Grammatical Evolution Guided by Reinforcement

Jack Mario Mingo, Ricardo Aler

Abstract—Grammatical Evolution is an evolutionary
algorithm able to develop, starting from a grammar, programs
in any language. Starting from the point that individual
learning can improve evolution, in this paper it is proposed an
extension of Grammatical Evolution that looks at learning by
reinforcement as a learning method for individuals. This way, it
is possible to incorporate the Baldwinian mechanism to the
evolutionary process. The effect is widened with the
introduction of the Lamarck hypothesis. The system is tested in
two different domains: a symbolic regression problem and an
even parity Boolean function. Results show that for these
domains, a system which includes learning obtains better results
than a grammatical evolution basic system.

I. INTRODUCTION

Grammatical Evolution [1], is an Evolutionary Algorithm
able to develop, starting form a grammar, programs in
any language. It differs from Genetic Programming [2] in
that the individuals who represent the programs are not trees,
but variable length linear genome. In order to generate a
program from a genome, we need a mapping process that
transforms any of the codons (8 bits groups) that compose
the genome in the necessary information to select a BNF
grammar production rules.

A grammar is used to build the program using the
production rules depending on the genome, starting from the
start symbol. In order to select a production rule, a codon of
the genome is read, and a formula is applied; with this
formula, a number which represents the production rule to be
used is obtained. This way, the genome is passed through
until a complete program is built. The use of a grammar
guarantees the syntactical correctness of the programs.

Starting from the point that individual learning can
improve evolution, [3], in this paper the intention is to
demonstrate the reinforcement learning effects in population
evolution. Interaction between learning and evolution was
initially proposed in [4] and, it is sometimes called Baldwin
effect. Following this effect, the organisms that learn,
develop in a much quickest way than the ones that do not,
even though when their initial genotype features do not
include what has been previously learnt. In fact, the
possibility that what has been previously learnt comes back

Manuscript received March 30, 2007.

J. M. Mingo is with the Computer Science Department, University
Carlos III of Madrid, Spain (e-mail: jmingo@inf.uc3m.es).

R. Aler is with the Computer Science Department, University Carlos IIT
of Madrid, Spain (e-mail: aler@inf.uc3m.es).

This article has been financed by the Spanish founded
research MCyT project OP:LINK, Ref:TIN2005-08818-C04-02.

1-4244-1340-0/07$25.00 (©2007 |EEE

to the genotype again was proposed by Lamarck [5].
Although Lamarck hypothesis is not actually accepted in
biology, there is no reason for not including it in the
computational view.

With these premises, a Grammatical Evolution System
Guided by Reinforcement is proposed. Here, the Lamarck
mechanism to substitute the original genotype with features
learnt by the phenotype is also included.

II. GRAMMATICAL EVOLUTION

Grammatical Evolution [1], [6], can be considered a way
of Genetic Programming that uses variable length linear
genome to represent programs. These genomes usually
contain binary information that has to be transformed into
integer information in a process known as franmscription.
After this, the integer string is used in a mapping process,
called tramslation, which consists in going throughout the
genome from the left to the right in order to get the integer
numbers, and apply a formula which produces as a result a
value that represents the production rule to be applied.
Production rules are applied starting with the start symbol of
the grammar and the objective is to apply rules to each non
terminal symbol not solved from the derivation tree that
represents the program.

In the Grammatical Evolution initial implementation [1],
the integer numbers included in the genome are in the range
0 255 and the formula to be applied is the following:

Rule = Codon Integer Value % Number of Rules

where % means the module operator and Number of Rules
means the maximum number of rules to the non terminal to
be expanded in each moment

In order to compare the effect of learning in the system, a
standard Grammatical Evolution without reinforcement and
with some specific features was initially created. In our
standard Grammatical Evolution system, the range of the
integer numbers is reduced to the interval 0 (Maximum
Number of Rules 1). This way, the binary genotype is
reduced to X bits, being X the minor integer which complies
2* = Maximum Number of Rules.

The Grammatical Evolution system without learning
proposed is completed with a traditional generational
mechanism and with the crossover, mutation, duplication and
pruning operators proposed in [1]. These operators are
applied in an elitist fashion.

