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Abstract which are, due to their ad-hoc communication manner,

vulnerable to misbehavior and malfunction. It is there-
A sensor network is a collection of wireless devices thfiire necessary to support them with a simptemputa-
are able to monitor physical or environmental condiionally friendlyprotection system.

tions. These devices (nodes) are expected to operatpue to the limitations of sensor networks, there has
autonomously, be battery powered and have very lilfeen an on-going interest in providing them with a pro-
ited computational capabilities. This makes the task @fction solution that would fulfill several basic criteria.
protecting a sensor network against misbehavior or pasre first criterion is the ability of self-learning and self-
sible malfunction a challenging problem. In this docyuning. Because maintenance of ad hoc networks by a
ment we discuss performance of Artificial immune sy$ruman operator is expected to be sporadic, they have
tems (AIS) when used as the mechanism for detectigghave a built-irautonomousnechanism for identify-
misbehavior. ing user behavior that could be potentially damaging to
We show that (i) mechanism of the AIS have to bgaem. This learning mechanism should itself minimize
carefully applied in order to avoid security weaknesseahe need for a human intervention, therefore it should be
(i) the choice of genes and their interaction have a preelf-tuning to the maximum extent. It must also be com-
found influence on the performance of the AIS, (iiiputationally conservative and meet the usual condition
randomly created detectors do not comply with limisf high detection rate. The second criterion is the ability
tations imposed by communications protocols and (i) undertake an action against one or several misbehav-
the data traffic pattern seems not to impact significanthyy users. This should be understood in a wider con-
the overall performance. text of co-operating wireless devices acting in collusion
We identified a specific MAC layer based gene that order to suppress or minimize the adverse impact of
showed to be especially useful for detection; genssch misbehavior. Such a co-operation should have a
measure a network’s performance from a node’s viewaw message complexity because both the bandwidth
point. Furthermore, we identified an interesting conand the battery life are of scarce nature. The third and
plementarity property of genes; this property exploitast criterion requires that the protection system does
the local nature of sensor networks and moves the boot itself introduce new weaknesses to the systems that
den of excessive communication from normally behait-should protect.
ing nodes to misbehaving nodes. These results have an emerging solution that could facilitate implemen-
directimpact on the design of AIS for sensor networkgtion of the above criteria are Artificial immune sys-
and on engineering of sensor networks. tems (AIS). AIS are based on principles adapted from
the Human immune system (HIS) [18,5,]17]; the ba-
sic ability of HIS is an efficient detection of potentially
1 Introduction and Motivation harmful foreign agents (viruses, bacteria, etc.). The
goal of AIS, in our setting, is the identification of nodes
Sensor networks [21] can be described as a collectiwith behavior that could possibly negatively impact the
of wireless devices with limited computational abilitiestated mission of the sensor network.
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One of the key design challenges of AIS is to define NEW
a suitable set of efficient genes. Genes form a basis for STAINGS
deciding whether a node misbehaves. They can be char-
acterized as measures that describe a network’s perfor-
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mance from a node’s viewpoint. Given their purpose, SET NON-SELF
they must be easy to compute and robust against decep-
tion. Figure 2: Recognizing non-self is done by matching T-

Misbehavior in wireless sensor networks can takells (detectors) with suspected non-self antigens (new
upon different forms: packet dropping, modification dtrings).
data structures important for routing, modification of
packets, skewing of the network’s topology or creating
ficticious nodes (seé [13] for a more complete list). The )
reason for sensors (possibly fully controlled by an a&-2 Learning
tacker) to execute any form of misbehavior can range o )
from the desire to save battery power to making a giv&rli‘e, process of T-cells maturation in thymus is used as
wireless sensor network non-functional. Malfunctiofi” InSPiration for learning in AlS. The maturation of

can also be considered a type of unwanted behavior. I"CellS (detectors) in thymus is a result of a pseudo-
random process. After a T-cell is created (see Hig. 1),

it undergoes a censoring process cahedative selec-
tion. During negative selection T-cells that bind self

