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Abstract— A better balance of exploitation and exploration
of solution space by the swarm is often mentioned as the key to
a good performance of Particle Swarm Optimization (PSO)
algorithm. Traditionally, the balance of exploitation and
exploration ability of a PSO algorithm is usually shown
empirically by the final result of the algorithm over some
benchmark functions and not by the dynamic behavior of the
swarm during the iteration process. In order to observe the
dynamic behavior of the swarm in a PSO algorithm in details,
two measurement indices, Dispersion Index and Velocity Index,
are proposed. In an empirical study, these indices are
embedded in two PSO Algorithms and applied to six
benchmark problems. The results of this study indicate that a
good balance between exploration and exploitation does lead to
a better PSO. This balance could be achieved by allowing
enough time or iteration step for both exploration and
exploitation processes to take place. Finally, the utilization of
these indices to balance strategy for exploitation and
exploration on the PSO is discussed. It is also suggested that the
velocity index can be used as a basis for controlling the length
of iteration step of PSO algorithm.

I. INTRODUCTION

ARTICLE Swarm Optimization (PSO) is a population

based search method which were motivated by the group
organism behavior such as bee swarm, fish school, and bird
flock [1]. PSO imitated the physical movements of the
individuals in the swarm as a search method, altogether with
its cognitive and social behavior as local and global
exploration abilities. In the PSO, a solution of a specific
problem is being represented by an n-dimensional position
of a particle. The search is performed by moving the particle
to a new position via a velocity vector. The PSO algorithm is
started with a population of particles initialized with random
position and velocity. The population of particles is usually
called a swarm. In one iteration step, every particle is moved
from previous position to the new position based on its
velocity. The velocity is updated based on the particle’s
personal best position and the global best position found so
far by the swarm. Once a particle reach a position which has
a better objective function than the best previous position for
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this particle, the personal best position is updated. Also, if an
objective function is found that is better than the previous
best objective function of the swarm, the global best position
is updated. A brief and complete survey on PSO mechanism,
technique, and applications is provided by [2] and [3].

Empirical study showed that PSO could be applied to
solve unconstrained optimization [4], constrained
optimization [5, 6], and also discrete optimization problems
[7]. These early studies also showed that PSO could provide
high quality solutions in reasonable fast computational time.
Other studies were also carried out to deal with the issue of
balancing exploration and exploitation ability of PSO.
Exploration is the ability to test various regions in the
problem space in order to locate good solutions, hopefully an
optimal one. Exploitation is the ability to concentrate the
search around a promising candidate solution in order to
locate the optimum more precisely [8]. The results of these
studies are the variants of PSO which were claimed to have
better balance of exploration and exploitation ability than the
original one [9, 10, 11] and parameter setting which
enhances these ability of PSO [8, 12, 13].

In most of these studies, however, the improvement of
exploration and exploitation ability was only demonstrated
empirically by the final result obtained in solving some
benchmark functions. The swarm behavior during the
iterations has not been studied in details. This paper will fill
this gap by studying the dynamics behavior of the swarm.
Two measurement indices are proposed, dispersion and
velocity index, for observing the swarm during the iterative
process. These proposed indices are used to observe
behavior of PSO algorithm on the benchmark problems. The
remainder of this paper is organized as follow: Section 2
reviews the PSO algorithms and defines two measurement
indices of the swarm. Section 3 shows the behavior of PSO
algorithms on some benchmark problems with respect to
proposed measurement indices. Section 4 discusses the
findings of this study and directs the use of these indices to
balance the exploitation and exploration strategies on the
PSO. Finally, Section 5 summarizes this study and suggests
further applications and extensions.

II. PSO ALGORITHMS AND SWARM MEASUREMENT INDICES

Two versions of PSO Algorithm, the basic PSO and the
GLNPSO, are briefly reviewed in this section. The usage of
these two versions of PSO Algorithm is intended to show
different exploration and exploitation behaviors that could
be monitored by the two proposed swarm measurement
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indices.

In the basic PSO algorithm, each iteration step mainly
consists of only two set of updating equations: velocity as in
Equation (1) and position as in Equation (2).
vm=wvm+cpu(pld—xm)+cgu(pgd—xid) (1)
Xig = Xig T Vy )

The velocity equation consists of three elements. First
element shows that a particle, which is represented by its
velocity, will maintain the current direction. Second element
shows that it also uses its past knowledge to form a new
direction which is shown in its cognitive behavior. Third
element shows that it gains the information from other
particles in the form of the best position of the swarm so far,
and it showed the social behavior of particle. The PSO
algorithm is described below following the definitions of the
indices and notation.