1475

Cita bibliográfica
Published in: IEEE Congress on Evolutionary Computation, 2007, p. 1475-1482

III. AUTOMATIC PROGRAMING AND
REINFORCEMENT

The possibility of widening the Genetic Programming with
Reinforcement Learning [7] is an attractive topic, object of
previous proposals. In [8], the possibility that in the leave
nodes of the tree, actions selection funtions appear is
included, leaving the internal nodes as classification
elements about the status of the program. This way, the
reinforcements obtained selecting actions control the fitness
evaluation. This Reinforced Genetic Programming system
has shown interesting results in autonomous navigation tasks.
In [9], the idea of neural program is proposed, whose main
difference with a genetic program is that these neural
programs are a data flow structure between distributed neural
processors instead of the control flow structure typically
associated to genetic programs.

While the two previous approaches can be considered an
automatic programming mechanism widened with a
reinforcement mechanism, in [10], the opposite effect is
proposed and genetic programing is applied to improve the
learning by reinforcement, helping Q tables to develop.

In the Grammatical Evolution Guided by Reinforcement,
we continue with the idea of extending the Evolutionary
Programming with learning, but a grammar is used as the
main component for building programs. These programs are
control flow structures. Learning occurs by using
reinforcement on the rules of the grammar used to build
good programs. Grammatical Evolution Guided by
Reinforcement is similar to the Learning Classifier Systems
in the sense that the former also uses reinforcement learning
for Q value update for rule selection. However, our system
uses Reinforcement Learning to learn which productions of a
grammar are more useful to create high fitness programs.
Also, the systems with grammatical genetic code, as
Grammatical Evolution, can induce sequentiality in
uniformly scaled problems as is shown in [11]. Sequential
learning requires an exponential population size as problem
size increases for reliable genetic search. Grammatical
Evolution Guided by Reinforcement might be an alternative
to consider. However, this hypothesis should be analyzed in
detail.

IV. GRAMMATICAL EVOLUTION GUIDED BY
REINFORCEMENT

The Grammatical Evolution Guided by Reinforcement
proposes a new way of looking at the individuals in the
population. Each of them can be considered as a programmer
dedicated to the task of creating a program using the
grammatical rules. Certainly, this idea already appears in the
Grammatical Evolution. The real novelty is in giving any of
the individuals programmers the possibility of re writing
their own program. This can be done if we allow each of the
individuals to learn. The process is easy: initially the
individual programmer is evaluated by executing the initial

1476

program of its own chromosome; then, it is allowed to create
new programs. In order to do that, it will simply work with
other grammatical rules put together for build new programs.
In the case that any of the learnt programs is better that the
original genetic program, the Lamarck hypothesis is used
and the genetic program is substituted by the learnt program.
Basically, the process consists in three stages, which can
be considered analogous to a biological genetic system:
e Transcription
e Translation
e Learning
Graphically, this process is shown in figure 1.

[01011011 | Binary String
TRANSCRIPTION
[1123 | Ingeger String
TRANSLATION
‘ Derivati'on Tree ‘ Rules
LEARNING l
PROGRAM

Fig. 1. Stages in the Grammatical Evolution Guided by Reinforcement.

The transcription and translation processes are basically
the ones described in [6], with the features commented in
section II. The individuals programmers use reinforcement
learning although they could use any other way of learning.
As a learning mechanism not supervised, reinforcement has
the advantage that it allows the individual to verify the
validity of his own actions, in this case, the appropriateness
of the production rules chosen to create the program.
Depending on the rewards received, the individual will
create a policy that will allow it to choose the most
appropriate production rule in any case.

A. Reinforcement learning

In Reinforcement Learning [7], [12] an agent is in a
determined state in any moment and can chose an action
among a group of possible actions. As a result of the
choosing, the agent will be in a new state receiving a signal
which determines the value of his selection. The agent’s
objective is finding an optimum policy that allows him to
select the best action in each state.

Translating this situation to the Grammatical Evolution
Guided by Reinforcement the following elements appear:

e Anindividual programmer that represents the agent.

e A group of states that represent the derivation steps

used up to a point in the building of the program.

