
ar
X

iv
:0

90
6.

34
61

v1
 [

cs
.N

I]
 1

8
Ju

n
20

09

AIS for Misbehavior Detection in Wireless Sensor Networks:
Performance and Design Principles

Martin Drozda Sven Schaust Helena Szczerbicka
Leibniz University of Hannover, Department of Computer Science

FG Simulation und Modellierung, Welfengarten 1, 30167 Hannover, Germany
Email: {drozda,svs,hsz}@sim.uni-hannover.de

Abstract

A sensor network is a collection of wireless devices that
are able to monitor physical or environmental condi-
tions. These devices (nodes) are expected to operate
autonomously, be battery powered and have very lim-
ited computational capabilities. This makes the task of
protecting a sensor network against misbehavior or pos-
sible malfunction a challenging problem. In this docu-
ment we discuss performance of Artificial immune sys-
tems (AIS) when used as the mechanism for detecting
misbehavior.

We show that (i) mechanism of the AIS have to be
carefully applied in order to avoid security weaknesses,
(ii) the choice of genes and their interaction have a pro-
found influence on the performance of the AIS, (iii)
randomly created detectors do not comply with limi-
tations imposed by communications protocols and (iv)
the data traffic pattern seems not to impact significantly
the overall performance.

We identified a specific MAC layer based gene that
showed to be especially useful for detection; genes
measure a network’s performance from a node’s view-
point. Furthermore, we identified an interesting com-
plementarity property of genes; this property exploits
the local nature of sensor networks and moves the bur-
den of excessive communication from normally behav-
ing nodes to misbehaving nodes. These results have a
direct impact on the design of AIS for sensor networks
and on engineering of sensor networks.

1 Introduction and Motivation

Sensor networks [21] can be described as a collection
of wireless devices with limited computational abilities

which are, due to their ad-hoc communication manner,
vulnerable to misbehavior and malfunction. It is there-
fore necessary to support them with a simple,computa-
tionally friendlyprotection system.

Due to the limitations of sensor networks, there has
been an on-going interest in providing them with a pro-
tection solution that would fulfill several basic criteria.
The first criterion is the ability of self-learning and self-
tuning. Because maintenance of ad hoc networks by a
human operator is expected to be sporadic, they have
to have a built-inautonomousmechanism for identify-
ing user behavior that could be potentially damaging to
them. This learning mechanism should itself minimize
the need for a human intervention, therefore it should be
self-tuning to the maximum extent. It must also be com-
putationally conservative and meet the usual condition
of high detection rate. The second criterion is the ability
to undertake an action against one or several misbehav-
ing users. This should be understood in a wider con-
text of co-operating wireless devices acting in collusion
in order to suppress or minimize the adverse impact of
such misbehavior. Such a co-operation should have a
low message complexity because both the bandwidth
and the battery life are of scarce nature. The third and
last criterion requires that the protection system does
not itself introduce new weaknesses to the systems that
it should protect.

An emerging solution that could facilitate implemen-
tation of the above criteria are Artificial immune sys-
tems (AIS). AIS are based on principles adapted from
the Human immune system (HIS) [18, 5, 17]; the ba-
sic ability of HIS is an efficient detection of potentially
harmful foreign agents (viruses, bacteria, etc.). The
goal of AIS, in our setting, is the identification of nodes
with behavior that could possibly negatively impact the
stated mission of the sensor network.

1

http://arxiv.org/abs/0906.3461v1

One of the key design challenges of AIS is to define
a suitable set of efficient genes. Genes form a basis for
deciding whether a node misbehaves. They can be char-
acterized as measures that describe a network’s perfor-
mance from a node’s viewpoint. Given their purpose,
they must be easy to compute and robust against decep-
tion.

Misbehavior in wireless sensor networks can take
upon different forms: packet dropping, modification of
data structures important for routing, modification of
packets, skewing of the network’s topology or creating
ficticious nodes (see [13] for a more complete list). The
reason for sensors (possibly fully controlled by an at-
tacker) to execute any form of misbehavior can range
from the desire to save battery power to making a given
wireless sensor network non-functional. Malfunction
can also be considered a type of unwanted behavior.

2 Artificial Immune Systems

2.1 Background

The Human immune system is a rather complex mech-
anism able to protect humans against an amazing set of
extraneous attacks. This system is remarkably efficient,
most of the time, in discriminating betweenself and
non-selfantigens.1 A non-self antigen is anything that
can initiate an immune response; examples are a virus,
bacteria, or splinter. The opposite to non-self antigens
are self antigens; self antigens are human organism’s
own cells.

DETECTOR

SET
MATCH

NO

YES

REJECT

STRINGS

SELF

STRING

RANDOM

GENERATE

Figure 1: T-cell (detector) generation by random-
generate-and-test process. A (bit) string representation
is assumed.

1Self and non-self in short.

MATCH

STRINGS

NEW

YESDETECTOR

SET

DETECTED

NON−SELF

Figure 2: Recognizing non-self is done by matching T-
cells (detectors) with suspected non-self antigens (new
strings).

2.2 Learning

The process of T-cells maturation in thymus is used as
an inspiration for learning in AIS. The maturation of
T-cells (detectors) in thymus is a result of a pseudo-
random process. After a T-cell is created (see Fig. 1),
it undergoes a censoring process callednegative selec-
tion. During negative selection T-cells that bind self
are destroyed. Remaining T-cells are introduced into
the body. The recognition of non-self is then done by
simply comparing T-cells that survived negative selec-
tion with a suspected non-self. This process is depicted
in Fig. 2. It is possible that the self set is incomplete,
while a T-cell matures (tolerization period) in the thy-
mus. This could lead to producing T-cells that should
have been removed from the thymus and can cause an
autoimmune reaction, i.e. it leads tofalse positives.

A deficiency of the negative selection process is that
alone it is not sufficient for assessing the damage that a
non-self antigen could cause. For example, many bac-
teria that enter our body are not harmful, therefore an
immune reaction is not necessary. T-cells, actors of the
adaptive immune system, require co-stimulation from
the innate immune system in order to start acting. The
innate immune system is able to recognize the pres-
ence of harmful non-self antigens and tissue damage,
and signal this to certain actors of the adaptive immune
system.

The random-generate-and-test approach for produc-
ing T-cells (detectors) described above is analyzed
in [11]. In general, the number of candidate detectors
to the self set size needs to be exponential (if a match-
ing rule with fixed matching probability is used). An-
other problem is a consistent underfitting of the non-
self set; there exist “holes” in the non-self set that are
undetectable. In theory, for some matching rules, the
number of holes can be very unfavorable [28]. In prac-
tical terms, the effect of holes depends on the charac-

2

teristics of the non-self set, representation and match-
ing rule [15]. The advantage of this algorithm is its
simplicityand good experimental results in cases when
the number of detectors to be produced is fixed and
small [26]. A review of other approaches to detector
computation can be found in [2].

3 Sensor Networks

A sensor network can be defined in graph theoretic
framework as follows: a sensor network is a netN =
(n(t), e(t)) wheren(t), e(t) are the set of nodes and
edges at timet, respectively. Nodes correspond to sen-
sors that wish to communicate with each other. An edge
between two nodesA andB is said to exist whenA is
within the radio transmission range ofB and vice versa.
The imposed symmetry of edges is a usual assumption
of many mainstream protocols. The change in the car-
dinality of setsn(t), e(t) can be caused by switching
on/off one of the sensors, failure, malfunction, removal,
signal propagation, link reliability and other factors.