Indices
i : index of particle, i =1...7
d . index of dimension, d =1...D
t . index of iteration, t=1...T
Notation
X, . the position vector of particle i,
X; :I:xih Xizs Xi3s 7y xiD:I
14 : the velocity vector of particle i,
Vi :[Vﬂ’ Vizo Vi3> T ViD]
P : the personal best position so far of particle i
P, : the global best position so far of the swarm
¢(X,) : objective function value of particle i
¢(P) : objective function of P, the best objective

function of particle i

. the velocity of particle i at the dimension d in
the iteration ¢

: the position of particle i at the dimension d in
the iteration ¢

w : the inertia weight

c, . the personal best acceleration constant

¢, : the global best acceleration constant

u :uniform random number in the range [0,1]
Pu : the personal best position of particle i at the

dimension d
P the global best position at the dimension d

Algorithm 1: Basic PSO Algorithm
1. Initialize [ particles as a swarm population: generate the
particle i with random position X, in the range

[X X "‘“XJ , velocity ¥, =0 and personal best P =X,

where i =1...7 . Set iteration ¢ =1.
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2.For i=1...I, compute the objective function of X,

#(X).

3. Update personal best: For i=1...7, update P =X, if
9(X;)<9(R).

4. Update global best: For i=1...1, set P, =F if
o(P)<9(E,).

5. Update velocity and position of each particle i=1...1
and dimension d =1...D:

LV (t+1)=wv, (t)+c,u(py—x, (1))
eyt ( Py =y (1))

o x,(t+1)=x,(1)+v, (t+1)

o If x, (t+1)< X™, then set x,, (z+1)=X™"

o If x, (r+1)>X™ , thenset x, (t+1)=X""

6. If the stop criterion is met, i.e. =T , stop. Otherwise, set
t =t+1 and return to step 2.

The GLNPSO is a PSO Algorithm with multiple social
learning structures [11]. In this PSO version, the social
behavior is expressed by not only the global best but also the
local best and near neighbor best. The local best is the best
position of among several adjacent particles. The near
neighbor best is another social behavior concept, which is
determined based on fitness-distance-ratio (FDR) [9]. The
velocity updating equation is given in Equation (3).

Via =WV +Cpu(pid X )+Cgu(pgd _xid)

3
(- reap) —x.) ¥
where:
¢ : the local best acceleration constant
c, : the near neighbor best acceleration constant
pl, : thelocal best position of particle i at the
dimension d
oY . the near neighbor best position of particle i at the

dimension d
The personal and global best for GLNPSO are determined
exactly as the basic PSO. The local best, P}L, is determined

as the personal best with the least fitness value among K
neighbors of particle i . Each dimension of the near neighbor

best ( pjy ) is determined as the corresponding personal best
( p,,) that maximizing fitness-distance-ratio among all other
particles. Where FDR is defined as
¢(X i)_(p(Pj)
Xia = Pja ‘
The GLNPSO Algorithm has the same structure as
Algorithm 1. It has exactly the same step for all steps
excluding step 4 and 5. In step 4, the GLNPSO contains

procedure for updating global best, local best and near
neighbor best. Equation 3 is applied as the updating velocity

FDR = which i # j 4)
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equation in step 5.

Algorithm 2: GLNPSO Algorithm

1. Initialize / particles as a swarm population: generate the
particle i with random position X, in the range
[X“““,Xm"”‘] , velocity ¥, =0 and personal best P =X,
where i =1...7 . Set iteration ¢ =1.

2.For i=1...1, compute the objective function of X,,

3. Update personal best: For i=1...7, update P =X, if
9(X,)<o(P).
4.a. Update global best: For i=1...I, set P, =F if
0(P)<9(E,).

b. Update local best: For i=1...], among all personal
best from K neighbors of the i” particle, set the
personal best which obtains the least fitness value to be
PL

c. Generate near neighbor best: For i=1.../, and

d=1...D, set p; =p, that maximizing fitness-
distance-ratio (FDR ) for j=1...1.

