
On Gray-Coded Binary Representation for Supporting a
(Repair-by-Interpolation) Genetic Operator for Constrained

Optimization Problems

Steven Orla Kimbrough David Harlan Wood

Abstract— A new genetic operator is proposed in the context
of Genetic Algorithms that are applied to constrained opti-
mization problems with binary decision variables. A solution is
said to be feasible if it satisfies the constraints, and infeasible
otherwise. Provided the two inputs of the operator are of
differing feasibility, the operator outputs a infeasible/feasible
pair that differ by only a single bit. This is valuable because any
optimal solution is within a single bit of transitioning between
infeasibility and feasibility, unless the constraints are irrelevant.
The operator is implemented by binary search along a path
connecting the two inputs. The path is a portion of a randomly
selected Gray code (an ordered list of all binary strings having
the property that adjacent strings differ by a single bit).

I. INTRODUCTION

When problems depend on yes-or-no (binary) decision
variables, Genetic Algorithms (GAs) seem an especially
natural approach. In fact, GAs are often applied to opti-
mization problems with binary variables, even the challeng-
ing problems that have constraints on the variables. One
challenge peculiar to GAs is that the genetic operators—
mutation, crossover and others—typically do not respect the
constraints. Applying these operators can generate candidate
solutions that violate the constraints. (A violating solution is
said to be infeasible; otherwise a solution is feasible.)

This raises the still-vexing question of how to handle
infeasible solutions generated by a GA applied to a con-
strained optimization problem (COP). This question has long
been recognized (see [16], [17] and [19] for early surveys)
and remains an open one, on which much progress has
nonetheless been made. (See [18, chapter 9] and [5] for
recent surveys. See [9], [12], [10], [22] for examples of recent
innovative approaches.) This issue—of handling infeasible
solutions generated by a GA in processing a COP—naturally
raises a related problem: how to explore the boundary
between the feasible and infeasible regions of a COP. It is
this boundary exploration problem that we emphasize in our
ongoing research [9], [10], [12], [13].

What makes the boundary exploration salient for any
heuristic approach to COPs is the fact that, typically, optimal
and near-optimal solutions will lie on or near the boundary
of the feasible region. Note: These regions do not need
to be convex or even connected; the feasible region might

Steven Orla Kimbrough is a Professor of Operations and Information
Management, University of Pennsylvania, Philadelphia, PA, 19104, USA
(email: kimbrough@wharton.upenn.edu). David Harlan Wood is a Research
Professor of Computer and Information Sciences, University of Delaware,
Newark, DE 19714 USA (email: wood@cis.udel.edu).

look like the holes in a Swiss cheese. In speaking of “the
boundary between the feasible and infeasible regions” we are
not assuming that there is only one connected boundary, that
it is continuous, etc.

Notable prior work by Schoenauer and Michalewicz [25],
[26] has recognized the importance of boundary exploration.
Their work has presented techniques by which GAs may
explore the boundary of the feasible region, and these tech-
niques have achieved excellent results in certain cases. As
noted by their authors and in the review by Coello, however,
these particular approaches are not fully general [5]:

The main drawback of this approach is that the
operators designed are either highly dependent on
the chosen parameterization. . . , or more complex
calculations are required to perform crossover and
mutation. Also, many problems have disjoint fea-
sible regions and the use of operators of this sort
would not be of much help in those cases since they
would explore only one of those feasible regions.

In any event it is well worth exploring other approaches by
which GAs may probe the boundary in a COP. The so-called
feasible-infeasible two-population GA (FI2PopGA) is inter-
esting in this regard [9], [10], [12]. In the FI2PopGA, feasible
solutions are processed within the feasible population and
infeasible solutions within the infeasible population. The
effect of selection is that both populations tend to be driven
towards the boundary between the feasible and infeasible
regions, the result being a population-based exploration of
the boundary, both from the feasible and the infeasible sides.

Exploring the boundary between the feasible and infeasible
regions requires first finding solutions that are on or near the
boundary. How might these solutions be produced?

We propose a genetic operator, new to us, which invokes
the constraints on the binary variables, but does not depend
on any other problem-dependent information. The operator
maps one infeasible/feasible pair of solutions into another
such pair. Significantly, the two offspring differ only by
a single flipped bit, irrespective of the parents. This is
important because we are seeking feasible optimal and near-
optimal solutions, and they must have this property: changing
some single bit makes them infeasible. (Provided that the
constraints are relevant, which we assume. In the case of
knapsack problems, and many other problems, every optimal
solution is one bit away from infeasibility.)

The proposed operator uses an ordered list of all possible
bitstrings of length n. Each parent is a different one of the



possible bitstrings, and each occupies a particular position
on the list. We are particularly interested in lists of bitstrings
with the property that each bitstring differs from its neighbors
as little as possible, usually by a single bit. This is the defin-
ing property of Gray codes [14], [23]. Our operator starts
with two arbitrary bitstrings (“the parents”), one feasible and
one infeasible. The operator produces a feasible/infeasible
neighboring pair of bitstring children by doing binary search
between the two parents on a list of Gray-coded bitstrings.
This binary search uses at most n feasibility tests, where n
is the length of the bitstrings. Of course, one may restrict
search to only the k bits that differ in the two parents. This
restriction to differing bits is used in alternative forms of
crossover that emphasize exploitation, e.g., [27].