Data exchange in a point-to-point (uni-cast) scenario
usually proceeds as follows: a user initiated data ex-
change leads to a route query at the network layer of
the OSI stack. A routing protocol at that layer attempts
to find a route to the data exchange destination. This
request may result in a path of non-unit length. This
means that a data packet in order to reach the desti-
nation has to rely on successive forwarding by inter-
mediate nodes on the path. An example of an on-
demand routing protocol often used in sensor networks
is DSR [20]. Route search in this protocol is started
only when a route to a destination is needed. This
is done by flooding the network with RREQ2 control
packets. The destination node or an intermediate node
that knows a route to the destination will reply with a
RREP control packet. This RREP follows the route
back to the source node and updates routing tables at
each node that it traverses. A RERR packet is sent to
the connection originator when a node finds out that the
next node on the forwarding path is not replaying.

At the MAC layer of the OSI protocol stack, the
medium reservation is often contention based. In or-
der to transmit a data packet, the IEEE 802.11 MAC
protocol uses carrier sensing with an RTS-CTS-DATA-
ACK handshake.3 Should the medium not be available

2RREQ = Route Request, RREP = Route Reply, RERR = Route
Error.

3RTS = Ready to send, CTS = Clear to send, ACK = Acknowl-

or the handshake fails, an exponential back-off algo-
rithm is used. This is combined with a mechanism that
makes it easier for neighboring nodes to estimate trans-
mission durations. This is done by exchange of dura-
tion values and their subsequent storing in a data struc-
ture known as Network allocation vector (NAV). With
the goal to save battery power, researchers suggested,
a sleep-wake-up schedule for nodes would be appropri-
ate. This means that nodes do not listen continuously
to the medium, but switch themselves off and wake
up again after a predetermined period of time. Such
a sleep and wake-up schedule is similarly to duration
values exchanged among nodes. An example of a MAC
protocol, designed specifically for sensor networks, that
uses such a schedule is the S-MAC [29]. A sleep and
wake-up schedule can severely limit operation of a node
in promiscuous mode. In promiscuous mode, a node
listens to the on-going traffic in the neighborhood and
collects information from the overheard packets. This
technique is used e.g. in DSR for improved propaga-
tion of routing information.

Movement of nodes can be modeled by means of a
mobility model. A well-known mobility model is the
Random waypoint model[20]. In this model, nodes
move from the current position to a new randomly gen-
erated position at a predetermined speed. After reach-
ing the new destination a new random position is com-
puted. Nodes pause at the current position for a time
periodt before moving to the new random position.

For more information on sensor networks, we refer
the reader to [21].

4 Summary of Results

Motivated by the positive results reported in [17, 26] we
have undertaken a detailed performance study of AIS
with focus on sensor networks. The general conclusions
that can be drawn from the study presented in this doc-
ument are:

1. Given the ranges of input parameters that we used
and considering the computational capabilities of cur-
rent sensor devices, we conclude that AIS based misbe-
havior detection offers a decent detection rate.

2. One of the main challenges in designing well per-
forming AIS for sensor networks is the set of “genes”.
This is similar to observations made in [24].

edgment.

3

3. Our results suggest that to increase the detection
performance, an AIS should benefit from information
available at all layers of the OSI protocol stack; this
includes also detection performance with regards to a
simplistic flavor of misbehavior such as packet drop-
ping. This supports ideas shortly discussed in [30]
where the authors suggest that information available at
the application layer deserves more attention.

4. We observed that somewhat surprisingly a gene
based purely on the MAC layer significantly con-
tributed to the overall detection performance. This
gene poses less limitations when a MAC protocol with
a sleep-wake-up schedule such as the S-MAC [29] is
used.

5. It is desirable to use genes that are“complemen-
tary” with respect to each other. We demonstrated that
two genes, one that measures correct forwarding of data
packets, and the other one that indirectly measures the
medium contention, have exactly this property.

6. We only used a single instance of learning and de-
tection mechanism per node. This is different from ap-
proach used in [17, 26], where one instance was used
for each ofm possible neighbors. Our performance
results show that the approach in [17, 26] may not be
feasible for sensor networks. It may allow for an easy
Sybil attack and, in general,m = n−1 instances might
be necessary, wheren is the total number of sensors in
the network. Instead, we suggest that flagging a node as
misbehaving should, if possible, be based on detection
at several nodes.

7. Only less than 5% detectors were used in detecting
misbehavior. This suggests that many of the detectors
do not comply with constraints imposed by the commu-
nications protocols; this is an important fact when de-
signing AIS for sensor networks because the memory
capacity at sensors is expected to be very limited.

8. The data traffic properties seem not to impact the
performance. This is demonstrated by similar detection
performance, when data traffic is modeled as constant
bit rate and Poisson distributed data packet stream, re-
spectively.

9. We were unable to distinguish between nodes that
misbehave (e.g. deliberately drop data packets) and
nodes with a behavior resembling a misbehavior (e.g.
drop data packets due to medium contention). This mo-
tivates the use of danger signals as described in [1, 16].
The approach applied in [26] does, however, not com-
pletely fit sensor networks since these might implement
only a simplified version of the transport layer.

5 AIS for Sensor Networks: De-
sign Principles

In our approach, each node produces and maintains its
own set of detectors. This means that we applied a di-
rect one-to-one mapping between a human body with
a thymus and a node. We represent self, non-self and
detector strings as bit-strings. The matching rule em-
ployed is ther-contiguous bits matching rule. Two bit-
strings of equal length match under the r-contiguous
matching rule if there exists a substring of lengthr at
positionp in each of them and these substrings are iden-
tical. Detectors are produced by the process shown in
Fig. 1, i.e. by means of negative selection when detec-
tors are created randomly and tested against a set of self
strings.

Each antigen consists of several genes.Genesare
performance measures that a node can acquire locally
without the help from another node. In practical terms
this means that an antigen consists ofx genes; each of
them encodes a performance measure, averaged in our
case over a time window. An antigen is then created by
concatenating thex genes.

When choosing the correct genes, the choice is lim-
ited due to the simplified OSI protocol stack of sensors.
For example, Mica2 sensors [9] using the TinyOS oper-
ating system do not guarantee any end-to-end connec-
tion reliability (transport layer), leaving only data traffic
at the lower layers for consideration.

Let us assume that the routing protocol finds for a
connection the pathss, s1, ..., si, si+1, si+2, ..., sd from
the source nodess to the destination nodesd, where
ss 6= sd andsi+1 6= sd. We have used the following
genesto capture certain aspects of MAC and routing
layer traffic information (we averaged over a time pe-
riod (window size) of 500 seconds):

MAC Layer:

#1 Ratio of complete MAC layer handshakes between
nodessi andsi+1 and RTS packets sent bysi to
si+1. If there is no traffic between two nodes this
ratio is set to∞ (a large number). This ratio is av-
eraged over a time period. A complete handshake
is defined as a completed sequence of RTS, CTS,
DATA, ACK packets betweensi andsi+1.

#2 Ratio of data packets sent fromsi to si+1 and then
subsequently forwarded bysi+1 to si+2. If there
is no traffic between two nodes this ratio is set to

4

∞ (a large number). This ratio is computed by
si in promiscuous mode and, as in the previous
case, averaged over a time period. This gene was
adapted from the watchdog idea in [25].

