extended model will be equal to those 

found by Chialvo and Millonas in [7], since Δ[i]/max equals to 

zero. In this case, this is equivalent to say that only the swarm 

pheromonal field is affecting each ant choices, and not the 

environment - i.e. the expected network of trails depends 

largely on the initial random position of the colony, and in trail 

clusters formed in the initial configurations of pheromone. On 

the other hand, if this environmental term is added a stable and 

emergent configuration will appear which is largely 

independent on the initial conditions of the colony and 

becomes more and more dependent on the nature of the current 

studied landscape itself. As specified earlier, the environment 

plays an active role, in conjunction with continuous positive 

and negative feedbacks provided by the colony and their 

pheromone, in order to achieve a stable emergent pattern, 

memory and distributed learning by the community [29]. 

IV. EXPERIMENTAL SETUP AND RESULTS 

In order to test the dynamical behaviour of this new Swarm 

Search algorithm presented earlier in section 3 (pseudo-code 

in table I), we have used classical test functions (table II) 

drawn from the literature in Genetic Algorithms, Evolutionary 

strategies and global optimization [24], several of them 

graphically accessible in fig. 1. Function F0a represents one 

deep valley and one peak, while F0b his the opposite. Function 

F1 represents De Jong’s function 1 and his one of the simplest. 

It is continuous, convex and unimodal; xi is in the interval [-

5.12; 5.12] and the global minimum is at xi=0. Function F2 

represents an axis parallel hyper-ellipsoid similar to De Jong’s 

function 1. It is also know as the weighted sphere model. 

Again it is continuous, convex and unimodal in the interval xi 

→ [-5.12; 5.12], with global minimum at xi=0. Function F3 

represents an extension of the axis parallel hyper-ellipsoid 

(F2), also know as Schwefel’s function 1.2. With respect to the 

coordinate axes this function produces rotated hyper-

ellipsoids; xi is in the interval [-65.536; 65.536] and the global 

minimum is at xi=0. Likewise F2, it is continuous, convex and 

unimodal. Function F4 represents the well-know Rosenbrock’s 

valley or De Jong’s function 2. Rosenbrock’s valley is a 

TABLE II 

CLASSICAL TEST FUNCTIONS USED IN OUR ANALYSIS FROM MATLAB [24] 

Function ID Equation 
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TABLE III 

PARAMETERS USED FOR DIFFERENT TEST SETS 

 

Fig. 

 

2 

3 

4 

5 

 

N ants 

 

3000 

3000 

2000 

3000 

 

tmax 

 

1000 

1150 

500 

600 

 

k  

 

0.015 

0.015 

1.000 

1.000 

 

 

 

0.07 

0.07 

0.10 

0.01 

 

 

 

3.5 

3.5 

3.5 

3.5 

 

γ 

  

0.2 

0.2 

0.2 

0.2 

 

p 

 

1.93 

1.93 

1.90 

1.90 

 

 



 

classic optimization problem. The global optimum is inside a 

long, narrow, parabolic shaped flat valley. To find the valley is 

trivial, however convergence to the global optimum is difficult 

and hence this problem has been repeatedly used in assess the 

performance of optimization algorithms; xi is in the interval [-

2.048; 2.048] and the global minimum is at xi=0. Function F5 

represents the Rastrigin’s function 6. This function is based on 

De Jong’s function 1 with the addition of cosine modulation to 

produce many local minima. Thus, the test function is highly 

multimodal. However, the location of the minima are regularly 

distributed. As in F1, xi is in the interval [-5.12; 5.12] and the 

global minimum is at xi=0. Finally, F6 represents Schwefel’s 

function 7, being deceptive in that the global minimum is 

geometrically distant, over the parameter space, from the next 

best local minima. Therefore, the search algorithms are 

potentially prone to convergence in the wrong direction; xi is 

in the interval [-500; 500] and the global minimum is at 

xi=420,9687 while f(x)=n.418,9829. In our tests, n=2. Within 

this specific framework we have produced several run tests 

using different test functions, some of which are presented 

here trough figures 2 to 5. The parameters used are shown on 

table 3. The simplest test was the first one (fig.2) where we 

forced the colony to search for the maximal peak in function 

F0a, during 1000 time steps. The other tests were harder, that 

is dynamic, since they include not only different purposes 

simultaneously (maximizing and minimizing), tracking 

different extrema, as well as different landscapes that changed 

dynamically on intermediate swarm search stages (e.g., fig. 3, 

4 and 5). 