2 Artificial Immune SyStemS are destroyed. Remaining T-cells are introduced into
the body. The recognition of non-self is then done by
2.1 Background simply comparing T-cells that survived negative selec-

tion with a suspected non-self. This process is depicted

The Human immune system is a rather complex megh-Fig.[2. It is possible that the self set is incomplete,
anism able to protect humans against an amazing sejile a T-cell matures (tolerization period) in the thy-
extraneous attacks. This system is remarkably efficiefifus. This could lead to producing T-cells that should
most of the time, in discriminating betweeself and have been removed from the thymus and can cause an
non-selfantigend] A non-self antigen is anything thatautoimmune reaction, i.e. it leadsfaise positives
can initiate an immune response; examples are a virusa deficiency of the negative selection process is that
bacteria, or splinter. The opposite to non-self antigeggne it is not sufficient for assessing the damage that a
are self antigens; self antigens are human organisis,-self antigen could cause. For example, many bac-
own cells. teria that enter our body are not harmful, therefore an
immune reaction is not necessary. T-cells, actors of the
§$;|FNG5 adaptive immune system, require co-stimulation from

the innate immune system in order to start acting. The
innate immune system is able to recognize the pres-

GENERATE o o DETECTOR ence of harmful non-self antigens and tissue damage,
STRING SET and signal this to certain actors of the adaptive immune
YEs system.

The random-generate-and-test approach for produc-
ing T-cells (detectors) described above is analyzed
in [11]. In general, the number of candidate detectors

Figure 1: T-cell (detector) generation by randoni0 the self set size needs to be exponential (if a match-

generate-and-test process. A (bit) string representatig rule with fixed matching probability is used). An-
is assumed. other problem is a consistent underfitting of the non-

self set; there exist “holes” in the non-self set that are
undetectable. In theory, for some matching rules, the
number of holes can be very unfavorablel[28]. In prac-
1Self and non-self in short. tical terms, the effect of holes depends on the charac-
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teristics of the non-self set, representation and matadr-the handshake fails, an exponential back-off algo-
ing rule [15]. The advantage of this algorithm is itsithm is used. This is combined with a mechanism that
simplicityand good experimental results in cases whemakes it easier for neighboring nodes to estimate trans-
the number of detectors to be produced is fixed amdssion durations. This is done by exchange of dura-
small [26]. A review of other approaches to detectdion values and their subsequent storing in a data struc-
computation can be found inl[2]. ture known as Network allocation vector (NAV). With
the goal to save battery power, researchers suggested,
a sleep-wake-up schedule for nodes would be appropri-
3 Sensor Networks ate. This means that nodes do not listen continuously
to the medium, but switch themselves off and wake
A sensor network can be defined in graph theoretip again after a predetermined period of time. Such
framework as follows: a sensor network is a Net= a sleep and wake-up schedule is similarly to duration
(n(t),e(t)) wheren(t),e(t) are the set of nodes andsalues exchanged among nodes. An example of a MAC
edges at time, respectively. Nodes correspond to seprotocol, designed specifically for sensor networks, that
sors that wish to communicate with each other. An edgeges such a schedule is the S-MACI[29]. A sleep and
between two noded and B is said to exist wheml is  wake-up schedule can severely limit operation of a node
within the radio transmission range Bfand vice versa. in promiscuous modeln promiscuous mode, a node
The imposed symmetry of edges is a usual assumptiigfens to the on-going traffic in the neighborhood and
of many mainstream protocols. The change in the cabllects information from the overheard packets. This
dinality of setsn(t), e(t) can be caused by switchingechnique is used e.g. in DSR for improved propaga-
on/off one of the sensors, failure, malfunction, removajon of routing information.
signal propagation, link reliability and other factors. Movement of nodes can be modeled by means of a
Data exchange in a point-to-point (uni-cast) scenaffobility model. A well-known mobility model is the
usually proceeds as follows: a user initiated data e¢andom waypoint mod¢20]. In this model, nodes
change leads to a route query at the network layer @bve from the current position to a new randomly gen-
the OSI stack. A routing protocol at that layer attempigated position at a predetermined speed. After reach-
to find a route to the data eXChange destination. Th}ﬁ‘g the new destination a new random position is com-
request may result in a path of non-unit length. Thisuted. Nodes pause at the current position for a time
means that a data packet in order to reach the deplriod¢ before moving to the new random position.