2007 |EEE Congress on Evolutionary Computation (CEC 2007)

e A group of production rules applied in each of the
states.

The aim of the individual programmer is to calculate a
policy for the actions appropriate for any state. In the
Grammatical Evolution Guided by Reinforcement, an action
is simply a production rule to be applied. For the definition
of a state, it is necessary to have into account that the process
of program creation consists in applying a derivation steps
sequence starting from the start symbol. It is considered that
a state is the partial derivation steps sequence applied up to a
particular instant.

This way, the 0 state would correspond to the start symbol
of the grammar; state 1, to the result of substituting the start
symbol by one of the production rules appropriate to it; state
2, would result from substituting the non terminal left most
symbol by a production rule valid for it; and so on. This
process can conclude because of two reasons:

1) The individual generates an analysis tree, that is, a
tree whose leaves only contain terminal symbols. In
this case, the learnt program is evaluated and its
fitness is obtained.

2) The individual does not generate an analysis tree after
a determined number of rules selections. In this case,
the individual obtains a very poor fitness.

This process is repeated as many times as it is established
by means of a system parameter, and the consequence will be
the creation of a series of programs learnt by the individual.
Some of these programs could be wrong, and will obtain a
very poor fitness, while others, will be grammatically right
and will obtain a fitness depending of their capacity to solve
the problem.

B. QTree

As a reinforcement mechanism, the Q learning method has
been followed [7], [12], [13]. Otherwise, since the state
space can be very big for any domain, instead of using a
table for Q values, a tree called Q tree is used.

The Q tree objective is to maintain the policy of actions
more appropriate for each state. That is, the optimum
production rules in each instant. As a result, in any node of
the Q tree the following information is maintained:

e A numeric value which represents the production rule

used to get to the state

e A group of numeric values which represents the

different production rules that can be applied in the
state

A simple example will be useful to clarify the concepts
and show the Q tree’s content. Suppose a BNF grammar
composed by the tuple [N, T, S, P] that includes the
following elements:

N = {<expr>, <op>, <var>}
T={+ ,*%/X
S = {<expr>}

2007 |EEE Congress on Evolutionary Computation (CEC 2007)

And P is composed by the production rules:

<expr> ::= <expr> <op> <expr>(0)
| <var> (1)
<op> =+ (0)
| 1)
I* @
L7 G
<var>::=X (0)

For a single chromosome like the following integer string
resulting from applying the transcription process to the initial
binary string:

TABLE 1
CHROMOSOME OF AN INDIVIDUAL PROGRAMMER
0 3 1 2 1 2 1 0

The mapping process builds the analysis tree:

Fig. 2. Derivation tree for the single chromosome.

Resulting from applying the known formula to the non
terminal symbols:

Rule = Integer Value % Number of Rules

In the derivation tree, the internal nodes correspond to the
non terminal symbols and the leaves correspond to the
terminal symbols.

We have to highlight that in the mapping process of this
single individual only the first 6 genes are used. The
remaining genes are introns. To reduce the introns, the
operator prune was introduced in [1]. Originally, the
prunning has been applied with a probability to any
individual that does not map all of its genes. In our approach,
the prunning is applied to all individuals that do not map all
their genes, deterministically. Genes not used are discarded
and they do not take part in the genetic operations, with the
exception of the mutation operator. Theoretically, the
prunning increases the likelihood of beneficial crossovers,
avoiding selecting crossover points which do not take part in
the mapping process.

1477

In parallel to the building of the derivation tree the Q tree
is built, which in the case of the individual of the example
corresponds to:

L 0=-

I 1=-

NE 2=-
NE 3=

1
1
1
/RF —‘
NE

]

W])0
N SRR
=5}

1

NE ?
NE 2
0=-1
1= /RF E
2=-1
3=-1
NE
L NE
0=-1
=11
NE 2= 1/RF
NE ? 3=-1
NE 2

Fig. 3. Q tree for the individual chromosome.

where RF makes reference to Raw Fitness [2], obtained by
the individual and NE means “Not Expanded’ to indicate
that the branch has not been explored yet.