V. SWARM SEARCH VERSUS BACTERIAL FORAGING 

ALGORITHMS 

In order to further analyze the collective behavior of the 

present proposal, we performed a comparison between the ant-

like Swarm Search Algorithm (SSA) and the Bacterial 

Foraging Optimization Algorithm (BFOA), on the dominion 

of function optimization. BFOA was selected since it 

represents an earlier proposal for function optimization as well 

based on natural foraging capacities. Presented by Passino at 

IEEE Control Systems Magazine in 2002 [22] and later that 

year in the Journal of Optimization Theory and Applications 

[17], the author for the purpose of a simple but powerful 

illustrative example, used his algorithm to find the minimum of 

two complex functions Jcc, described in [22], page 60. Further 

material, as the MATLAB code of his algorithm and the tri-

dimensional functions experimented, can also be found on the 

web address of a recent book from the same author 

(Biomimicry for Optimization, Control and Automation, 

Springer-Verlag, London, UK, 2005), at 

http://www.ece.osu.edu/ ~passino/ICbook/ ic_index.html. 

Passino uses S=50 bacteria-based agents, during four genera-

tions. In each generation, and has a requirement of his 

algorithm, each agent enters a chemotaxis loop (see page 61 

[22]), performing Nc=100 chemotactic (foraging) steps.  
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t = 100 t = 200 t = 300 t = 400 

Fig. 6. In the first row the test functions used by Passino [22,17]. In the 

second and third rows, BFOA minimizing results respectively for F1 and F2. 

The graphics show the bacterial motion trajectories (using 50 bacteria-like 

agents). In the fourth and fifth rows, SWARM-SEARCH algorithm (SSA) 

minimizing results respectively for F1 and F2, and for the same foraging 

time period. The graphics shows the pheromone distribution. In the last row, 

SSA is requested to deal with two contradictory goals, i.e. to minimize F1 

and then to maximize it. In all these tests, SSA has used 50 ant-like agents. 

Check main text for the parameters used. Habitat size equals 2 x [0,30]. 

 

Thus the algorithm – for the precise application – runs for 

t=400 time steps, which make us believe that a fair comparison 

can be make in regard of the parameter values we use. The two 

functions represent what Passino designates by nutrient 

concentration landscapes (see fig. 6, first row – the web 

address also contains his MATLAB code used in the two 

functions, where Nutrientsfunc.m and Nutrientsfunc1.m are 

represented by different weights). His function F2 

(Nutrientsfunc1.m)  has a zero value at [15,15] and decreases 

to successively more negative values as you move away from 

that point, reaching a plateau with the same value. Moreover, 

and for the purpose of discrete function optimization, Passino 

[22,17] represented both functions by a discrete lattice (as well 

as us in our past tests) with a size of 30 x 30 cells over the 

optimization domain (each cell has a correspondent z or Jcc 

value). For these reasons and in order to keep a coherent 

comparison, we shall use 50 ant-like agents in our SSA, on a 

30 x 30 tri-dimensional habitat, for t=400 time steps, on both 



 

functions. We then run 3 tests. The first is requested to 

minimize Passino’s function F1. The second test is requested 

to minimize Passino’s function F2. Finally, and in order to 

prove the highly adaptive features of our model, we requested 

SSA to deal with two contradictory goals, i.e. to minimize F1 

and then to maximize it, over the same period of 400 time 

steps. As visible, SSA quickly adapts to the different purposes. 

Over function F1, the pheromone concentration is already 

intensely allocated at the right point at t=100 (and not in other 

areas), while BFOA, at this moment, still explores different 

regions on the optimization domain. Over function F2, the 

swarm quickly separates in different foraging groups, since 

there are a large number of points with the same minimal 

value. Finally over function F1 again, in the final test (last row 

– fig. 6), SSA is able to process two different demands 

(minimization followed by maximization) over the same 

foraging time period that BFOA uses for F1 minimization. The 

parameters used in our experiments follows: Nants=50, 

tmax=400, k =1 (pheromone evaporation rate), =0.1 

(pheromone deposition rate), =7 (this parameter controls how 

ants follow the pheromone gradient), γ=0.2, and p=1.9. 

Exception made for test 1, where =6. 

 