5. Update velocity and position of each particle i=1...7

and dimension d =1...D:

. Vy (t+1) =wy, (t)+cpu(p,d - Xy (t))+cgu(pgd —Xy (t))
+C,u(p";, —x, (t))+cﬂu(p[f,' — Xy (t))

o x,(t+1)=x, (t)+v, (t+1)

o If x, (t+1)<X™, then set x, (t+1)=X""

o If x,(r+1)>X™ , then set x,, (r+1)= X"

6. If the stop criterion is met, i.e. £ =T , stop. Otherwise, set
t =t+1 and return to step 2.

Two measurement indices are defined for observing the
dynamic behavior of the swarm. The first index is called
dispersion index. This index measures how particles are
spreading around the best particle in the swarm, and is
defined as the average absolute distance of each dimension
from the best particle. The formula for the dispersion index
(&) is given in Equation 5. This index explains the coverage
searching area of the swarm. A swarm with higher
dispersion index has relatively wider coverage of searching
area than the one with lower dispersion index.

— =1 d=l 5
- (&)

The second index is called velocity index. This index
measures how fast the swarm moves in certain iteration, and
is defined as the average of absolute velocity. The formula to
calculate the velocity index (D) is given in Equation 6. This
index shows the moving behavior of the swarm: higher
index means the swarm move more aggressively in the
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problem space than the swarm with lower index.

1 D
2.2l
R ﬁ) (6)

III. COMPUTATIONAL EXPERIMENTS

The computational experiment is performed using two
PSO Algorithms: the basic version of PSO (Algorithm 1)
and the GLNPSO (Algorithm 2). Parameters of the basic
version of PSO algorithm for the experiments are /=30,
T'=1000, c,=2, ¢, =2, and w is linearly decreasing

from 0.9 to 0.4. Parameters of the GLNPSO for the
experiments are /=30, 7 =1000, ¢, =1, ¢, =1, ¢ =1,

¢, =1, K=5,and w is linearly decreasing from 0.9 to 0.4.

The measurement indices are coded and embedded in the
PSO program, so that the PSO program can record or display
the indices in every iteration step. Six benchmark functions,
which are often used in PSO literature, are used for testing
purpose. For all of these benchmark functions, the objective
is to minimize it. The definition of each function is described
below:

e Parabola 30D (search space: [—20,20]30)
D
o= x5 ()
=l
e Griewank 30D (search space: [—-300, 300]30)
D
> (x-100°
¢=1+42 —Hcos[xd_looj ®)
4000 1 Jd
e Rosenbrock 30D (search space: [—10,10]30)
Dol s
¢=Z{(l—xd)2+100(x§—xd+l) } ©9)

d=1
]30

e Alpine 30D (search space: [-10,10]")

D
= |xgsin(x,)+0.1x, | (10)
=1
e Ackley 30D (search space: [—30,30]30)
D
¢ =20-20exp| —0.2 Zxdz/D
- (1)
D
+e— exp[z cos (27x, )/D]
=l
e Rastrigin 30D (search space: [—10,10]30)
D
¢=Z|:xd2 ~10cos (27x, )J+10D (12)
=1
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From the equation 7-12, it is known that the search space
for each problem is different. This relative size makes the
comparison across functions difficult. To make the
comparison convenience, the searching space in the PSO is

always set in the interval [0,1] instead of the range of

original problem [X min X "‘a"} in this experiment. A linear

translation from the PSO solution (i.e. x) to the original
problem solution (i.e. x') is required by following
relationship:

x':Xmin+x(Xmax_Xmin) (13)

The final objective function value (the global best
objective function at the end of iteration) of each of these
functions over five replications of both version of PSO are
given in Table 1. Note that the optimal solutions for all these
benchmark functions are zero. Hence, the GLNPSO version
gives better results than the basic version of PSO for these
benchmark functions, since it gives the final solutions that
are closer to zero. This result is inline with the previous
result [11]. However, observation of this final iteration result
could only state empirically that the GLNPSO version is
better than the basic one, but could not explain why this
version is better.

To explain why one version of PSO is better, the dynamic
of the swarm is studied by recording the dispersion and
velocity index in every iteration step. Figures 1 and 2 shows
the progress of dispersion index over one typical run of the
basic version of PSO and the GLNPSO respectively, for the
benchmark functions tested. For clarity of the figures, the
data points are only shown for every 10 iterations for only

three functions. Both figures show the general tendency of
particle movements in the swarm: all particles move towards
the global best position, so all particles are laid close to each
other at the end of iteration.

It is also observed from Figures 1 and 2 that there is a
different behavior of the swarm between the basic version of
PSO and the GLNPSO. In the basic version of PSO, the
swarm is shrinking slowly over iteration as observed by the
dispersion index. It means that the coverage of searching
area of the swarm is decreasing slowly over the iteration.
Hence, the swarm could explore enough various regions of
problem space. However, at the end of the iteration process
the dispersion index is still far from zero or the swarm size is
not yet small enough. This implied that there is enough time
or iteration steps for exploration but not enough time for
exploitation.