Initially, each entry of the Q tree is configured with the
default value 1. In each node there are as many entries as
the maximum number of production rules (in the example the
maximum would be 4 rules for the non terminal <op>). Of
course, there will be entries that will not be expanded
because they are not valid for the non terminal current.

The meaning of the tree is simple. The numeric value
shown in the shadowed box indicates the production rule
applied, as a consequence of which we come to the state. The
exception to this rule is in the initial node, which is labelled
with the start symbol of the grammar. The four numeric
values under the shadowed box indicate the possible
production rules to be applied. This way, the node labelled
with the start symbol can be expanded with four rules
(though for the start symbol of the example, only two rules
are possible), and in the example, the 0 rule has been chosen
(the entry with “0” is equal to 1/RF). Selection of rules is
determined on each step according to the
exploration/exploitation tradeoff. In our system, an e greedy
strategy is implemented. The other three possible rules in the
initial node are labeled as “Not Expanded”’ to indicate that

1478

they have not been explored. The choosing of the 0 rule
implies to go a level forward, both in the derivation tree
(figure 2), as in the Q tree (figure 3). The start symbol is
substituted by <expr><op><expr>. Since there are three
non terminal symbols, the mapping process continues. Now,
we must choose a new rule for the leftmost non terminal
(<expr>). In the example, rule 3 for <expr> is chosen. As
<expr> only has two rules, the formula “Rule = Integer
Value % N° Max of Rules for Non Terminal” returns the 1
value (3 % 2) and the second rule is chosen (<expr> =
<var>). In the figure 3, the entry 3 for the “zero” node is
equal to 1/RF. Now, both the derivation tree and the Q tree,
expand a level again. Concretely, in the Q tree, the node of
level two appears labelled as “three”. In the derivation tree,
the situation would correspond now to: <var><op><expr>.
Again, there are non terminals symbols and the process
continues by choosing the rules 1, 2, 1 and 2, which produce
the X * X program. Now, the Q tree corresponds exactly to
figure 3. We have to highlight that the Q tree reflects the
followed path, i.e. the rules that the agent has chosen.

C. Rewards

The type of task focused by the individual programmer
fits in the episodic model [7], [12] in that we start from an
initial state and we let the agent to try different actions till it
gets to an objective state. This process is repeated during a
series of episodes.

In the Grammatical Evolution Guided by Reinforcement,
the initial state corresponds to the one that comes from the
start symbol and the final state is that which generates a
grammatically right program. Each of the episodes
corresponds to a learning step and the number of learning
steps is established by means of a parameter of the system.
The episode begins by the start symbol and applies the
production rules till all the symbols are terminal ones. The
following rewards can be established during the episode:

e If when applying a production rule, non terminal
symbols still exist, the individual obtains a 0 as a
reward and the mapping process continues.

e If when applying the last production rule, all the
symbols are terminal ones, the generated program is
executed and the raw fitness value is obtained as a
reward.

This way, a useful reward is only obtained when a
complete program is generated. Since the episodes must be
finite, by means of a system parameter we can establish the
limit of trials needed to generate a complete program. If the
limit is reached and non terminal symbols still exist, the
individual obtains a very poor fitness and very bad reward.

With the obtained reward, the Q value is updated in the
correspondent node of the tree. As an updating rule, the
following formula is used:

For j=leave node to root node do
Ofsy a) = 1; T ymax, Q(sy1, @)

2007 |EEE Congress on Evolutionary Computation (CEC 2007)

where, 7; is the reward in the level j, s; refers to the state in
the level j of the Q tree, s;;, to the state in the level j+7 of
the Q tree, g; is the production rule taken in the node s; and
a’ is the rule with the higher value Q for node s;.

Therefore, the update is produced from the leave node of
the Q tree. This node is labelled with the last production rule,
that is, with that which ends with a grammatically right
program. From this node, the raw fitness value is spread to
all the nodes of the derivation chain till arriving to the root.
The discontinuity factor is y and, in the system, a 1 has been
used as a value, reason why in the Q Tree the value of the
leave node, I/RF, is spread without discount to the internal
nodes. This discount value can be used always under the
conditions of episodic and finite tasks [7]. A discount factor
equal to 1 implies that all the nodes in the path have the same
value, i.e. they have equal weight. This is appropriate in
cases as this, where all the nodes contribute equally to the
final solution.