nation has to rely on successive forwarding by inter- ror more information on sensor networks, we refer
mediate nodes on the path. An example of an of reader td [21].

demand routing protocol often used in sensor networks

is DSR [20]. Route search in this protocol is started

only when a route to a destination is needed. Thj

is done by flooding the network with RRE@ontrol 4 Summary of Results

packets. The destination node or an intermediate node -~ ]

that knows a route to the destination will reply with }otivated by the positive results reportediin [17, 26] we
RREP control packet. This RREP follows the routaadve undertaken a detailed performance study of AlS
back to the source node and updates routing table<V4 focus on sensor networks. The general conclusions
each node that it traverses. A RERR packet is sentlf@t can be drawn from the study presented in this doc-
the connection originator when a node finds out that tHE€nt are:

next node on the forwarding path is not replaying. 1. Given the ranges of input parameters that we used
At the MAC layer of the OSI protocol stack, theand considering the computational capabilities of cur-

medium reservation is often contention based. In @ent sensor devices, we conclude that AlS based misbe-

der to transmit a data packet, the IEEE 802.11 MARavior detection offers a decent detection rate.

protocol uses carrier sensing with an RTS-CTS-DATA- 2 One of the main challenges in designing well per-

ACK handshak8. Should the medium not be availablgorming AIS for sensor networks is the set of “genes”.

2RREQ = Route Request, RREP = Route Reply, RERR = Rould1iS IS similar to observations made in [24].
Error.
SRTS = Ready to send, CTS = Clear to send, ACK = Acknowkdgment.




3. Our results suggest that to increase the detectbon AlS for Sensor Networks: De-
performance, an AlS should benefit from information ; A
available at all layers of the OSI protocol stack; this sign PrmCIpleS

‘F‘C'“‘?'e? also detectign perfqrmance with regards 9Rour approach, each node produces and maintains its
S|_mpl|st|c _fIavor of mls_behawor such as packet_ droRiyn set of detectors. This means that we applied a di-
ping. This supports ideas shqrtly dlsc_ussed 1n [BPACI one-to-one mapping between a human body with
where the a_uthors suggest that mformatlo_n ava'lablea’f‘{hymus and a node. We represent self, non-self and
the application layer deserves more attention. detector strings as bit-strings. The matching rule em-
4. We observed that somewhat surprisingly a gepRyed is the-contiguous bits matching ruléfwo bit-
based purely on the MAC layer significantly constrings of equal length match under the r-contiguous
tributed to the overall detection performance. Thigatching rule if there exists a substring of lengtht
gene poses less limitations when a MAC protocol Withpsitionp in each of them and these substrings are iden-
a sleep-wake-up schedule such as the S-MAC [29]tigal. Detectors are produced by the process shown in
used. Fig.[d, i.e. by means of negative selection when detec-
5. It is desirable to use genes that a&templemen- tors are created randomly and tested against a set of self
tary” with respect to each other. We demonstrated thsitings.
two genes, one that measures correct forwarding of dat&ach antigen consists of several genéenesare
packets, and the other one that indirectly measures ffg@formance measures that a node can acquire locally
medium contention, have exactly this property. without the help from another node. In practical terms
6. We only used a single instance of learning and déis means that an antigen consistscajenes; each of
tection mechanism per node. This is different from agiem encodes a performance measure, averaged in our
proach used in[17, 26], where one instance was ugi&$e over a time window. An antigen is then created by
for each ofm possible neighbors. Our performanceoncatenating the genes.
results show that the approach in[L7] 26] may not beWhen choosing the correct genes, the choice is lim-
feasible for sensor networks. It may allow for an eadigd due to the simplified OSI protocol stack of sensors.
Sybil attack and, in generah = n — 1 instances might For example, Mica2 sensof(s [9] using the TinyOS oper-
be necessary, whereis the total number of sensors irating system do not guarantee any end-to-end connec-
the network. Instead, we suggest that flagging a noddias reliability (transport layer), leaving only data tiiaf
misbehaving should, if possible, be based on detecti@ithe lower layers for consideration.
at several nodes. Let us assume that the routing protocol finds for a