In the GLNPSO version, the swarm is shrinking more
rapidly and approximately after the half step of iteration the
dispersion index is nearly zero. At the first half of iteration,
while the swarm size is big enough, the swarm could focus
on exploring various regions in the problem space. Then, at
the second half of iteration, since the swarm is clustered in a
very small area, the swarm could be more concentrate to
locate the optimum more precisely. It is implied that there is
enough time for both exploration and exploitation processes
in this version. Hence, it could be concluded that there is a
good balance between exploration and exploitation. This
balance may lead to a better solution than the basic PSO
version.

TABLE1
COMPUTATIONAL EXPERIMENTS RESULT: COMPARISON OF FINAL OBJECTIVE FUNCTION VALUE
Function Parabola Griewank Rosenbrock
Replication ~ Basic PSO  GLNPSO  Basic PSO GLNPSO Basic PSO GLNPSO
1 9.04E-05 3.02E-20 1.05E+01 7.39E-03 8.06E+01 2.42E+01
2 6.65E-05 2.01E-18 1.08E+01 2.47E-03 2.33E+01 2.42E+01
3 1.02E-03 2.39E-15 2.05E+01 1.48E-02 1.39E+02 8.42E+01
4 4.54E-05 3.57E-22 1.01E+01 1.72E-02 8.27E+01 2.20E+01
5 3.26E-04 2.13E-19 1.01E+01 9.85E-03 1.01E+04 2.71E+01
Function Alpine Ackley Rastrigin
Replication ~ Basic PSO  GLNPSO Basic PSO GLNPSO Basic PSO GLNPSO
1 8.88E+00 2.69E-03 1.78E+00 9.31E-01 6.28E+01 3.88E+01
2 4.45E+00 4.83E-04 2.18E-01 1.61E-10 9.45E+01 5.97E+01
3 2.18E-02 1.36E-03 1.25E-02 2.17E-07 5.91E+01 3.28E+01
4 8.91E+00 1.83E-04 9.31E-03 1.29E-09 4.08E+01 3.88E+01
5 2.14E-02 2.16E-05 1.37E+01 1.14E-08 6.32E+01 5.27E+01
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Fig. 2. Dispersion index on typical run of GLNPSO.

The progress of velocity index over iteration for the
typical run of both PSO versions are presented in Figures 3
and 4. The pattern of velocity index in both versions are
quite similar with theirs dispersion index. While the velocity
index decreases slowly over iteration process for the basic
PSO version; it diminishes rapidly for the GLNPSO version
and the index become very small approximately after half of
iteration process. It means that in the basic PSO version the
swarm movement is decreasing slowly, but there is still
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significant movement at the end of iteration process. In other
words, there is not enough iteration steps for exploitation.
While in the GLNPSO version, particles in the swarm move
aggressively in exploring problem space and move very
slowly in exploiting the solution at the later iterations. Once
again, this velocity pattern emphasizes the statement that
balancing between exploitation and exploration may lead to
better solutions.
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IV. CONTROLLING EXPLORATION AND EXPLOITATION USING
DISPERSION OR VELOCITY INDEX

From the computational experiments in Section 3, it
reiterated that a good balance between exploration and
exploitation in a PSO algorithm will provide for better
solution quality. It is also shown that the dispersion and
velocity index could monitor when the shift from exploration
to exploitation processes possibly takes place. Hence, it is
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possible to use these indices to control the balance of
exploration and exploitation in a PSO algorithm. In this
section, some aspect of the usage of these indices is
discussed.

The first aspect is the computational effort of using these
indices. Including the indices in a PSO algorithm will
increase computational effort if the indices are measured in
every iteration. To reduce this effort, it could be measured
only every n iterations, say 50 or 100 iterations.
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Fig. 5. Dispersion and Velocity Index on Typical Run of Basic PSO and GLNPSO on Rosenbrock Function.

The second aspect is the similarity of patterns between
dispersion and velocity indices. The result in Section 3
shows that these indices have similar pattern. Figure 5 shows
the pattern more clearly for one typical run of solving
Rosenbrock function. Since the patterns are similar, it is
sufficient to use only one index in a PSO Algorithm. The
velocity index is preferable since it has simpler formula than
the dispersion index.