#3 Time delay that a data packet spends atsi+1 be-
fore being forwarded tosi+2. The time delay is
observed bysi in promiscuous mode. If there is
no traffic between two nodes the time delay is set
to zero. This measure is averaged over a time pe-
riod. This gene is a quantitative extension of the
previous gene.

Routing Layer:

#4 The same ratio as in #2 but computed separately
for RERR routing packets.

#5 The same delay as in #3 but computed separately
for RERR routing packets.

The Gene #1 can be characterized as MAC layer
quality oriented –it indirectly measures the medium
contention level. The remaining genes are watchdog
oriented. This means that they more strictly fit a cer-
tain kind of misbehavior. The Gene #2 can help de-
tect whether packets get correctly forwarded; the Gene
#3 can help detect whether forwarding of packets does
not get intentionally delayed. As we will show later,
in the particular type of misbehavior (packet dropping)
that we applied, the first two genes come out as “the
strongest”. The disadvantage of the watchdog based
genes is that due to limited battery power, nodes could
operate using a sleep-wake-up schedule similar to the
one used in the S-MAC. This would mean that the node
si has to stay awake until the nodesi+1 (monitored
node) correctly transmits tosi+2. The consequence
would be a longer wake-up time and possible restric-
tions in publishing sleep-wake-up schedules.

In [24] the authors applied a different a set of genes,
based only on the DSR routing protocol. The observed
set of events was the following: A = RREQ sent, B =
RREP sent, C = RERR sent, D = DATA sent and IP
source address is not of the monitored (neighboring)
node, E = RREQ received, F = RREP received, G =
RERR received, H = DATA received and the IP destina-
tion address is not of the monitored node. The events D
and H take into consideration that the source and desti-
nation nodes of a connection might appear as misbehav-
ing as they seem to “deliberately” create and delete data
packets. Then the set of their four genes is as follows:

#1 Number of E over a time period.

#2 Number of (E*(A or B)) over a time period.

#3 Number of H over a time period.

#4 Number of (H*D) over a time period.

The time period (window size) in their case was 10s;
* is the Kleene star operator (zero or more occurrences
of any event(s) are possible). Similar to our watch-
dog genes, these genes impose additional requirements
on MAC protocols such as the S-MAC. Their depen-
dence on the operation in promiscuous mode is, how-
ever, more pronounced as a node has to continuously
observe packet events at all monitored nodes.

The research in the area of what and to what extent
can be or should be locally measured at a node, is inde-
pendent of the learning mechanism used (negative se-
lection in both cases). Performance of an AIS can partly
depend on the ordering and the number of used genes.
Since longer antigens (consisting of more genes) indi-
rectly imply more candidate detectors, the number of
genes should be carefully considered. Givenx genes,
it is possible to order them inx! different ways. In our
experience, the rules for ordering genes and the number
of genes can be summed up as follows:

1) Keep the number of genes small. In our experi-
ments, we show that with respect to the learning mech-
anism used and the expected deployment (sensor net-
works), 2-3 genes are enough for detecting a basic type
of misbehavior.

2) Order genes either randomly or use a predeter-
mined fixed order. Defining a utility relation between
genes, and ordering genes with respect to it can, in gen-
eral, lead to problems that are considered intractable.
Our results however suggest, it is important to under-
stand relations between different genes, since genes are
able to complement each other; this can lead to their in-
creased mutual strength. On the other hand, random or-
dering adds to robustness of the underlying AIS. For an
attacker, it is namely more difficult to deceive, since he
does not know how genes are being used. It is currently
an open question, how to impose a balanced solution.

3) Genes cannot be considered in isolation. Our
experiments show, when a detector matched an anti-
gen under ther-contiguous matching rule, usually this
match spanned over several genes. This motivates de-
sign of matching rules that would not limit matching to
a few neighboring genes, offer more flexibility but still
require that a gene remains a partly atomic unit.

5

5.1 Learning and Detection

Learning and detection is done by applying the mech-
anisms shown in Figs. 1 and 2. The detection it-
self is very straightforward. In the learning phase, a
misbehavior-free period (see [1] on possibilities for cir-
cumventing this problem) is necessary so that nodes get
a chance to learn what is the normal behavior. When
implementing the learning phase, the designer gets to
choose from two possibilities:

1) Learning and detection at a node get implemented
for each neighboring node separately. This means that
different antigens have to get computed for each neigh-
boring node, detector computation is different for each
neighboring node and, subsequently, detection is differ-
ent for each neighboring node. The advantage of this
approach is that the node is able to directly determine
which neighboring node misbehaves; the disadvantage
is thatm instances (m is the number of neighbors or
node degree) of the negative selection mechanism have
to get executed; this can be computationally prohibitive
for sensor networks asm can, in general, be equal to the
total number of sensor. This allows for an easy Sybil
attack [13] in which a neighbor would create several
identities; the node would then be unable to recognize
that these identities belong to the same neighbor. This
approach was used in [26, 24].

2) Learning and detection at a node get implemented
in a single instance for all neighboring nodes. This
means a node is able to recognize anomaly (misbehav-
ior) but it may be unable to determine which one from
them neighboring nodes misbehaves. This implies that
nodes would have to cooperate when detecting a mis-
behaving node, exchange anomaly information and be
able to draw a conclusion from the obtained informa-
tion. An argument for this approach is that in order
to detect nodes that misbehave in collusion, it might
be necessary to rely to some extent on information ex-
change among nodes, thus making this a natural solu-
tion to the problem. We have used this approach; a post-
processing phase (using the list of misbehaving nodes)
was necessary to determine whether a node was cor-
rectly flagged as misbehaving or not.

We find the second approach to be more suited for
wireless sensor networks. It is namely less computa-
tionally demanding. We are unable, at this time, to esti-
mate the frequency of a complete detector set computa-
tion.

Both approaches can be classified within the four-

Local and Cooperative
Response

Data Collection and
Preprocessing

Local and Cooperative

Detection

Learning

Figure 3: An four-layer architecture aimed at protecting
sensor networks against misbehavior and abuse.

layer architecture (Fig. 3) that we introduced in [14].
The lowermost layer, Data collection and preprocess-
ing, corresponds to genes’ computation and antigen
construction. The Learning layer corresponds to the
negative selection process. The next layer, Local and
co-operative detection, suggests, an AIS should bene-
fit from both local and cooperative detection. Both our
setup and the setup described in [26, 24] only apply
local detection. The uppermost layer, Local and co-
operative response, implies, an AIS should also have
the capability to undertake an action against one or sev-
eral misbehaving nodes; this should be understood in a
wider context of co-operating wireless devices acting in
collusion in order to suppress or minimize the adverse
impact of such misbehavior. To our best knowledge,
there is currently no AIS implementation for sensor net-
works taking advantage of this layer.