D. Balance between exploration and exploitation

One of the problems when the reinforcement learning is
used is in the balance between the exploration of the new
actions and the exploitation of the learned actions. From all
the possible balancing strategies in the Grammatical
Evolution Guided by Reinforcement, we have followed an e
greedy strategy [7], [12].

In order to solve the randomness of this strategy, we have
chosen not to use a constant e greedy factor but one that
varies depending on the learning step, following the formula:

EGreedyFactor =1 (lerningStep / lerningStepsNum)
where lerningStep is the present learning step and
learningStepsNum is the total number of learning steps fixed
for the system (global parameter).

By means of this strategy it is possible to contribute to the
exploration in the first learnings and the exploitation in the
last learning steps. This strategy tries to use a number of
learning steps that ensures an early almost full evaluation.
This way, the last learning steps can take advantage of a Q
tree with more information about the production rules tested.

E. Lamark effect

The final result of the learning process of an individual
programmer will be a series of programmes, some of them
right and the others wrong. The right programs will be
evaluated and will produce their appropriate fitness, which
can be either better or worse than the original genetic
program. From the computational point of view, it is possible
to modify the genetic code of the individual for him to
assume the best learnt program features. This is what the
Grammatical Evolution Guided by Reinforcement does; the
best learnt program becomes, after a translation and
transcription inverse process, a new binary genome of the
individual.

2007 |EEE Congress on Evolutionary Computation (CEC 2007)

V. RESULTS

In order to test the performance of our system, it has been
applied to two domains very well known in Evolutionary
Computation. We are talking about the symbolic regression
problem and the even 3 parity Boolean function.

In order to compare the results more precisely, in each of
the domains, groups of 100 executions were done. Each
execution group is done for three different systems:

e A Grammatical Evolution system without

reinforcement like the one described in section II.

e A Grammatical Evolution system Guided by
Reinforcement that uses a Q tree for each of the
individuals in the population.

e A Grammatical Evolution system Guided by
Reinforcement that uses one single Q tree for all the
population.

Below there is a summary of the problems as well as the
results obtained, explained more in depth. The operators
used are the one point crossover [6], the mutation and the
duplication [1], [6], and the elitist reproduction. The
crossover is done depending on the fitness, while the
mutation and the duplication are also applied in an elitist
manner. All the systems follow the generational model.

A. Symbolic regression

The symbolic regression problem tries to obtain a
symbolic mathematical expression from a set of input output
pairs. The function to be regressed is:

=X+ X +xX+x

The grammar used to solve the problem is similar to [1]:

N = {<expr>, <op>, <pre op>, <var>}
T={+ ,*/ sin, cos, exp, log, X, (,)}

S = {<expr>}
<expr> ::= <expr> <op> <expr> 0)
| (<expr> <op> <expr>) (1)
| <pre op> (<expr>) 2)
| <var> 3)
<op>::= + (0)
| (1)
| * 2)
| / 3)
<pre op> ::= sin (0)
| cos (1)
| exp 2)
| log 3)

<var>:=X (0)
Table II summarizes the configuration of the symbolic

regression problem. This configuration is common to the
three systems that have been tested. Afterwards, the specific

1479

parameters for each of the systems will be commented.

TABLE II

GENERAL PARAMETERS FOR THE SYMBOLIC REGRESSION
PROBLEM

Objective Finding a function of an independent variable and

another one dependent in a symbolic manner which
fits a 20 points sample (xj, y;) obtained from the
fourth degree polynomial: f{X)=X"+ X°+ X’+ X

Fitness cases 20 pairs of points in the interval [-1,+1]

Raw Fitness The sum of the errors for the 20 fitness cases
Standardized

randardize Equal to the raw fitness
Fitness
Termination The number of fitness cases where the error is below
criteria 0.01

1) Grammatical Evolution without reinforcement: When
the problem is solved with a standard evolution system, that
is, without reinforcement, apart from the general parameters,
the specific parameters shown in table I1I are used.