7. Only less than 5% detectors were used in detectifinectionthe pathy,, s1, ..., si, sit1, sit2, ..., 54 from
misbehavior. This suggests that many of the detecté#§ source node; to the destination node,, where
do not comply with constraints imposed by the commgis 7 $a @ndsiy1 # sq. We have used the following
nications protocols; this is an important fact when d@enesto capture certain aspects of MAC and routing
signing AIS for sensor networks because the memd@yer traffic information (we averaged over a time pe-
capacity at sensors is expected to be very limited. ~ iod (window size) of 500 seconds):

8. The data traffic properties seem not to impact the
performance. This is demonstrated by similar detection MAC Layer:

pgrformance, vyhen da}ta _traffic is modeled as consta% Ratio of complete MAC layer handshakes between
bit rate and Poisson distributed data packet stream, re- nodess; ands; ., and RTS packets sent by to

spectively. o si+1. If there is no traffic between two nodes this
9. We were unable to distinguish between nodes that | 4tio is set taxo (a large number). This ratio is av-
misbehave (e.g. deliberately drop data packets) and eraged over a time period. A complete handshake

nodes with a behavior resembling a misbehavior (€.9. s defined as a completed sequence of RTS, CTS,
drop data packets due to medium contention). This mo- paTa ACK packets betweer; ands, ;.

tivates the use of danger signals as described (n]1, 16].

The approach applied in_[26] does, however, not com#2 Ratio of data packets sent framto s; 1 and then
pletely fit sensor networks since these mightimplement subsequently forwarded by to s; 5. If there
only a simplified version of the transport layer. is no traffic between two nodes this ratio is set to



oo (a large number). This ratio is computed by#1 Number of E over a time period.
s; in promiscuous mode and, as in the previou . .
case, averaged over a time period. This gene w}sz Number of (E*(A or B)) over a time period.

adapted from the watchdog idealin [25]. #3 Number of H over a time period.

#3 Time delay that a data packet spends;ai be- #4 Number of (H*D) over a time period.
fore being forwarded t®; 2. The time delay is ] ] ] o )
observed bys; in promiscuous mode. If there is .The time period (window size) in their case was 10s;
no traffic between two nodes the time delay is s&fS the Kleene star operator (zero or more occurrences
to zero. This measure is averaged over a time gd-any event(s) are possible). Similar to our watch-
riod. This gene is a quantitative extension of té°9 genes, these genes impose additional requirements

previous gene. on MAC protocols such as the S-MAC. Their depen-
dence on the operation in promiscuous mode is, how-
Routing Layer: ever, more pronounced as a node has to continuously

_ _ observe packet events at all monitored nodes.
#4 The same ratio as in #2 but computed separatelyrhe research in the area of what and to what extent
for RERR routing packets. can be or should be locally measured at a node, is inde-
. ndent of the learning mechanism used (negative se-
#5 f-:; ?;E;rgergliﬁ]y azlcnk:ts; but computed separat%fi(tion in both cases). Performance of an AIS can partly
gp ' depend on the ordering and the number of used genes.