Whichr is the correct one?
An interesting technical problem is to tune ther pa-

rameter for ther-contiguous matching rule so that the
underlying AIS offers good detection and false posi-
tives rates. One possibility is a lengthy simulation study
such as this one. Through multiparameter simulation
we were to able to show thatr = 10 offers the best per-
formance for our setup. In [12] we experimented with
the idea of “growing” and “shrinking” detectors; this
idea was motivated by [19]. The initialr0 for a grow-

6

ing detector can be chosen asr0 = ⌈l/2⌉, wherel is
the detector length. The goal is to find the smallestr
such that a candidate detector does not match any self
antigen. This means, initially, a larger (more specific)
r is chosen; the smallestr that fulfills the above condi-
tion can be found through binary search. For shrinking
detectors, the approach is reciprocal. Our goal was to
show that such growing or shrinking detectors would
offer a better detection or false positives rate. Short of
proving this in a statistically significant manner, we ob-
served that the growing detectors can be used for self
tuning ther parameter. The averager value was close
to ther determined through simulation (the setup in that
case was different from the one described in this docu-
ment).

5.2 Further Optimizations

Our experiments show that only a small number of de-
tectors get ever used (less than 5%). The reason is, they
get produced in a random way, not considering structure
of the protocols. For example, a detector that is able to
detect whether i) data packets got correctly transmitted
and ii) 100% of all MAC layers handshakes were in-
complete is superfluous as this case should never hap-
pen. In [8], the authors conclude:“... uniform coverage
of non-self space is not only unnecessary, it is imprac-
tical; non-self space is too big”. Application driven
knowledge can be used to set up a rule based system that
would exclude infeasible detectors; see [10] for a rule
based system aimed at improved coverage of the non-
self set. In [17], it is suggested that unused detectors
should get deleted and the lifetime of useful detectors
should be extended.

5.3 Misbehavior

In a companion paper [13], we have reviewed different
types of misbehavior at the MAC, network and transport
layers of the OSI protocol stack. We note that solutions
to many of these attacks have been already proposed;
these are however specific to a given attack. Addition-
ally, due to the limitations of sensor networks, these so-
lutions cannot be directly transfered.

The appeal of AIS based misbehavior detection rests
on its simplicity and applicability in an environment
that is extremely computationally and bandwidth lim-
ited. Misbehavior in sensor networks does not have to
be executed by sensors themselves; one or several com-
putationally more powerful platforms (laptops) can be

used for the attack. On the other hand, a protection
using such more advanced computational platforms is,
due to e.g. the need to supply them continuously with
electric power, harder to imagine. It would also create
a point of special interest for the possible attackers.

6 Experimental Setup

The purpose of our experiments was to show that AIS
are a viable approach for detecting misbehavior in sen-
sor networks. Furthermore, we wanted to cast light on
internal performance of an AIS designed to protect sen-
sor networks. One of our central goals was to provide
an in-depth analysis of relative usefulness of genes.

Definitions of input and output parameters:The in-
put parameters for our experiments were:r parameter
for ther-contiguous matching rule, the (desired) num-
ber of detectors and misbehavior level. Misbehavior
was modeled as random packet dropping at selected
nodes.

The performance (output) measures were arithmetic
averages and 95% confidence intervalsci95% of detec-
tion rate, number of false positives, real time to compute
detectors, data traffic rate at nodes, number of iterations
to compute detectors (number of random tries), num-
ber of non-valid detectors, number of different (unique)
antigens in a run or a time window, and number of
matches for each gene. The detection ratedr is defined
as dns

ns
, wheredns is the number of detected non-self

strings andns is the total number of non-self strings. A
false positive in our definition is a string that is not self
but can still be a result of anomaly that is identical with
the effects of a misbehavior. A non-valid detector is a
candidate detector that matches a self string and must
therefore be removed.

The number of matches for each gene was evalu-
ated using ther-contiguous matching rule; we consid-
ered two cases: i) two bit-strings get matched from the
left to the right and the first such a match will get re-
ported (matching gets interrupted), ii) two bit-strings
get matched from the left to the right and all possible
matches will get reported. The time complexity of these
two approaches isO(r(l− r)) andΘ(r(l− r)), respec-
tivelly; r ≤ l, wherel is the bitstring length. The first
approach is exactly what we used when computing the
real time necessary for negative selection, the second
approach was used when our goal was to evaluate rela-
tive usefulness of each gene.

Scenario description: We wanted to capture “self”

7

(i) Negative selection algorithm: random-generate-and-test. Implemented in C++, compiled with GNU g++ v4.0 with -O3
option.
(ii) Input parameters: 1. r-contiguous matching rule withr = {7, 10, 13, 16, 19, 22}. 2. Encoding: 5 genes each 10 bits
long = 50 bits. 3. Number of detectors{500, 1000, 2000, 4000}. 4. Misbehavior level{10, 30, 50%} 5. Window size 500
seconds; 28 complete windows over 4-hour simulation time.
(iii) Performance measures:real time to compute detectors, number of iterations to compute detectors, detection rate,
false positives rate, rate of non-valid detectors, data traffic rate at nodes, number of different antigens in a run, number of
matches for each gene; their arithmetic averages and 95% confidence intervals (where applicable).
(iv) Network topology: Snapshot of movement modeled by random waypoint mobility model i.e. it is a static network.
There were 1,718 nodes. The area was a square of 2,900m×2,950m. The transmission range of transceivers was 100
meters.
(v) Number of connections:10 CBR (constant bit rate) connections.MAC protocol : IEEE 802.11b DCF.Routing pro-
tocol: DSR. Other parameters: (i) Propagation path-loss model: two ray (ii) Channel frequency: 2.4 GHz (iii) Topography:
Line-of-sight (iv) Radio type: Accnoise (v) Network protocol: IPv4 (vi) Connection type: UDP.
(vi) Injection rate: 1 packet/second. 14,400 packets per connection were injected. Packet size was 512 bytes.
(vii) The number of independent simulation runs for each combination of input parameters was 20. The simulation time
was 4 hours.
(viii) Simulator used: GlomoSim 2.03; hardware used: 30× Linux (SuSE 10.0) PC with 2GB RAM and Pentium 4 3GHz
microprocessor.

Figure 4: Parameters used in the experiment.

and “non-self” packet traffic in a large enough synthetic
static sensor network and test whether using an AIS we
are able to recognize non-self, i.e. misbehavior.

The topology of this network was determined by
making a snapshot of 1,718 mobile nodes (each
with 100m radio radius) moving in a square area of
2,900m×2,950m as prescribed by the random waypoint
mobility model; see Figure 5(a). The motivation in us-
ing this movement model and then creating a snapshot
are the results in our previous paper [7] that deals with
structural robustness of sensor network. Our preference
was to use a slightly bigger network than it might be
necessary, rather than using a network with unknown
properties. The computational overhead is negligible;
simulation real time mainly depends on the number
of events that require processing. Idle nodes increase
memory requirements, but memory availability at com-
puters was in our case not a bottleneck.

We chose source and destination pairs for each con-
nection so that several alternative independent routes
exist; the idea was to benefit from route repair and route
acquisition mechanisms of the DSR routing protocol, so
that the added value of AIS based misbehavior detection
is obvious.

We used 10 CBR (Constant bit rate) connections.
The connections were chosen so that their length is∼7
hops and so that these connections share some common
intermediate nodes; see Figure 5(b). For each packet re-

ceived or sent by a node we have captured the following
information: IP header type (UDP, 802.11 or DSR in
this case), MAC frame type (RTS, CTS, DATA, ACK in
the case of 802.11), current simulation clock, node ad-
dress, next hop destination address, data packet source
and destination address and packet size.