TABLE III
SPECIFIC PARAMETERS OF THE GRAMMATICAL EVOLUTION
WITHOUT REINFORCEMENT FOR THE SYMBOLIC REGRESSION

PROBLEM
Evolutionary C 10, W 10;M 500G 51;
parameters Pc 09;Pd 0.01;Pm 0.01

Where C means the number of codons per individual, # is
the number of wrapping events [6], M is the number of
individuals, G the number of generations and Pc, Pd and Pm
the crossover, duplication and mutation probabilities. Figure
4 shows the accumulated frequency achieved by the system.

100

80 -
60 -
40 -
20

Cumulative Frequency

0

0 5 10 B 20 25 30 35 40 45 50

Generation

Fig. 4. Accumulated frequency for the symbolic regression without
reinforcement.

The grammatical evolution system without reinforcement
only gets 11% success probability for this problem. This
result is similar to the original Grammatical Evolution
implementation [1] when a generational mechanism is used
as replacement mechanism. A steady state mechanism may
obtain better results in this problem [14], but we have only
compared to the generational mechanism used in the original
Grammatical Evolution.

2) Grammatical Evolution Guided by Reinforcement with
a Q tree for every individual: This system is distinguished by

the fact that it uses a Q tree for every individual in the
population. The individual Q trees are not shared by
individuals of the population. Moreover, these individual Q
trees are removed after every generation, because all the
individuals are renewed, unless the individual is selected in
an elitist reproduction. Table IV summarizes the specific
features of this system.

TABLE IV
SPECIFIC PARAMETERS OF THE GRAMMATICAL EVOLUTION
GUIDED BY REINFORCEMENT AND A Q TREE PER INDIVIDUAL
FOR THE SYMBOLIC REGRESSION PROBLEM
Evolutionary C 10, W 10;M 300;G 51;
parameters Pc 0.9;Pd 0.01;Pm 0.01
Learning L 300;y 1
parameters

where L refers to the number of learning steps and vy is the
discount factor. Figure 5 shows the accumulated frequency
achieved by the system:

100
g g0 -
g
=
g 60
=
£ 40+
k|
= i
2 20
=
© 9

0 5 10 B 20 25 30 35 40 45 50

Generation

Fig. 5. Accumulated frequency for the symbolic regression with
reinforcement and n Q trees.

The introduction of reinforcement means an important
improvement going from 11% to 45% success probability.

3) Grammatical Evolution Guided by Reinforcement with
a Q tree for the whole population: The only difference
between this system and the one stated before is that now we
only use a single Q tree for all the population. With this
approach the global knowledge, obtained through
reinforcement learning, is shared by all individuals. In each
of the learning steps, each individual explores or exploits a
branch of the single Q tree. A main difference with the
previous system is that the single Q tree is kept between
generations. Table V summarizes the specific parameters of
the system.

TABLE V
SPECIFIC PARAMENTERS OF THE GRAMMATICAL EVOLUTION
GUIDED BY REINFORCEMENT WITH ONE SINGLE Q TREE FOR
ALL THE POPULATION FOR THE SYMBOLIC REGRESSION
PROBLEM
Evolutionary C 10;W 10;M 300;G 36;
parameters Pc 09;Pd 0.01;Pm 0.01
Learning L 300;y 1
parameters

1480 2007 |EEE Congress on Evolutionary Computation (CEC 2007)

Figure 6 shows the accumulated frequency in this case.

100

80
60 -
40
20 1

Cumulative Frequency

o

0 5 10 15 20 25 30 35

Generation

Fig. 6. Accumulated frequency for the symbolic regression with
reinforcement and / Q Tree.

As it can be seen in the figure, the effect of the fusion of Q
trees in one single Q tree is important for solving of the
problem since now the success probability is 78%.

B. Even 3 parity Boolean Function

In order to solve the even 3 parity problem, the following
grammar is used:

N = {<expr>, <op>, <var>}
T = {and, or, nand, nor, (,)}
S = {<expr>}

<expr> ::= <op> (<expr>, <expr>) (0)

| <var> (1)
<op>::= and (0)

| or (1)

| nand (2)

| nor 3)
<var>::=d0 (0)

| dI (1)

| d2 2

The group of terminals has been taken from [2]. Table VI
shows the common configuration for the problem.