The next section presents basic information on constrained
optimization. After that we provide a more detailed construc-
tion of the proposed operator. We then briefly interpret the
proposed operator to be an analog of real-variable interpola-
tion. This is followed by two sections suggesting possible
applications of the proposed operator to GAs. Particular
attention is focused on aspects related to exploration and
exploitation. The overall emphasis is that there are intriguing
possibilities, but little is yet known about this proposed
operator, and much additional research is called for.

II. CONSTRAINED OPTIMIZATION

By way of background, optimization problems may use-
fully be distinguished as either constrained or unconstrained.
Our focus in this paper is on constrained optimization
problems,1 which have the following general form:

max z = d(~x) (1)

subject to

xl ∈ Sl, l = 1, 2, . . . , n (2)
~x = (x1, x2, . . . , xn) (3)

fi(~x) ≤ ai, i = 1, 2, . . . , nf (4)
gj(~x) ≥ bj , j = 1, 2, . . . , ng (5)
hk(~x) = ck, k = 1, 2, . . . , nh (6)

d(~x) in expression (1) is called the objective function for
the problem. Its value, z, is what we seek to maximize
(or minimize) by finding values of, or settings for, the
decision variables, the xls, that yield the highest (or lowest
if minimizing) value for z among the settings that satisfy the
constraints, namely the expressions (4)–(2). Such a setting
of values for the decision variables is said to be optimal.

Any particular choice of the values for the decision
variables is called a solution to the problem, regardless of
whether it is optimal or whether it satisfies the constraints.
A solution that satisfies all of the constraints is said to be
feasible, otherwise it is infeasible. Optimal solutions must be
feasible, but need not be unique.

1The distinction is perhaps not absolute, since there are cases in which
constraints may be made latent by an alternative encoding of the problem.

The constraints, as we have just noted, serve to classify
solutions as either feasible or infeasible. The right-hand side
(RHS) values of the inequality constraints, the ais, bks and
the cjs, are said to define boundaries between the feasible
and infeasible regions for the problem. A given solution, ~x,
is said to be near to the boundary (for a particular constraint)
if the left-hand side of the constraint is close (pragmatically
defined for the problem at hand) to the right-hand side. The
solution is said to be on the boundary if the left-hand side
equals the right-hand side. More generally, we say that a
solution is on or near the boundary of the feasible region
if it is on or near the boundary of at least one constraint.
In typical constrained optimization problems encountered in
practice, the optimal solutions, as well as the good (near
optimal) solutions, are on or near the boundary.

III. IMPLEMENTATION OF THE PROPOSED OPERATOR

We now focus on the special case of constrained opti-
mization in which the decision variables may have one of
two values. That is, we may model them as binary, so that
xl ∈ {0, 1}.

Definitions. By numerical binary order for the set of
bitstrings of fixed length, we mean ordering them according
to their numerical interpretation coded in the standard, base
2 binary fashion. By Gray code order for the set of bitstrings
of fixed length, we mean an order given by a particular Gray
code. We use Gray codes with the property that adjacent
bitstrings differ by a single bit. (Knuth sometimes allows
differences of more than one bit [14].) There are a huge, and
unknown, number of Gray codes.

When the proposed operator calls for a randomly selected
uniform Gray code, one option is simply to offset the
indexing of one particular Gray code by a pseudorandomly
generated bitstring, as is done for an unbalanced Gray code
in [23]. We use these key functions:

1) GrayToBin returns a binary representation of the index
of a bitstring in a Gray code.

2) BinToGray returns the bitstring in a Gray code, given
a binary representation of its index.

3) BinAverage returns a natural binary representation that
is the average to two given binary representations

In outline the procedure is as follows. We work throughout
assuming two populations of solutions: a population of
feasible solutions and a population of infeasible solutions. A
solution, in our discussions, is just a string of binary digits; its
interpretation is set by the GA’s fitness evaluation function.

1) Pick a feasible solution and assign it to the variable
feasible.

2) Pick an infeasible solution and assign it to the variable
infeasible.

3) binFeasible ⇐ GrayToBin(feasible)
4) binInfeasible ⇐ GrayToBin(infeasible)
5) binTest ⇐

BinAverage(binFeasible, binInfeasible)
6) If binTest = binFeasible or

binTest = binInfeasible, halt and accept



feasible and infeasible as adjacent; otherwise
continue.

7) grayTest ⇐ binToGray(binTest)
8) Determine whether grayTest is feasible.
9) If grayTest is feasible, set:

feasible ⇐ grayTest
If grayTest is infeasible, set:
infeasible ⇐ grayTest

10) Continue at step 3.

IV. THE PROPOSED OPERATOR INTERPOLATES TO THE
INFEASIBLE/FEASIBLE BOUNDARY

On one hand the proposed operator is a genetic operator
in the sense that two parent bitstrings produce two offspring
bitstrings that compromise between the bitstrings of the
parents. On the other hand, we can consider the operator
to “randomly interpolate to the infeasible/feasible boundary.”
We now discuss the analogy between the proposed operator
and the operator of interpolation.

If we wanted to find the infeasible/feasible boundary in a
problem where the variables were real (not binary), we would
numerically interpolate variables. That is, we would do a
binary search along a straight line connecting the endpoints
defined by the two parents. For binary variables, we replace
selecting a straight line with selecting from an ordered list of
discrete bitstrings, usually from a segment of a Gray-coded
list. The analogy wavers because there are many Gray codes
for discrete variables, but only one linear segment defined by
the parents in the real variable case. The analogy recovers if it
is broadened. In the case of continuous variables, one could
search for the infeasible/feasible boundary along arbitrary
continuous nonlinear curves linking the parents. In fact, this
is likely to be a useful exploration, producing essentially
random samples on the boundary. Randomly selected Gray
codes do this in the case of binary variables.