The third aspect is how to implement this index in a PSO
Algorithm to achieve a balance between exploration and
exploitation processes. A simple idea is to ensure that the
exploration and exploitation processes are performed in the
same number of iterations. The exploration process is
assumed finished when the velocity index reached a very
small value, i.e. D <& . After number of iterations in the
exploration process ( 7 ) is known, the exploitation process is
performed with exactly the same number of iterations (7).
Hence, the iteration process is stop when ¢=27. In this
way, the exploration and exploitation processes are balanced
by means of the same number of iterations.

Table 2 shows the solutions of the benchmark problems
by GLNPSO with modified stopping criterion using two
values of € : 1E-03 and 1E-05. It shows that the smaller the
value of &, the higher total the number of iteration
performed. However this increment tends to improve the
solution quality. For these benchmark functions: this
increment brings the objective function closer to zero.

The exploration and exploitation pattern of the swarm
may depend on different test problems or different PSO
algorithms or different parameter setting. Using the proposed
stopping criterion with the small enough value of £ will
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allow enough iteration for exploitation process. Since it is
already proven that the balance between exploration and
exploitation may lead to a good solution, this stopping
criterion may overcome the problem of finding the best
parameter setting of algorithm for a certain problem.
However, the effectiveness of a certain algorithm or
parameter setting still could be comparable by the number of
iteration needed to reach a certain level of velocity index.

V. CONCLUSION

The proposed dispersion and velocity indices could be
used as a tool to monitor the balance of exploration and
exploitation processes in PSO algorithm. After embedding
these indices to a PSO algorithm, these indices could also be
used to control the balance between exploration and
exploitation processes in the algorithm, i.e. using velocity
index to indicate the completeness of exploration process
and perform the exploration and exploitation processes in the
same number of iterations. A further study is required to
observe behavior of other PSO algorithms and also other
benchmark functions using the dispersion and velocity index
for the generalization of this result. The PSO with the
modified stopping criterion also need to be further explored.
One aspect that important to be studied is the
recommendation value of £ .
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TA

BLE II

TYPICAL RESULT OF THE GLNPSO WITH MODIFIED STOP CRITERION
(A) OBJECTIVE FUNCTION VALUE

Function Parabola Griewank Rosenbrock
Replication  £€=1E-03 &£=1E-05 &=1E-03 £ =1E-05 £=1E-03 £ =1E-05
1 4.77E-17 3.89E-21 1.23E-02 7.39E-03 2.53E+01 2.31E+01
2 4.30E-16 9.81E-20 4.90E-02 7.39E-03 2.43E+01 2.43E+01
3 4.03E-15 1.70E-17 7.39E-03 1.23E-02 7.79E+01 2.29E+01
4 2.30E-16 7.61E-19 7.39E-03 7.39E-03 7.79E+01 2.09E+01
5 4.12E-16 4.57E-19 4.42E-02 4.93E-03 8.27E+01 1.88E+01
Function Alpine Ackley Rastrigin
Replication  £=1E-03 &£=1E-05 &€=1E-03 £ =1E-05 £ =1E-03 £ =1E-05
1 1.42E-01 2.69E-03 1.16E+00 3.92E-12 4.38E+01 3.88E+01
2 2.42E-05 4.83E-04 1.34E+00 1.70E-08 8.26E+01 5.97E+01
3 1.88E-03 1.36E-03 9.31E-01 8.81E-09 4.28E+01 3.28E+01
4 4.64E-06 1.83E-04 7.07E-08 3.29E-09 5.07E+01 3.88E+01
5 3.30E-04 2.16E-05 4.91E-08 4.76E-08 5.37E+01 5.27E+01
(B) TOTAL NUMBER OF ITERATION
Function Parabola Griewank Rosenbrock
Replication  £=1E-03 &£=1E-05 &€=1E-03 £ =1E-05 £=1E-03 £ =1E-05
1 700 900 700 900 800 1400
2 700 900 700 1000 700 1400
3 700 900 700 1000 800 1400
4 700 900 700 900 800 1400
5 700 1000 700 900 800 1400
Function Alpine Ackley Rastrigin
Replication  £€=1E-03 &£=1E-05 &=1E-03 £=1E-05 £=1E-03 &€= 1E-05
1 1100 1100 700 1000 900 1000
2 800 1000 700 1000 1000 1100
3 800 1100 700 900 900 1200
4 800 1000 700 900 800 1100
5 800 1100 700 1000 900 1000
[6] K. E. Parsopoulos and M. N. Vrahatis, “Particle swarm optimization
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