TABLE VI
GENERAL PARAMETERS FOR THE EVEN 3 PARITY BOOLEAN
PROBLEM

Finding a logical function which solves the even 3
parity Boolean problem, that is, the one that returns
true when there is an even number of bits set to 1
arguments and false when not

The 8 possible logical combinations for three

Objective

Fitness cases

arguments
Raw Fitness The number of success in the 8 fitness cases
Standardized 8 Raw fitness
Fitness
Termination When the standardized fitness is 0
criteria

The parity Boolean functions both even or not even are

2007 |EEE Congress on Evolutionary Computation (CEC 2007)

very complex problems with a difficult solution with genetic
methods, to the point that, for instance, the even 5 parity
Boolean function is not solved with standard Genetic
Programming [2] but the use of automatically defined
functions is required [15]. In [16], a system that considers
whether it is a good idea to transfer immediately
improvements found by a single individual to other
individuals in the population is proposed. In this system the
computational effort is reduced, compared to Koza’s ADFs.

1) Grammatical Evolution without Reinforcement: Table
VII shows the specific parameters for the Grammatical
Evolution system without Reinforcement.

TABLE VII
SPECIFIC PARAMETERS OF THE GRAMMATICAL EVOLUTION
WITHOUT REINFORCEMENT FOR THE EVEN 3 PARITY BOOLEAN
PROBLEM

Evolutionary C 10;W 10;M 2000;G 5I1;
parameters Pc 0.9;Pd 0.01;Pm 0.01
The Grammatical Evolution system without

Reinforcement was not able to find a solution for this
problem with 2000 individuals and 50 generations. This is
not a surprising result since, for instance, in [2], 4000
individuals are used to solve the problem.

2) Grammatical Evolution Guided by Reinforcement with
a Q tree for each single individual: Table VIII summarizes
the specific characteristics for this system.

TABLE VIII
SPECIFIC PARAMETERS OF THE GRAMMATICAL EVOLUTION
GUIDED BY REINFORCEMENT AND A Q TREE PER INDIVIDUAL
FOR THE EVEN 3 PARITY BOOLEAN PROBLEM

Evolutionary C 10;W 10;M 500,G 51;
parameters Pc 0.9;Pd 0.01;Pm 0.01
Learning L 50;y 1

parameters

This system results are shown in figure 7.

100
)
S 80
D
&
S 60 -
=
£ 40
E
= J
g 20
=
“ 0 — : :

0 5 10 15 20 25 30 35 40 45 50

Generation

Fig. 7. Accumulated frequency of the even 3 parity Boolean function with
reinforcement and 7 Q trees.

The introduction of reinforcement lets us solve this
problem with a success probability of 50% if we use a Q tree
per individual.

1481

3) Grammatical Evolution Guided by Reinforcement with
a Q tree for the whole population: The specific parameters
of the system are shown in table IX.

TABLE IX
SPECIFIC PARAMETERS OF THE GRAMMATICAL EVOLUTION
GUIDED BY REINFORCEMENT AND A Q TREE FOR THE WHOLE
POPULATION FOR THE EVEN 3 PARITY BOOLEAN PROBLEM

10; W 10; M 500;G 51;

Evolutionary C

parameters Pc 0.9;Pd 0.01;Pm 0.01
Learning L 50,y 1
parameters

Finally, figure 8 shows the accumulated frequency results
for this system.

100

80 |
60
40 -
20 -

Cumulative Frequency

0 5 10 15 20 25 30 35 40 45 50

Generation

Fig. 8. Accumulated frequency of the even 3 parity Boolean function with
reinforcement and one single Q tree.

The reinforcement with one single Q tree increases even
more the success probability to 98%.

VI. CONCLUSIONS

A grammatical evolution system widened with
reinforcement learning has been proposed in order to
demonstrate one more time the beneficial effect of learning
in evolution. These two mechanisms propose two ways of
adaptation to the environment. From the computational point
of view, these two theories correspond to two different types
of searching. On one hand, the evolution acts on the
population and carries out a global search in the space of
possible solutions to the problem. On the other hand, the
learning acts on the individual and represents a local search
among the near solutions to a particular individual.