Remark 1: Interpolation between two bit strings, one fea-
sible and one infeasible, results in a feasible/infeasible pair
of bitstrings whose indices are adjacent. We observe that if
the bitstrings are indexed using a Gray code where neighbors
differ by one bit, then the resulting feasible/infeasible pair
of bitstrings also differs by only one bit.

Remark 2: The Gray code usually used in evolutionary
computation is the standard binary reflected Gray code [14].
However, to avoid biases that depend on the location of
a variable within a bitstring, the proposed operator would
need to use so-called balanced Gray codes [2]. In a balanced
Gray code, the number of bit changes is maximally uniform
among the bit positions. Other types of Gray codes [14] with
additional or alternative properties might also be useful.

Remark 3: The interpolation between an original feasible
solution and an original infeasible solution using any ordered
list of bitstrings is guaranteed to produce a final feasi-
ble/infeasible pair. Either one of the final pair of solutions
may, of course, happen to be identical with one of the
original solutions. (For example, some problems have only
one feasible solution.) The paramount fact is: given a feasible
bitstring and an infeasible bitstring any bitstring between

them will either be feasible or infeasible, which determines
a feasible/infeasible pair closer together.

Remark 4: The interpolation process produces a feasi-
ble/infeasible pair, regardless of the shape of the feasible
region. In particular, the feasible region need not be convex
or even connected; it may contain infeasible regions and
indeed be completely arbitrary. Additionally, the constrained
optimization problem need not be linear; interpolation allows
any functions whatsoever to characterize the objective and
the constraints.

Remark 5: Our method applies to constrained optimiza-
tion problems having binary decision variables. This class
is large, interesting, challenging, and significant for appli-
cations. Even the restricted class of problems with only
binary variables is itself large, interesting, challenging, and
significant for applications. Among these are knapsack prob-
lems, such as multidimensional knapsack problems (e.g.,
[24] and references therein), multiple knapsack problems,
multiple-choice knapsack problems, and quadratic variants of
all of these types [15], [4], [8], [7]. The class also includes
generalized assignment problems [3], [28], [29]. Relevant
problem sets can be found at [1], [6], [21]. Although we
focus here on binary decision variables and hence on binary
Gray codes, we note that there exist Gray codes for other
discrete variables, including n-ary variables, which might be
used in a fashion similar to the above [14].

V. CONTRASTING THE OPERATOR TO
MORE USUAL ONES

The proposed operator can be used in conjunction with
more usual genetic operators. However, is it distinguished
from the following operators in the ways listed below.

• Repair. We have a general method for repairing infea-
sible solutions. This method does not require additional
problem-dependent information. The proposed operator
uses only constraint information, which is given in the
definition of the problem.

• Mutation. Randomly selecting a new Gray code for each
application of the proposed operator is a type of muta-
tion. This generally affects multiple bits, which is more
change than is usual for conventional mutation. Yet,
unlike conventional mutation, the results are guaranteed
to be within one bit of feasibility.

• Crossover. The proposed operator uses not just limited,
undirected random choice(s) of bitstring portions to be
exchanged, but rather makes multiple decisions based on
constraint-directed binary search. Again, the offspring
are an infeasible/feasible pair differing by a single bit.

VI. PRODUCTION OF FEASIBLE SOLUTIONS

In many constrained optimazation problems it is difficult to
find any feasible solutions at all. The proposed operator may
be particularly helpful in this regard. One can interpolate
between any infeasible/feasible pair. This process yields
an intermediate pair of infeasible/feasible offspring — in
particular, another feasible solution (although it might happen
to be identical with the original feasible solution). Each



additional interpolation of a given pair generally results
in different offspring. This is true even if the parents are
themselves are already on the boundary. The non-unique
results of interpolation are due to using a different randomly
selected Gray code each time. Although non-unique results
are the rule, an exception is that the feasible offspring can
be identical to the feasible parent. In particular, the problem
might happen to have only one feasible solution.

VII. EXPLORING THE INFEASIBLE/FEASIBLE BOUNDARY

Points arising:
1) GAs typically produce a large number of samples

from the decision space of a constrained optimization
problem. We observe that using the proposed operator
generates samples of solution space near both sides of
the infeasible/feasible boundary. These samples may
be valuable for post-evaluation questions concerning
relaxation and/or tightening of constraints [13]. For the
relaxation possibilities, we are interested in infeasible
solutions near the present boundary, some of which
might become feasible were the boundary constraints
relaxed.

2) Crossbreeding among two pairs of siblings would be
one technique of exploring along the infeasible/feasible
boundary. Even incest would not be cloning, since a
different Gray code would be used for each application
of the proposed operator.

3) A Gray code is typically a circular list of bitstrings of
a particular length. We could take the shorter sublist
starting with one parent and ending with the other.
Even if parents are close to each other in the Gray code
order, the proposed operator has an aspect of explo-
ration. Since a Gray code is a circular list, exploration
could be enhanced by using the other, longer of the
two list segments connecting the two parents.