Encoding of self and non-self antigens:Each of the
five genes was transformed in a 10-bit signature where
each bit defines an interval4 of a gene specific value
range. We created self and non-self antigen strings by
concatenation of the defined genes. Each self and non-
self antigen has therefore a size of 50 bits. The interval
representation was chosen in order to avoid carry-bits
(the Gray coding is an alternative solution).

Constructing the self and non-self sets:We have ran-
domly chosen 28 non-overlapping500-second windows
in our 4-hour simulation. In each 500-second window
self and non-self antigens are computed for each node.
This was repeated 20 times for independent Glomosim
runs.

Misbehavior modeling:Misbehavior is modeled as
random data packet dropping (implemented at the net-
work layer); data packets include both data packets
from the transport layer as well as routing protocol
packets. that should get dropped will simply not be in-

4The interval encoding of genes is adapted from [26]. This way
only one of the 10 bits is set to 1, i.e. there are only 10 possible value
levels that it is possible to encode in this case.

8

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000

Sink
Source

(b)

Figure 5: (a) Topology of our 1,718-node network with 100m radio radius. (b) Measured forwarding path of the
10 connections for a single simulation run without misbehavior; connections shown with all alternative forwarding
routes, if they exist.

serted into the IP queue); we have randomly chosen 236
nodes and these were forced to drop{10, 30, 50%} of
data packets. However, there were only 3-10 nodes with
misbehavior and with astatistically significantnumber
of packets for forwarding in each simulation run; see
constraint C2 in Section 7.

Detection:A neighboring node gets flagged as mis-
behaving, if a detector from the detector set matches an
antigen. Since we used a single learning phase, we had
to complement this process with some routing informa-
tion analysis. This allowed us to determine, which one
from the neighboring nodes is actually the misbehav-
ing one. In the future, we plan to rely on co-operative
detection in order to replace such a post-analysis.

Simulation phases:The experiment was done in four
phases.

1. 20 independent Glomosim runs were done for one
of {10, 30, 50%}misbehavior levels and “normal”
traffic. Normal means that no misbehavior took
place.

2. Self and non-self antigen computation (encoding).

3. The 20 “normal” traffic runs were used to com-
pute detectors. Given the 28 windows and 20 runs,
the sample size was 20×28 = 560, i.e. detectors
at each node were discriminated against 560 self
antigens.

4. Using the runs with{10, 30, 50%} misbehavior
levels, the process shown in Fig. 2 was used for de-
tection; we restricted ourselves to nodes that had in
both the normal and misbehavior traffic at least a
certain number of data packets to forward (packet
threshold).

The experiment was then repeated with differentr,
desired number of detectors and misbehavior level.

The parameters for this experiment are summarized
in Fig. 4. The injection rate and packet sizes were cho-
sen in order to comply with usual data rates of sensors
(e.g. 38.4kbps for Mica2; see [9]). We chose the Glo-
mosim simulator [3] over other options (most notably
ns2) because of its better scaling characteristics [6] and
our familiarity with the tool.

7 Results Evaluation

When evaluating our results we define two additional
constraints:

C1. We define a node to be detected as misbehaving if
it gets flagged in at least 14 out of the 28 possible
windows. This notion indirectly defines the time
until a node is pronounced to be misbehaving. We
call this awindow threshold.

9

 1

 10

 100

 4000 2000 1000 500

R
ea

l t
im

e
us

ed
 [s

/n
od

e]

Desired number of detectors

r = 7
r = 10
r = 13
r = 16
r = 19
r = 22

(a) Real time to compute the desired number
of detectors at a node;ci95% < 1%.

 0

 5

 10

 15

 20

 25

 4000 2000 1000 500

N
on

-v
al

id
 d

et
ec

to
rs

 [%
]

Desired number of detectors

r = 7
r = 10
r = 13
r = 16
r = 19
r = 22

(b) Rate of non-valid detectors; forr ≤ 13 is
ci95% < 1%, for r ≥ 16 is the sample size
not significant.

 100

 1000

 10000

 4000 2000 1000 500

Ite
ra

tio
ns

 n
ee

de
d

Desired number of detectors

r = 7
r = 10
r = 13
r = 16
r = 19
r = 22

(c) Number of iterations needed in order to
compute the desired number of detectors; for
r ≥ 10 is ci95% < 1%, for r = 7 is
ci95% < 2%.

Figure 6: Performance of detectors computation.

 0

 20

 40

 60

 80

 100

 4000 2000 1000 500

D
et

ec
tio

n
ra

te
 [%

]

Packet threshold

Number of detectors = 2000

10%
30%
50%

(a) Detection rate vs packet threshold; conf.
interval ranges: for mis. level10% is ci95%
= 3.8-19.8%; for30% is ci95% = 11.9-15.9%;
for 50% is ci95% = 11.0-14.2%.

 0

 20

 40

 60

 80

 100

 22 19 16 13 10 7

D
et

ec
tio

n
ra

te
 [%

]

r

Number of detectors = 2000

10%
30%
50%

(b) Detection rate vsr; ci95% range similar
to (a).

 0

 0.5

 1

 1.5

 2

 22 19 16 13 10 7

N
um

be
r

of
 fa

ls
e

po
si

tiv
es

r

Number of detectors = 2000

10%
30%
50%

(c) Number of false positives; forr ≤ 10 is
ci95% = 0.47-0.68, forr ≥ 13 is the sample
size not significant.

Figure 7: Performance of misbehavior detection. Misbehavior level ={10, 30, 50}%. In (a)r = 10, in (b) and (c)
the packet threshold was 1000.

 0

 50

 100

 150

 200

 250

 300

 22 19 16 13 10 7N
um

be
r

of
 r

un
s

ov
er

 a
 w

in
do

w
 th

re
sh

ol
d

r

Number of detectors = 2000

10%
30%
50%

(a) Total number of runs with window thresh-
old ≥ 14.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 22 19 16 13 10 7

N
um

be
r

of
 u

ni
qu

e
de

te
ct

or
s

pe
r

ru
n

r

Number of detectors = 2000

10%
30%
50%

(b) The number of unique detectors that
matched an antigen in a run. Conf. interval
range for7 ≤ r ≤ 13 is ci95% = 6.5-10.1%.

 0

 10

 20

 30

 40

 50

 60

 22 19 16 13 10 7N
um

be
r

of
 u

ni
qu

e
de

te
ct

or
s

pe
r

w
in

do
w

r

Number of detectors = 2000

10%
30%
50%

(c) The number of unique detectors that
matched an antigen in a window; each run has
28 windows. Conf. interval range:ci95% <

0.16%.

Figure 8: Window threshold and detector related performance measures.

10

 0

 0.5

 1

 1.5

 2

 2.5

 3

 22 19 16 13 10 7

N
um

be
r

of
 u

ni
qu

e
an

tig
en

s
pe

r
ru

n

r

Number of detectors = 2000

10%
30%
50%

(a) Number of unique antigens per run. Conf.
interval range for7 ≤ r ≤ 13 is ci95% =
5.3-8.9%.

 0

 50

 100

 150

 200

 250

 22 19 16 13 10 7

N
um

be
r

of
 m

at
ch

es

r

Number of detectors = 2000

single
multiple

(b) Total number of matches;single = one
gene got matched,multiple = more than one
gene got matched.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 22 19 16 13 10 7

N
um

be
r

of
 g

en
e

m
at

ch
es

r

Number of detectors = 2000; gene #1

10%
30%
50%

(c) Total number of matches for Gene #1.