The interaction between evolution and learning produces
positive results in both studied domains, although the
reinforcement mechanisms influence them very much. Thus,
on one side, the use of a Q tree for each of the individuals in
the population improves the system without reinforcement
results but does not reach more than 50% success
probabilities in any of the domains. On the other side, the use
of only one Q tree for the whole population offers much
better results. In the symbolic regression problem, a 78%
success probability is obtained, and a 98% in the case of the
Boolean function.

1482

From the analysis of these results we can conclude that
keeping only one Q tree seems to be more appropriate than
keeping several of them, which appears logical since only
one Q tree supports the learning acquired by all the
individuals; whereas multiple Q trees only support individual
learning. With a single Q tree, all the individuals can use the
best rules in each of the states, exploiting branches of the
tree already explored by other individuals. In the case of
multiple Q trees, each of the individuals can only exploit
what has been already explored by itself. The counterpart of
the use of one Q tree obviously is in the huge quantity of
memory resources that can be needed in complex
environments. This problem has been partially solved cutting
off those Q tree branches that do not generate valid
programs, but the problem of scalability should be examined
in subsequent research.

REFERENCES

[1] J.J. Collins, C. Ryan, M. O’Neill. “Grammatical Evolution: Evolving
Programs for an Arbritrary Language”. Lecture Notes in Computer
Science 1391, Proceedings of the First European Workshop on
Genetic Programming. Springer-Verlag, 1998, pp. 83-95.

[2] J. Koza. Genetic Programming: On the Programming of computers
by Means of Natural Selection MIT Press, 1992.

[3] G. E. Hinton, S. J. Nowlan. “How Learning can guide evolution”.
Complex Systems, 1, 1987, pp. 495-502.

[4] M. J. Baldwin. “A new factor in evolution”. The American Naturalist,
30, 1896, pp. 441-451.

[5] J. B. Lamarck. “Of the influence of the environment on the activities
and habits of these living bodies in modifying their organization and
structure”. Zoological Philosophy. MacMillan, London, 1914, pp.
106-127.

[6] C. Ryan, M. O’Neill. Grammatical Evolution: Evolutionary
Automatic Programming in an Arbitrary Language. Kluwer
Academic Publishers, 2003.

[71 R.S. Sutton, A. G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

[8] K. L. Downing. “Adaptative Genetic Programs via Reinforcement
Learning”. Proceedings of the 3rd Genetic and Evolutionary
Computation Conference. San Francisco, California, 2001, pp. 19-
26.

[9] A. Teller. “The internal reinforcement of evolving algorithms”.
Advances in Genetic Programming, 3. MIT Press, 1999, pp. 325-354.

[10] H. Iba. “Multiagent reinforcement learning with genetic
programming”. Proceedings of the Third Annual Conference.
Morgan-Kaufmann, 1998, pp. 167-172.

[11] K. Ohnishi, K. Sastry, Y-P. Chen, D. E. Goldberg. “Inducing
Sequentiality Using Grammatical Genetic Codes”. Proceedings of the
Genetic and Evolutionary ~Computation Conference. Seattle,
Washington, 2004, pp. 48-59.

[12] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[13] C. Watkins. P. Dayan. “Q-Learning”. Machine Learning, 8, 1992, pp.
279-292.

[14] M. O’Neill, C. Ryan. Grammatical Evolution: “A Steady State
Approach”. Proceedings of the Second International Workshop on
Frontiers in Evolutionary Algorithms. 1998, pp. 419-423.

[15] J. Koza. Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, 1994.

[16] R. Aler, D. Camacho, A. Moscardini. “The Effects of Transfer of
Global Improvements in Genetic Programming”. Computing and
Informatics (formerly Computers and Artificial Intelligence). Ed. By
Slovak Academy Sciences Institute of Informatics, vol. 23, n°® 4, pp.
374-394, Nov. 2004

2007 |EEE Congress on Evolutionary Computation (CEC 2007)