4) Given a feasible solution, its complement, generated
by flipping all of its bits, is far away (at the maximum
possible Hamming distance), and is very likely to be
infeasible. Applying the proposed operator to two such
solutions would be likely to be explorative.

5) Repeatedly applying the proposed operator to any
infeasible parent and to one feasible parent (however
trivial, e.g. all zeros) might be used for initializing
populations, since we wish to explore near the in-
feasible/feasible boundary. The results would tend to
be distinct because each application of the proposed
operator uses a different Gray code.

VIII. CROSSBREEDING INFEASIBLE AND
FEASIBLE POPULATIONS

We are intrigued by prior research that has advocated
exploring the boundary region by evolving two populations,
one of infeasible solutions and one of feasible solutions
(FI2PopGA, cited above, is a special case). Selection for
breeding within the feasible population involves, as usual,
fitness being equated with good objective function values.

Selection for breeding within the infeasible population in-
volves fitness being equated with low constraint violations.

The key idea is that breeding two individuals in a popula-
tion can result in (genetically similar) individuals migrating
into the other population. Utimately, we have two genetically
similar populations, one minimizing constraint violations and
the other maximizing objective functions values. This genetic
similarity of the two populations is our notion of convergence
to one or more optima.

Rather than leaving migration between the two populations
to chance, interpolation can serve as a form of crossbreeding.
A selected infeasible/feasible pair of parents gives rise to
an infeasible/feasible pair of offspring as elaborated earlier.
On one hand, the infeasible individual of this pair could be
allowed to replace its infeasible parent because it has minimal
constraint violation. Minimal in the sense that flipping a
particular single bit would convert it into a feasible individual
(its sibling). On the other hand, the feasible sibling could be
used replace its feasible parent if it has a sufficently high
objective function value. Many variations are possible and
need to be investigated, for example:

1) Select the feasible parents because their objective func-
tion values are promising. And/or select the infeasible
parents by a small count (or other measure) of con-
straint violations. Or select parents by their genetic
similarity (small Hamming distance).

2) The proposed operator could be applied to a restricted
subset of bits, for example to only those positions that
differ in the two parents as in [27]. This could be
exploitive if used in the immediate neighborhood of a
solution having a promising objective function value.

The proposed operator is superficially similar to optima
linking [20], which addresses a more difficult matter. Optima
linking, roughly speaking, searches a Gray code type path
between two relative optima seeking new relative optima.
This task is not amenable to binary search since (1) the
path is generated by a greedy search using repeated fitness
evaluations, and (2) objective function values are continuous,
which is very unlike feasibility which is itself a binary notion.

IX. COMPUTATIONAL EXPLORATIONS

In expanding upon the observations above we will, for the
sake of illustration, provide computational results for a single
constraint knapsack problem. This will help to demonstrate
concepts clearly. More extensive evaluation of concepts and
algorithms must await future investigation.

A. An Illustrative Problem

The following class of problems is used for our illustra-
tions. Knapsack problems with a single constraint are a very
special case of constrained optimization problems. In words,
the problem is to select various objects that will fit into a
given ‘knapsack’ so as to maximize their total value, subject
to a constraint on their total ‘weight.’ The problem has the
following form: max z =

∑n
i=0 pixi subject to the constraint∑n

i=0 wixi ≤ c by selecting xi ∈ {0, 1}, i = 0, 1, 2, . . . , n.



Interpolating infeasible solutions with randomly-chosen fea-
sible solutions:

1) Knap101, 1000 runs. Initially feasible:infeasible ≈ 1:1
(e.g., 150, 150), but with a slight bias towards having
more infeasible than feasible solutions.

2) KnapRandom100, 100 runs, vvv = 50, rrr = 36,
rhsDeflator = 0.18. Initially feasible:infeasible ≈
1:1 (e.g., 150, 150).

3) KnapRandom400, 100 runs, vvv = 50, rrr = 36,
rhsDeflator = 0.18. Initially feasible:infeasible ≈
1:1 (e.g., 150, 150).

4) KnapRandom100, 100 runs, vvv = 50, rrr = 36,
rhsDeflator = 0.14. Initially feasible:infeasible ≈
1:5 (e.g., 50, 250).

5) KnapRandom100, 100 runs, vvv = 50, rrr = 36,
rhsDeflator = 0.22. Initially feasible:infeasible ≈
5:1 (e.g., 250, 50).

Interpolating feasible solutions with randomly-chosen infea-
sible solutions:

6) Knap101, 100 runs. Initially feasible:infeasible ≈ 1:1
(e.g., 150, 150), but with a slight bias towards having
more infeasible than feasible solutions.

7) KnapRandom100, 100 runs, vvv = 50, rrr = 36,
rhsDeflator = 0.18. Initially feasible:infeasible ≈
1:1 (e.g., 150, 150).

Interpolating feasible solutions with the ideal solution of all
1s:

8) Knap101, 100 runs. Initially feasible:infeasible ≈ 1:1
(e.g., 150, 150), but with a slight bias towards having
more infeasible than feasible solutions.

Interpolating infeasible solutions with ideal pessimal solution
of all 0s:

9) Knap101, 100 runs. Initially feasible:infeasible ≈ 1:1
(e.g., 150, 150), but with a slight bias towards having
more infeasible than feasible solutions.

10) KnapRandom200, 4 runs. Initially feasible:infeasible
≈ 1:3 (e.g., 75, 225). vvv = 100, rrr = 68, and
rhsDeflator = 0.18.