Figure 9: Antigen and gene related performance measures.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 5 4 3 2 1

N
um

be
r

of
 g

en
e

m
at

ch
es

Gene#

Number of detectors = 2000; r =7

10%
30%
50%

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5 4 3 2 1

N
um

be
r

of
 g

en
e

m
at

ch
es

Gene#

Number of detectors = 2000; r =10

10%
30%
50%

(b)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 5 4 3 2 1

N
um

be
r

of
 g

en
e

m
at

ch
es

Gene#

Number of detectors = 2000; r =13

10%
30%
50%

(c)

Figure 10: Performance of Genes #1 through #5 for the number of detectors =2000 and (a)r = 7, (b) r = 10, (c)
r = 13.

11

C2. A nodesi has to forward in average at leastm
packets over the 20 runs in both the “normal” and
misbehavior cases in order to be included into our
statistics. This constraint was set in order to make
the detection process more reliable. It is dubious
to flag a neighboring node ofsi as misbehaving,
if it is based on “normal” runs or runs with mis-
behavior, in which nodesi had no data packets to
forward (he was not on a routing path). We call this
a packet threshold; m was in our simulations cho-
sen from{500, 1000, 2000, 4000}. Example: for
a fixed set of input parameters, a node forwarded
in the “normal” runs in average 1,250 packets and
in the misbehavior runs (with e.g. level 30%)
750 packets. The nodesi would be considered
for misbehavior detection ifm = 500, but not if
m ≥ 1000. In other words, a node has to get a
chance to learn what is “normal” and then to use
this knowledge on a non-empty packet stream.

7.1 Overall Performance

The results related to computation of detectors are
shown in Figure 6. In our experiments we have con-
sidered the desired number of detectors to be max.
4,000; over this threshold the computational require-
ments might be too high for current sensor devices. We
remind the reader, each time ther parameter is incre-
mented by1, the number of detectors should double in
order to make these two cases comparable.

Figure 6(a) shows the real time needed to com-
pute the desired set of detectors. We can see the real
time necessary increases proportionally with the desired
number of detectors; this complies with the theoretical
results presented in [11]. Figure 6(b) shows the percent-
age of non-valid detectors, i.e. candidate detectors that
were found to match a self string (see Figure 1). This
result points to where the optimal operation point of an
AIS might lie with respect to the choice ofr parameter
and the choice of a fixed number of detectors to com-
pute. We remind the reader, the larger is ther parameter
the smaller is the probability that a detector will match
a self string. Therefore overhead connected to choosing
the r parameter prohibitively small should be consid-
ered when designing an AIS. Figure 6(c) shows the total
number of generate-and-test tries needed for computa-
tion of detector set of a fixed size; the 95% confidence
interval is less than2%.

In Figure 7(a) we show the dependence of detection
ratio on the packet threshold. We conclude that except

for some extremely low threshold values (not shown)
the detection rate stays constant. This figure also shows
that when misbehavior level was set very low, i.e. 10%,
the AIS struggled to detect misbehaving nodes. This
is partly a result of our coarse encoding with only 10
different levels.

At the 30 and 50% misbehaving levels the detection
rate stays solid at about 70-85%. The range of the 95%
confidence interval of detection rate is 3.8-19.8%. The
fact that the detection rate did not get closer to 100%
suggests, either the implemented genes are not suffi-
cient, detection should be extended to protocols at other
layers of the OSI protocol stack, a different ordering of
genes should have been applied or our ten level encod-
ing was too coarse. It also implicates that watchdog
based genes (though they perfectly fit the implemented
misbehavior) should not be used in isolation, and in
general, that the choice of genes has to be very careful.

Figure 7(b) shows the impact ofr on detection rate.
Whenr = {7, 10} the AIS performs well, forr > 10
the detection rate decreases. This is caused by the inad-
equate numbers of detectors used at higher levels ofr
(we limited ourselves to max. 4,000 detectors).

Figure 7(c) shows the number of false positives. We
remind that in our definition false positives are both
nodes that do not drop any packets and nodes that drop
packets due to other reasons than misbehavior.

In a separate experiment we studied whether the
4-hour (560 samples) simulation time was enough to
capture the diversity of the self behavior. This was
done by trying to detect misbehavior in 20 independent
misbehavior-free Glomosim runs (different from those
used to compute detectors). We report that we did not
observe a single case of an autoimmune reaction.

7.2 Detailed Performance

In Fig. 8(a) we show the total number of runs in which a
node was identified as misbehaving. The steep decline
for valuesr > 10 (in this and other figures) documents
that in these cases it was necessary to produce a higher
number of detectors in order to cover the non-self anti-
gen space. The higher ther, the higher is the specificity
of a detector, this means that it is able to match a smaller
set of non-self antigens.

In Fig. 8(b) and (c) we show the number of detec-
tors that got matched during the detection phase (see
Fig. 2). Fig. (b) shows the number of detectors matched
per run, Fig. (c) shows the number of detectors matched
per window. Fig. (b) is an upper estimate on the number

12

of unique detectors needed in a single run. Given that
the total number of detectors was 2,000, there were less
than 5% detectors that would get used in the detection
phase. The tight confidence intervals5 for the number of
unique detectors matched per window (see Fig. (c)) is a
direct consequence of the small variability of antigens
as shown in Fig. 9(a).

Fig. 9(a) shows the number of unique antigens that
were subject to classification into self or non-self. The
average forr = {7, 10} is about 1.5. This fact does
not directly imply that the variability of the data traffic
would be inadequate. It is rather a direct consequence
of our choice of genes and their encoding (we only used
10 value levels for encoding). Fig. 9(b) shows the num-
ber of matches between a detector and an antigen in the
following way. When a detector under ther-contiguous
matching rule matches only a single gene within an anti-
gen, we would increment the “single” counter. Other-
wise, we would increment the “multiple” counter. It is
obvious that with increasingr, it gets more and more
probable that a detector would match more than a sin-
gle gene. The interesting fact is that the detection rate
for bothr = 7 andr = 10 is about 80% (see Fig. 7(a))
and that the rate of non-valid detectors is very different
(see Fig. 6(b)). This means that an interaction between
genes has positively affected the later performance mea-
sure, without sacrificing on the former one. This leads
to a conlusion that genes should not be considered in
isolation.

Fig. 9(c) shows the performance of Gene #1. The
number of matches shows that this gene contributed
to the overall detection performance of our AIS.
Figs. 10(a-c) sum up performance of the five genes for
different values ofr. Again, an interesting fact is the
contribution of Gene #1 to the overall detection perfor-
mance. The usefulness of Gene #2 was largely expected
as this gene was tailored for the kind of misbehavior
that we implemented. The other three genes came out
as marginally useful. The importance of the somewhat
surprising performance of Gene #1 is that it can be com-
puted in a simplistic way and does not require continu-
ous operation of a node.

7.3 The Impact of Data Traffic Pattern

In an additional experiment, we examined the impact
of data traffic pattern on the performance. We used
two different data traffic models: the constant bit rate

5For practical reasons we showci95% only for 7 ≤ r ≤ 13.

(CBR) and a Poisson distributed data traffic. In many
scenarios, sensors are expected to take measurements
in constant intervals and, subsequently, send them out
for processing. This would create a constant bit rate
traffic. Poisson distributed traffic could be a result of
sensors taking measurements in an event-driven fash-
ion. For example, a sensor would take a measurement
only when a target object (e.g. a person) happens to be
in its vicinity.