VI. CONCLUSIONS 

   Evolution of mass behaviours on time are difficult to predict, 

since the global behaviour is the result of many part relations 

operating in their own local neighbourhood. The emergence of 

network trails in ant colonies, for instance, are the product of 

several simple and local interactions that can evolve to 

complex patterns, which in some sense translate a meta-

behaviour of that swarm [29]. Moreover, the translation of one 

kind of low-level (present in a large number) to one meta-level 

is minimal. Although that behaviour is specified (and 

somehow constrained), there is minimal specification of the 

mechanism required to generate that behaviour; global 

behaviour evolves from the many relations of multiple simple 

behaviours, without global coordination (i.e. from local 

interactions to global complexity. There is some evidence that 

our brain as well as many other complex systems, operates in 

the same way, and as a consequence collective perception 

capabilities could be derived from emergent properties, which 

cannot be neglected in any pattern search algorithm. These 

systems show in general, interesting and desirable features as 

flexibility (e.g. the brain is able to cope with incorrect, 

ambiguous or distorted information, or even to deal with 

unforeseen or new situations without showing abrupt 

performance breakdown) or versability, robustness  (keep 

functioning  even when  some parts are locally  damaged),  and 

they operate in a massively parallel fashion. Present results 

point to that type of interesting features. Although the current 

model is far from being consistent with real ones, since only 

some type of real mechanisms were considered, swarm 

pheromonal fields reflect some convergence towards the 

identification of a common goal in a purely decentralized 

form. Moreover, the present model shows important adaptive 

capabilities, as in the presence of sudden changes in the 

habitat - our test landscapes (fig. 1). Even if the model is able 

to quickly adapt to one specific environment, evolving from 

one empty pheromonal field, habitat transitions point that, the 

whole system is able to have some memory from past 

environments (i.e. convergence is more difficult after learning 

and perceiving one past habitat). On the other hand this 

feature can have some advantage, for instance in the case 

where the original or similar environments are back in place. 

This emerged feature of résistance, is somewhat present in 

many of the natural phenomena that we find today in our 

society. In a certain sense, the distribution of pheromone 

represents the collective solutions found so far (memory, risk 

avoidance, exploitation behavior), while evaporation enables 

the system to adapt (tricks a decision, explorative behavior), 

not only as in normal situations (a complex but static search 

environment), as well as when the landscape suddenly 

changes, moving the colony’s new target to a new unexplored 

region and keep tracking of it. One crucial aspect observed 

here, as noted in the past by Langton [16] and present in many 

complex systems, only at the right intermediary regime, in here 

between contradictory behaviors of exploration and 

exploitation, the swarm is able to quickly converge.  

    The recognizable results indicate that the collective 

intelligence is able to cope and quickly adapt to unforeseen 

situations even when over the same cooperative foraging 

period, the community is requested to deal with two different 

and contradictory purposes. All these above mentioned aspects 

show how vital can be the study of social foraging for the 

development of new distributed search algorithms, and the 

construction of social cognitive maps, with interesting 

properties in collective memory, collective decision-making 

and swarm-based pattern detection and recognition.  

But the work could have important consequences in other 

areas. Perhaps, one of the most valuable relations to explore is 

that of social foraging and evolution. For two reasons; First, as 

described by Passino [22], natural selection tends to eliminate 

animals with poor “foraging strategies” (methods for locating, 

handling, and ingesting food) and favor the propagation of 

genes of those animals that have successful foraging strategies 

since they are more likely to enjoy reproductive success (they 

obtain enough food to enable them to reproduce). Logically, 

such evolutionary principles have led scientists in the field of 

foraging theory to hypothesize that it is appropriate to model 

the activity of foraging as an optimization process: A foraging 

animal takes actions to maximize the energy obtained per unit 

time spent foraging, in the face of constraints presented by its 

own physiology and by the environment.  

    Second, because there is an increasing recognition that 

natural selection and self-organization work hand in hand to 

form evolution, as defended by Kauffmann [13]. For example, 

anthropologist Jeffrey McKee [19,14] has described the 

evolution of human brain as a self-organizing process. He uses 

the term autocatalysis to describe how the design of an 

organism’s features at one point in time affects or even 

determines the kinds of designs it can change into later. For 

example the angle of the skull on the top of the spine left some 

extra space for the brain to expand. Thus the evolution of the 

organism is determined not only by selection pressures but by 

constraints and opportunities offered by the structures that 



 

have evolved so far. Also, and back again in what regards the 

evolution of collectives, it is known that during the evolution 

of life, there have been several transitions in which individuals 

began to cooperate, forming higher levels of organization and 

sometimes losing their independent reproductive identity 

(insect societies are one example). Several factors that confer 

evolutionary advantages on higher levels of organization have 

been proposed, such as Division of Labor and Increased Size. 

But recently, a new third factor was added: Information 

Sharing [15]. Lachmann et al., illustrate with a simple model 

how information sharing can result in individuals that both 

receive more information about their environment and pay less 

for it. Being social foraging essentially a self-organized 

phenomenon, the study of computational foraging embedded 

with GA (Genetic Algorithm) like natural selection can much 

probably enhance our understanding on the detailed forms of 

the hypothetical equation: Evolution = Natural Selection + 

Self-Organization, and in the precise role of each “variable”. 

As an example, current work in the same area [10], include the 

research of variable population size swarms, as used similarly 

in Evolutionary Computation [9], where each individual can 

have a probability of making a child, as well to die, depending 

on his accumulated versus spent energetic resources. The 

system as a whole, then proceeds on the search space as a kind 

of distributed evolutionary swarm. Finally and in parallel, an 

effort is being made in order to understand the societal 

memory and his speed on tracking extrema over dynamic 

environments using self-regulatory swarms based on the 

present model [30,10,29]. 
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