* * *
11) Knap101, 4 runs, 400 generations.
12) KnapRandom200, 4 runs. vvv=100, rrr=68,

rhsDeflator = 0.08. maxFeasiblePop
= maxInfeasiblePop = 100. Number of
generations is 200. Initially feasible:infeasible ≈ 1:7
(e.g., 25:175 or less).

Fig. 1. List of Experiments

In several of our examples, we use Knap101. It has 50
decision variables; specifics are available from the authors.
We also use what we call the KnapRandomX families of
problems. These are randomly generated knapsack problems
of the above form, having X decision variables. Our method
for generating random knapsack problems follows, but gen-
eralizes, the standard method given in [15, page 67]. For all
of the experimental results reported here, we used the system
clock to initialize the random number generator.

Throughout, we use our version of the FI2PopGA. Unless
otherwise noted, the feasible and infeasible populations were
limited to 150 solutions each. The mutation rate was 0.025
per bit and the (single point) crossover rate was 0.4. We use
tournament selection within a population to obtain parents.
For both populations we use elite-2 selection: each new
generation contains the best two solutions from the previous
generation. For initialization, we use the “unbiased” method
described in [11]: at initialization of each solution a new
random float ∼ U(0, 1) is drawn to set the probability any
given bit in the solution will be set to 1.

B. First Experiments: Repairing Initially Infeasible Solutions

In each of these experiments we randomly generated 300
solutions and grouped them by feasibility. We then repaired
each infeasible solution. A random feasible solution was
chosen and the feasible-infeasible pair was interpolated to the
boundary. The resulting feasible interpolant (= interpolated
solution) was placed in the feasible interpolant pool of
solutions for comparison with the pool of originally feasible
solutions. In consequence we obtained two pools of feasible
solutions. Each experiment consisted of a number of runs
and for each run four statistics were kept: (1) AvgOrig, the
average objective value of the originally feasible solutions,
(2) MaxOrig, the maximum objective value of the originally
feasible solutions, (3) AvgIntp, the average objective value
of the feasible interpolants, and (4) MaxIntp, the maximum
value of the feasible interpolants. As summary statistics we
report for each experiment: (1) AvgAvgOrig, the average of
the averages of the objective values of the originally feasible
solutions, (2) AvgMaxOrig, the average of the maxima of
the objective values of the originally feasible solutions, (3)
MaxMaxOrig, the maximum of the maxima of the objective
values of the originally feasible solutions, (4) AvgAvgIntp,
the average of the average objective values of the feasible
interpolants, (5) AvgMaxIntp, the average of the maximum
values of the feasible interpolants, and (6) MaxMaxIntp,
the maximum of the maximum values of the feasible in-
terpolants.

In experiment 1 we performed 1000 runs on Knap101.2

We used 100 runs in experiments 2–5. In experiments 1–3
the number of initially feasible solutions was approximately
equal to the number of infeasible solutions. In experiment
4 we created problems with a smaller feasible region, so
that only about 1 in 6 randomly-created solutions will be
feasible. And in experiment 5 we increased of the feasible

2All experiment numbers refer to items in Figure 1 (see column to left).



Experiment AvgAvgOrig AvgMaxOrig MaxMaxOrig AvgAvgIntp AvgMaxIntp MaxMaxIntp
1 330.4594482 635.69538 901.936 457.8797974 771.946516 960.744
2 368.5132581 612.4411306 732.1630616 439.3148596 649.9477374 808.3502723
3 1672.045458 2174.013643 2427.176228 1833.404816 2253.418637 2613.169806
4 303.3196018 486.0084794 616.8792745 344.485491 545.2255911 685.2194071
5 422.2505364 728.8195957 842.2539274 542.6197975 734.9440063 909.9526299

Fig. 2. Summary of results for repairing initially infeasible solutions by interpolating against randomly-chosen feasible solutions

Experiment AvgAvgOrig AvgMaxOrig MaxMaxOrig AvgAvgIntp AvgMaxIntp MaxMaxIntp
6 330.4371184 635.40656 830.804 456.7755909 758.98987 879.141
7 371.5201013 623.7840595 779.4256039 445.9818806 658.9039887 876.0144186

Fig. 3. Summary of results for interpolating initially feasible solutions against randomly-chosen infeasible solutions

Experiment AvgAvgOrig AvgMaxOrig MaxMaxOrig AvgAvgIntp AvgMaxIntp MaxMaxIntp
8 330.9452238 633.325 768.989 438.8640487 741.42532 862.331
9 329.1461737 629.13159 760.592 486.169911 781.27642 927.559

Fig. 4. Summary of results for interpolating to ideal solutions. 8: feasible solutions interpolated to all 1s solution, Knap101. 9: infeasible solutions
interpolated to all 0s solution, Knap101. *Orig refers to the initial feasible population.

region so that about 5 of 6 randomly-created solutions being
feasible. The summary results in Figure 2 display a clear, and
we think remarkable, pattern: AvgAvgIntp > AvgAvgOrig,
AvgMaxIntp > AvgMaxOrig, and MaxMaxIntp > MaxMax-
Orig. In short, throughout the summary statistics Intp >
Orig; on balance the solutions obtained by interpolation from
the infeasible solutions have higher objective function values
(higher fitnesses in the GA), than the feasible solutions that
were randomly created.