The setup for this experiment was similar to that pre-
sented in Fig. 4 with the additional fact that the data
traffic model would now become an input parameter.
With the goal to reduce complexity of the experimen-
tal setup, we fixedr = 10 and we only considered
cases with500 and2000 detectors. In order to match
the CBR traffic rate, the Poisson distributed data traffic
model had a mean arrival expectation of1 packet per
second (λ = 1.0). As in the case with CBR, we com-
puted the detection rate and the rate of false positives
with the associated arithmetic averages and95% confi-
dence intervals.

The results based on these two traffic models were
similar, actually, we could not find the difference be-
tween them to be statistically significant. This points
out that the detection process is robust against some
variation in data traffic. This conclusion also reflects
positively on the usefulness of the used genes. More
importantly, it helped disperse our worries that the re-
sults presented in this experimental study could be un-
acceptably data traffic dependent.

8 Related Work

In [26, 24] the authors introduced an AIS based misbe-
havior detection system for ad hoc wireless networks.
They used Glomosim for simulating data traffic, their
setup was an area of 800×600m with 40 mobile nodes
(speed 1 m/s) of which 5-20 are misbehaving; the rout-
ing protocol was DSR. Four genes were used to capture
local behavior at the network layer. The misbehavior
implemented is a subset of misbehavior introduced in
this paper; their observed detection rate is about 55%.
Additionally, a co-stimulation in the form of a danger
signal was used in order to inform nodes on a forward-
ing path about misbehavior, thus propagating informa-
tion about misbehaving nodes around the network.

In [17] the authors describe an AIS able to detect
anomalies at the transport layer of the OSI protocol
stack; only a wired TCP/IP network is considered. Self

13

is defined as normal pairwise connections. Each detec-
tor is represented as a 49-bit string. The pattern match-
ing is based on r-contiguous bits with a fixedr = 12.

Ref. [23] discusses a network intrusion system that
aims at detecting misbehavior by capturing TCP packet
headers. They report that their AIS is unsuitable for
detecting anomalies in communication networks. This
result is questioned in [4] where it is stated that this is
due to the choice of problem representation and due to
the choice of matching thresholdr for r-contiguous bits
matching.

To overcome the deficiencies of the generate-and-test
approach a different approach is outlined in [22]. Sev-
eral signals each having a different function are em-
ployed in order to detect a specific misbehavior in sen-
sor wireless networks. Unfortunately, no performance
analysis was presented and the properties of these sig-
nals were not evaluated with respect to their misuse.

The main discerning factor between our work and
works shortly discussed above is that we carefully con-
sidered hardware parameters of current sensor devices,
the set of input parameters was designed in order to
target specifically sensor networks and our simulation
setup reflects structural qualities of such networks with
regards to existence of multiple independent routing
paths. In comparison to [26, 24] we showed that in case
of static sensor networks it is reasonable to expect the
detection rate to be above 80%.

9 Conclusions and Future Work

Although we answered some basic question on the suit-
ability and feasibility of AIS for detecting misbehavior
in sensor networks a few questions remain open.

The key question in the design of AIS is the quantity,
quality and ordering of genes that are used for measur-
ing behavior at nodes. To answer this question a de-
tailed formal analysis of communications protocols will
be needed. The set of genes should be as “complete” as
possible with respect to any possible misbehavior. The
choice of genes should impose a high degree of sen-
sor network’s survivability defined asthe capability of
a system to fulfill its mission in a timely manner, even in
the presence of attacks, failures or accidents[27]. It is
therefore of paramount importance that the sensor net-
work’s mission is clearly defined and achievable under
normal operating conditions.

We showed the influence and usefulness of certain
genes in order to detect misbehavior and the impact of

ther parameter on the detection process. In general, the
results in Fig. 10 show that Gene #1 and #2 obtained of
all genes the best results, with Gene #2 showing always
the best results. The contribution of Gene #1 suggests
that observing the MAC layer and the ratio of complete
handshakes to the number of RTS packets sent is useful
for the implemented misbehaviour.

Gene #2 fits perfectly for the implemented misbehav-
ior. It therefore comes as no surprise that this gene
showed the best results in the detection process. The
question which remains open is whether the two genes
are still as useful when exposed to different attack pat-
terns.

It is currently unclear whether genes that performed
well with negative selection, will also be appropriate
for generating different flavors of signals as suggested
within thedanger theory[1, 16]. It is our opinion that
any set of genes, whether used with negative selection
or for generating any such a signal, should aim at cap-
turing intrinsic properties of the interaction among dif-
ferent components of a given sensor network. This con-
tradicts approaches applied in [26, 22] where the genes
are closely coupled with a given protocol. The rea-
son for this statement is thecombined performanceof
Gene #1 and #2. Their interaction can be understood
as follows: data packet dropping implies less medium
contention since there are less data packets to get for-
warded. Less data packets to forward on the other hand
implies easier access to the medium, i.e. the number
of complete MAC handshakes should increase. This is
an interestingcomplementaryrelationship since in or-
der to deceive these two genes, a misbehaving node has
to appear to be correctly forwarding data packets and,
at the same time, he should not significantly modify the
“game” of medium access.

It is improbable that the misbehaving nodealone
would be able to estimate the impact of dropped packets
on the contention level. Therefore, he lacks an impor-
tant feedback mechanism that would allow him to keep
the contention level unchanged. For that, he would need
to act in collusion with other nodes. The property of
complementarity moves the burden of excessive com-
munication from normally behaving nodes to misbehav-
ing nodes, thus, exploiting the ad hoc (local) nature of
sensor networks. Our results thus imply,a “good” mix-
ture of genes should be able to capture interactions that
a node is unable to influence when acting alone.It is an
open question whether there exist other useful proper-
ties of genes, other than complementarity.

We conclude that the random-generate-and-test pro-

14

cess, with no knowledge of the used protocols and their
behavior, creates many detectors which might show to
be superfluous in detecting misbehavior. A process with
some basic knowledge of protocol limitations might
lead to improved quality of detectors.

In [28] the authors stated that the random-generate-
and-test process“is innefficient, since a vast number
of randomly generated detectors need to be discarded,
before the required number of the suitable ones are ob-
tained”. Our results show that atr = 10, the rate of
discarded detectors is less than4%. Hence, at least in
our setting we could not confirm the above statement.
A disturbing fact is, however, that the size of the self set
in our setting was probably too small in order to justify
the use of negative selection. A counter-balancing ar-
gument is here the realistic setup of our simulations and
a decent detection rate.

We would like to point out that the Fisher iris and
biomedical data sets, used in [28] to argue about the
apropriateness of negative selection for anomaly detec-
tion, could be very different from data sets generated by
our simulations. Our experiments show that anomaly
(misbehavior) data sets based on sensor networks could
be in general very sparse. This effect can be due to
the limiting nature of communications protocols. Since
the Fisher iris and biomedical data sets were in [28] not
evaluated with respect to some basic properties e.g. de-
gree of clustering, it is hard to compare our results with
the results presented therein.

In order to understand the effects of misbehavior bet-
ter (e.g. the propagation of certain adverse effects), we
currently develop a general framework for AIS to be
used within the JiST/SWANS network simulator [6].