We note that while the feasible solutions discovered in
this process are often very good, they are far from optimal.
For example, the optimal objective function value for the
problem in experiment 1 is 1119.984. A good lower bound
estimate (using the bang-per-buck heuristic) for the problem
in experiment 3 is 4373.; for experiment 5 it’s 1334.7.

C. Second Experiments: Improving Feasible Solutions

Figure 3 summarizes the results of our second group of
experiments, experiments 6 and 7. In these experiments we
interpolate initially feasible solutions and retain the resulting
feasible interpolants. Again we have the pattern: AvgAvgIntp
> AvgAvgOrig, AvgMaxIntp > AvgMaxOrig, and Max-
MaxIntp > MaxMaxOrig. In short, throughout the summary
statistics in Figure 3, Intp > Orig; on balance the solutions
obtained by interpolation from the initial feasible solutions
have higher objective function values (higher fitnesses in the
GA), than the feasible solutions that were randomly created.

D. Third Experiments: Interpolating Against Ideals

Assuming its parameters pis and wis are > 0 and that
it is non-degenerate, the single-constraint knapsack has the
useful properties that (a) the solution consisting of all 0s
is feasible and it is the worst possible solution in terms
of the objective function, and (b) the solution consisting of
all 1s is infeasible and it is the best possible solution in
terms of the objective function. Figure 4 presents summary

results from interpolating initially feasible solutions with the
all 1s solution (experiment 8) and the initially infeasible
solutions with the all 0s solution (experiment 9). Again we
have the pattern: AvgAvgIntp > AvgAvgOrig, AvgMaxIntp
> AvgMaxOrig, and MaxMaxIntp > MaxMaxOrig. Note
further that on balance the (feasible) interpolants produced
from originally infeasible solutions have higher objective
function values than those produced from feasible solutions.

Experiment 10, see Figure 1 previous page, consisted of
four runs of larger randomly picked knapsack models. The
basic pattern we have observed showed up again: feasible
interpolants, of whatever origin, score better than randomly-
generated feasible solutions.

E. Fourth Experiments: After Evolution

In experiment 11 we ran the Knap101 model for 400
generations, which is usually more than sufficient for it to
find the optimal solution. We then interpolated the feasible
population against random members of the infeasible popu-
lation and against the all 1s solution. The interpolants were
uniformly worse. In fact, the best (in terms of objective
function value) of the interpolants was always in the lower
20% of the feasible population produced by the GA (so long
as the interpolant was different than the original feasible so-
lution). The story is the same on the infeasible side. Starting
with infeasible solutions from generation 400, interpolating
them to randomly chosen feasible solutions from the same
generation or to the all 0s solution produces similarly weak
feasible interpolants. Optimal solutions cannot, of course,
be improved. In knapsack problems optimal solutions will
always be on the boundary: except in degenerate cases
(everything fits into the knapsack) the constraint will be
violated if anything is added to the knapsack. It is interesting
that optimal and near-optimal solutions get interpolated away
to suboptimal boundary points, indicating that there are many
feasible boundary points.



Experiment 12 examined a larger knapsack (200 decision
variables) with a tighter constraint. Only about 1 in 8 or
9 randomly generated solutions was feasible. After 200
generations, the sizes of the feasible populations ranged from
5 to 11. Again, the best feasible solutions were not beaten by
interpolating feasible solutions with either randomly chosen
solutions from the infeasible of that generation or the all
1s solution, but the interpolants did score well and did not
duplicate the initially feasible solutions. For example, and
typically, in the fourth run we have the results shown in
Figure 5. We note that none of the runs in experiment 12
found an optimal solution to its problem. The best solutions
found had objective values about 85–90% of the optimal.

In this run (which we find is quite typical) the infeasible
population was of size 100, its maximum permitted value
(see Figure 1). When these 100 infeasible solutions are inter-
polated to randomly chosen feasible solutions among the 8 in
the feasible population, here are the sorted objective function
values of the 100 resulting feasible solutions: 953.7401375
1385.121247 1400.818535 1409.095454 1573.354134 1607.692244
1774.67235 1786.891265 1820.017177 1832.511014 1833.648248
1850.374017 1861.316226 1862.996277 1928.474713 1936.003116
1936.003116 1936.003116 1936.003116 1936.003116 1936.003116
1936.003116 1939.961534 1942.559182 1950.725671 1958.004054
1959.444116 1960.111642 1963.469811 1963.895414 1969.476822
1975.466384 1975.466384 1975.466384 1988.134225 1991.881893
1991.881893 1994.40392 1999.221382 2006.120408 2006.120408
2011.830358 2011.830358 2011.830358 2012.004854 2017.356767
2023.263264 2035.127962 2036.835572 2037.470537 2041.786931
2045.906973 2061.273095 2063.987422 2064.793809 2064.883457
2072.336159 2072.49661 2073.168302 2075.469891 2108.245197
2108.936309 2116.19405 2116.19405 2116.19405 2116.19405
2116.19405 2116.19405 2116.19405 2118.522289 2125.946244
2130.967787 2130.967787 2131.277531 2134.322301 2134.322301
2157.942916 2180.384362 2180.384362 2188.357803 2263.191409
2263.191409 2263.191409 2263.191409 2263.191409 2263.191409
2263.191409 2263.191409 2263.191409 2263.191409 2263.191409
2263.191409 2269.152024 2269.152024 2315.398036 2315.398036
2315.398036 2315.398036 2315.398036 2320.220241
Notice that there are few duplications and, most interestingly,
61 of the 100 values beat the weakest member (2005.58) of
the feasible population produced by the GA. (Compare with
the left-most column of Figure 5.)

X. DISCUSSION AND CONCLUSION

We have proposed and made preliminary investigation of
an interpolation operator for GAs with binary variables. This
operator has the attractive property that if initiated with a
feasible/infeasible pair, it returns a feasible/infeasible pair
such that these two solutions differ by one bit and hence are
on or one bit away from the boundary between the feasible
and infeasible regions of the problem. The operator has at-
tractive computational properties in that at most n feasibility
tests are needed to evaluate intermediate interpolants during
the process of obtaining a feasible/infeasible pair. Further,
we have reported exploratory computations indicating that
this interpolation operator can find additional good and

sometimes better solutions from a randomly generated initial
population. If the GA is run to maturity, our preliminary
computations indicate that interpolation is not particularly
productive for the examples we report here. However, for
more difficult problems interpolation may be useful even
after considerable effort by the GA. All this is, of course,
entirely exploratory and quite provisional, although it does
agree with findings we do not report here.

It remains to be seen whether, or better, under what
conditions, investing in finding interpolants yields a larger
return than other available alternatives, such as just running
the GA longer or with a larger population. How that will
come out will, of course, very much depends on the specifics
of the problem. Our sense is that single-constraint knapsack
problems are not particularly good candidates, if only be-
cause good solutions are found comparatively easily. (For
the record, we have tried some fairly obvious ways, simpler
than those indicated in §8, of incorporating interpolation into
the GA for these knapsack problems and cannot report being
able to make it pay.)

We conclude with two comments bearing on the ultimate
usefulness of interpolating feasible/infeasible pairs. First, it
is often the case in practice that finding any feasible solution
or more than just a few is very difficult. Interpolation offers
the prospect, as we have seen realized, of finding very many
new feasible solutions, even for a reasonably mature run of
a GA. We illustrated this at the end of the previous section.
Second, our interpolants are all on or next to (“at”) the
boundary of the feasible region. Having so many solutions
at the boundary may constitute excess exploitation. Moving
feasible interpolants away from the boundary, towards the
interior (say by moving them away from their infeasible
siblings) is an exploratory move that merits investigation.

In conclusion, we can see several reasons why, in principle,
it should be interesting and useful to undertake interpolation
to find feasible/infeasible pairs on the boundary of the
feasible region of a constrained optimization problem.

1) In very many constrained optimization problems of
practical import simply finding any feasible solutions
is a major impediment (see [9] for a case study).
Interpolation offers the prospect of reliably generating
many new feasible solutions, given just one feasible
solution. Our computational experience to date is very
encouraging in this regard.

2) Probing the boundary of the feasible region is generally
recognized as a important tool in constrained opti-
mization. Reliably producing feasible/infeasible pairs
differing by one bit is, we believe, a most promising
development in this regard.

3) Interpolation may produce, or may produce more
quickly, new feasible solutions that are comparatively
attractive. Our experience to date with single con-
straint knapsack problems is not encouraging in this
regard, but this is hardly dispositive. More challenging
problems need to be investigated as do supplemental
heuristics, such as employing local search. Interpola-



Member of feasible population Feasible interpolant
Objective value LHS value Objective Value LHS value

2346.797719 770.1437964 2315.398036 774.5137867
2346.797719 770.1437964 2320.220241 773.3859092
2147.593732 760.9960162 1928.884528 743.9253863
2077.306655 730.510768 2108.245197 774.9858825
2064.883457 710.9321947 2157.942916 776.3604129
2031.042331 713.9834285 2075.469891 746.8758016
2019.609426 755.7276373 1936.003116 739.8352388
2005.576649 659.5797118 2007.721724 775.9250049

Fig. 5. Example from experiment 12. The feasible population after 200 generations and the feasible results of interpolating the feasible solutions to
randomly chosen solutions from the infeasible population.

tion may be usefully preparatory to local search to
move solutions off the boundary slightly, where they
may be evolutionarily blocked by a jagged frontier.

REFERENCES

[1] J. E. Beasleyy. OR-Library. World Wide Web, Accessed 2007-
03-30. http://people.brunel.ac.uk/∼mastjjb/jeb/
info.html.

[2] G. S. Bhat and C. D. Savage. Balanced Gray codes. Electronic Journal
of Combinatorics, 3(1):R25, 1996.

[3] P. C. Chu and J. E. Beasley. A genetic algorithm for the generalized
assignment problem. Computers and Operations Research, 24(1):17–
23, 1997.

[4] P. C. Chu and J. E. Beasley. A genetic algorithm for the multidi-
mensional knapsack problem. Journal of Heuristics, 4(1):63–86, June
1998.

[5] C. Coello. Theoretical and numerical constraint handling tech-
niques used with evolutionary algorithms: A survey of the
state of the art. Computer Methods in Applied Mechanics
and Engineering, 191(11–12):1245–1287, January 2002. cite-
seer.ist.psu.edu/coello02theoretical.html.

[6] GAMS World. Global world. Pages on the World Wide Web, http:
//www.gamsworld.eu/, accessed 2007-03-30.

[7] A. Hiley and B. A. Julstrom. The quadratic multiple knapsack problem
and three heuristic approaches to it. In Proceedings of the Genetic and
Evolutionary Computing Conference (GECCO ’06), pages 547–552,
Seattle, Washington, USA, July 8–12, 2006. Available in the ACM
digital library.