Acknowledgments

This work was supported by the German Research
Foundation (DFG) under the grant no. SZ 51/24-2 (Sur-
vivable Ad Hoc Networks – SANE).

References

[1] U. Aickelin, P. Bentley, S. Cayzer, J. Kim, and
J. McLeod. Danger Theory: The Link between
AIS and IDS?Proc. of International Conference
on Artificial Immune Systems (ICARIS), pages
147–155, 2003.

[2] U. Aickelin, J. Greensmith, and J. Twycross. Im-
mune system approaches to intrusion detection - a
review. Proc. of International Conference on Ar-
tificial Immune Systems, pages 316–329, 2004.

[3] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagro-
dia, and M. Gerla. GloMoSim: A Scalable Net-
work Simulation Environment.UCLA Computer
Science Department Technical Report, 990027,
1999.

[4] J. Balthrop, S. Forrest, and M. Glickman. Revisit-
ing lisys: Parameters and normal behavior.Proc.
of Congress on Evolutionary Computation, pages
1045–1050, 2002.

[5] J. Banchereau, F. Briere, C. Caux, J. Davoust,
S. Lebecque, Y.J. Liu, B. Pulendran, and
K. Palucka. Immunobiology of dendritic cells.
Annual review of immunology, 18(1):767–811,
2000.

[6] R. Barr, Z.J. Haas, and R. van Renesse. JiST:
an efficient approach to simulation using virtual
machines. Software Practice and Experience,
35(6):539–576, 2005.

[7] C. Barrett, M. Drozda, DC Engelhart, VSA Ku-
mar, MV Marathe, MM Morin, SS Ravi, and
JP Smith. Understanding protocol performance
and robustness of ad hoc networks through struc-
tural analysis. Proc. of the IEEE International
Conference on Wireless And Mobile Computing,
Networking And Communications (WiMob’2005),
3:65–72, 2005.

[8] S. Cayzer, J. Smith, J.A.R. Marshall, and T. Ko-
vacs. What have Gene Libraries done for AIS?
Proc. of International Conference on Artificial Im-
mune Systems (ICARIS), pages 86–99, 2005.

[9] Crossbow Technologies Inc.www.xbow.com.

[10] D. Dasgupta and F. Gonzalez. An immunity-based
technique to characterize intrusions in computer
networks. IEEE Transactions on Evolutionary
Computation, 6(3):281–291, 2002.

[11] P. D’haeseleer, S. Forrest, and P. Helman. An Im-
munological Approach to Change Detection: Al-
gorithms, Analysis and Implications.IEEE Sym-
posium on Security and Privacy, pages 110–119,
1996.

15

[12] M. Drozda, S. Schaust, and H. Szczerbicka. Sim-
ulation of Misbehaviour Detection in Wireless Ad
Hoc Networks.Proc. of 19th Symposium on Sim-
ulation Technique (ASIM), pages 235–240, 2006.

[13] M. Drozda and H. Szczerbicka. Artificial im-
mune systems: Survey and applications in ad hoc
wireless networks.Proc. of International Sympo-
sium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS’06), pages
485–492, 2006.

[14] M. Drozda, H. Szczerbicka, T. Bessey, M. Becker,
and Barton R. Approaching ad hoc wireless net-
works with autonomic computing: A misbehav-
ior perspective. Proc. of International Sympo-
sium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS’05), pages
723–733, 2005.

[15] F. Gonzalez, D. Dasgupta, and J. Gomez. The ef-
fect of binary matching rules in negative selection.
Proc. of Genetic and Evolutionary Computation
Conference (GECCO), pages 196–206, 2003.

[16] J. Greensmith, U. Aickelin, and S. Cayzer. In-
troducing Dendritic Cells as a Novel Immune-
Inspired Algorithm for Anomaly Detection.Proc.
of International Conference on Artificial Immune
Systems (ICARIS), pages 153–167, 2005.

[17] S.A. Hofmeyr and S. Forrest. Immunity by design:
An artificial immune system.Proc. of Genetic and
Evolutionary Computation Conference (GECCO),
2:1289–1296, 1999.

[18] C.A. Janeway Jr. How the immune system works
to protect the host from infection: A personal
view. Proc. of the National Academy of Sciences,
98(13):7461–7468, 2001.

[19] Z. Ji and D. Dasgupta. Real-valued negative selec-
tion algorithm with variable-sized detectors.Proc.
of Genetic and Evolutionary Computation Confer-
ence (GECCO), pages 287–298, 2004.

[20] D.B. Johnson and D.A. Maltz. Dynamic source
routing in ad hoc wireless networks.Mobile Com-
puting, 353:153–181, 1996.

[21] H. Karl and A. Willig. Protocols and Architec-
tures for Wireless Sensor Networks. John Wiley
and Sons, 2005.

[22] J. Kim, P. Bentley, C. Wallenta, M. Ahmed, and
S. Hailes. Danger Is Ubiquitous: Detecting
Malicious Activities in Sensor Networks Using
the Dendritic Cell Algorithm. Proc. of Interna-
tional Conference on Artificial Immune Systems
(ICARIS), pages 390–403, 2006.

[23] J. Kim and P.J. Bentley. An evaluation of nega-
tive selection in an artificial immune system for
network intrusion detection.Proc. of Genetic and
Evolutionary Computation Conference (GECCO),
pages 1330–1337, 2001.

[24] J.Y. Le Boudec and S. Sarafijanovic. An Artificial
Immune System Approach to Misbehavior Detec-
tion in Mobile Ad-Hoc Networks.Proc. of Bio-
ADIT, pages 96–111, 2004.

[25] S. Marti, TJ Giuli, K. Lai, and M. Baker. Miti-
gating routing misbehavior in mobile ad hoc net-
works. Proc. of International Conference on Mo-
bile Computing and Networking, pages 255–265,
2000.

[26] S. Sarafijanovic and J.Y. Le Boudec. An artifi-
cial immune system for misbehavior detection in
mobile ad-hoc networks with virtual thymus, clus-
tering, danger signal and memory detectors.Proc.
of International Conference on Artificial Immune
Systems (ICARIS), pages 342–356, 2004.

[27] J.P.G. Sterbenz, R. Krishnan, R.R. Hain, A.W.
Jackson, D. Levin, R. Ramanathan, and J. Zao.
Survivable mobile wireless networks: issues,
challenges, and research directions.Proc. of
ACM workshop on Wireless security, pages 31–
40, 2002.

[28] T. Stibor, P. Mohr, J. Timmis, and C. Eckert. Is
negative selection appropriate for anomaly detec-
tion? Proc. of Conference on Genetic and evolu-
tionary computation, pages 321–328, 2005.

[29] W. Ye and J. Heidemann. Medium Access Con-
trol in Wireless Sensor Networks.Wireless Sensor
Networks, pages 73–91, 2004.

[30] Y. Zhang, W. Lee, and Y.A. Huang. Intrusion De-
tection Techniques for Mobile Wireless Networks.
Wireless Networks, 9(5):545–556, 2003.

16

	Introduction and Motivation
	Artificial Immune Systems
	Background
	Learning

	Sensor Networks
	Summary of Results
	AIS for Sensor Networks: Design Principles
	Learning and Detection
	Further Optimizations
	Misbehavior

	Experimental Setup
	Results Evaluation
	Overall Performance
	Detailed Performance
	The Impact of Data Traffic Pattern

	Related Work
	Conclusions and Future Work