[8] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems.
Springer, Berlin, Germany, 2004.

[9] S. O. Kimbrough, M. Lu, and S. M. Safavi. Exploring a financial
product model with a two-population genetic algorithm. In Proceed-
ings of the 2004 Congress on Evolutionary Computation, pages 855–
862, Piscataway, NJ, June 19–23, 2004. IEEE Neural Network Society,
IEEE Service Center. ISBN: 0-7803-8515-2.

[10] S. O. Kimbrough, M. Lu, and D. H. Wood. Exploring the evolutionary
details of a feasible-infeasible two-population GA. In X. Yao et al.,
editors, Parallel Problem Solving from Nature – PPSN VIII, volume
3242 of LNCS: Lecture Notes in Computer Science, pages 292–301.
Springer-Verlag, Berlin, Germany, 18-22 September 2004.

[11] S. O. Kimbrough, M. Lu, D. H. Wood, and D. J. Wu. Exploring a two-
market genetic algorithm. In W. B. Langdon, E. Cantú-Paz, and et al.,
editors, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2002), pages 415–21, San Francisco, CA, 2002.
Morgan Kaufmann.

[12] S. O. Kimbrough, M. Lu, D. H. Wood, and D. J. Wu. Exploring
a two-population genetic algorithm. In E. Cantú-Paz et al., editors,
Genetic and Evolutionary Computation (GECCO 2003), LNCS 2723,
pages 1148–1159, Berlin, Germany, 2003. Springer.

[13] S. O. Kimbrough and D. H. Wood. On how solution pop-
ulations can guide revision of model parameters. Late break-
ing papers, GECCO 2006, July 2006. lbp133.pdf at GECCO
2006. Available at http://opim-sky.wharton.upenn.edu/
∼sok/sokpapers/2007/lbp133.pdf.

[14] D. E. Knuth. The Art of Computer Programming, volume 4, fascicle
2. Addison-Wesley, Upper Saddle River, NJ, 2005.

[15] S. Martello and P. Toth. Knapsack Problems: Algorithms and Com-
puter Implementations. John Wiley & Sons, New York, NY, 1990.

[16] Z. Michalewicz. Do not kill unfeasible individuals. In Dabrowski,
Michalewicz, and Ras, editors, Proceedings of the Fourth Intelligent
Information Systems Workshop (IIS’95), pages 110–123, Augustow,
Poland, 5–9 June 1995.

[17] Z. Michalewicz. A survey of constraint handling techniques in evo-
lutionary computation methods. In J. R. McDonnell, R. G. Reynolds,
and D. B. Fogel, editors, Proc. of the 4th Annual Conf. on Evolutionary
Programming, pages 135–155, Cambridge, MA, 1995. MIT Press.

[18] Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics.
Springer, Berlin, Germany, 2000.

[19] Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for con-
strained parameter optimization problems. Evolutionary Computation,
4(1):1–32, 1996.

[20] S. B. Rana and L. D. Whitley. Bit representations with a twist. In
T. Bäck, editor, ICGA, pages 188–195. Morgan Kaufmann, 1997.

[21] C. A. I. Repository. SAC94 Suite: Collection of multi-
ple knapsack problems. World Wide Web, Accessed 2007-
03-30. http://www-2.cs.cmu.edu/afs/cs/project/
ai-repository/ai/areas/genetic/ga/test/sac/.

[22] R. L. Riche and F. Guyon. Dual evolutionary optimization. In Artificial
Evolution, pages 281–294, 2001.

[23] J. Rowe, D. Whitley, L. Barbulescu, and J.-P. Watson. Properties of
Gray and binary representations. Evol. Comput., 12(1):47–76, 2004.

[24] M. Sakawa and K. Kato. Genetic algorithms with double strings for 0-
1 programming problems. European Journal of Operational Research,
144(3):581–597, 2003.

[25] M. Schoenauer and Z. Michalewicz. Evolutionary computation at the
edge of feasibility. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-
P. Schwefel, editors, Proceedings of the 4th Parallel Problem Solving
from Nature, Lecture Notes in Computer Science, Vol. 1141, pages
245–254, Berlin, Germany, 22–27 September 1996. Springer-Verlag.

[26] M. Schoenauer and Z. Michalewicz. Sphere operators and their
applicability for constrained parameter optimization problems. In H.-
M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors,
Evolutionary Programming VII: Proceedings of the Seventh Annual
Conference on Evolutionary Programming, Lecture Notes in Computer
Science, Vol. 1447, pages 241–250, San Diego, CA, March 1998.
Springer-Verlag.

[27] J.-P. Watson, C. Ross, V. Eisele, J. Denton, J. Bins, C. Guerra, L. D.
Whitley, and A. E. Howe. The traveling salesrep problem, edge
assembly crossover, and 2-opt. In A. E. Eiben, T. Bäck, M. Schoenauer,
and H.-P. Schwefel, editors, PPSN, volume 1498 of Lecture Notes in
Computer Science, pages 823–834. Springer, 1998.

[28] J. M. Wilson. A genetic algorithm for the generalised assignment
problem. Journal of the Operational Research Society, 48(8):804–
809, August 1997.

[29] M. Yagiura, T. Ibaraki, and F. Glover. An ejection chain approach for
the generalized assignment problem. Informs Journal on Computing,
16(2):133–151, 2004.