h be ch ed | Since longer antigens (consisting of more genes) indi-
T 1 G‘?”e #1 can be ¢ aracterized as MAC ) ayrgctly imply more candidate detectors, the number of
quality oriented —it indirectly measures the mediu

ion level Th . hd enes should be carefully considered. Givegenes,
contention level The remaining genes are watchdois hossible to order them in! different ways. In our

oriented. This means that they more strictly fit & €Ly arience, the rules for ordering genes and the number
tain kind of misbehavior. The Gene #2 can help dg; genes can be summed up as follows:

tect whether packets get correctly forwarded; the Gene K th ber of 0| .
#3 can help detect whether forwarding of packets doesl)t eep he nl:rr]nter_tcr)] geneststm?h. | nour exper;
not get intentionally delayed. As we will show latef1ENtS, We Show that with respect to the fearning mech-

in the particular type of misbehavior (packet droppin ism used and the expected deployment (sensor net-
that we applied, the first two genes come out as “t

rks), 2-3 genes are enough for detecting a basic type
strongest”. The disadvantage of the watchdog ba drmsbehawor.

genes is that due to limited battery power, nodes could?) Order genes either randomly or use a predeter-
Operate using a S|eep_wake-up schedule similar to fﬁé’]ed fixed order. Deﬁning a Ut|||ty relation between
one used in the S-MAC. This would mean that the no@&nes, and ordering genes with respect to it can, in gen-
s; has to stay awake until the node,; (monitored €ral, lead to problems that are considered intractable.
node) correctly transmits te,,,. The consequenceOur results however suggest, it is important to under-
would be a longer wake-up time and possible restrietand relations between different genes, since genes are
tions in publishing sleep-wake-up schedules. able to complement each other; this can lead to their in-
In [24] the authors applied a different a set of gene&eased mutual strength. On the other hand, random or-
based only on the DSR routing protocol. The observe@ring adds to robustness of the underlying AlS. For an
set of events was the following: A = RREQ sent, B attacker, it is namely more difficult to deceive, since he
RREP sent, C = RERR sent, D = DATA sent and |poes not know how genes are being used. Itis currently
source address is not of the monitored (neighboringf) ©Pen question, how to impose a balanced solution.
node, E = RREQ received, F = RREP received, G =3) Genes cannot be considered in isolation. Our
RERR received, H = DATA received and the IP destinaxperiments show, when a detector matched an anti-
tion address is not of the monitored node. The eventgyBn under the-contiguous matching rule, usually this
and H take into consideration that the source and destiatch spanned over several genes. This motivates de-
nation nodes of a connection might appear as misbehsign of matching rules that would not limit matching to
ing as they seem to “deliberately” create and delete datéew neighboring genes, offer more flexibility but still
packets. Then the set of their four genes is as followsequire that a gene remains a partly atomic unit.



5.1 Learning and Detection

Local and Cooperative
Response

Learning and detection is done by applying the mech-
anisms shown in Figdl1 arild 2. The detection it-
self is very straightforward. In the learning phase, a
misbehavior-free period (s€€ [1] on possibilities for cir- Local and Cooperative
cumventing this problem) is necessary so that nodes get Detection

a chance to learn what is the normal behavior. When
implementing the learning phase, the designer gets to
choose from two possibilities:

1) Learning and detection at a node get implemented Learning
for each neighboring node separately. This means that
different antigens have to get computed for each neigh-
boring node, detector computation is different for each
neighboring node and, subsequently, detection is differ-
ent for each neighboring node. The advantage of this
approach is that the node is able to directly determine
which neighboring node misbehaves; the disadvantage ) ) ]
is thatm instances is the number of neighbors orF'gure 3: An four-laygr arch_ltecture_almed at protecting
node degree) of the negative selection mechanism h&§8Ser networks against misbehavior and abuse.
to get executed; this can be computationally prohibitive
for sensor networks as can, in general, be equal to the

total nurr]bgr of SENSOr. Th|s allows for an easy Sytp yer architecture (Fid.]3) that we introduced in][14].
attack [13] in which a neighbor would create sever e lowermost layer, Data collection and preprocess-

identities; the node would then be unable to recogni corresponds to genes' computation and antigen
that these identities belong to the same neighbor. TR|Sctruction. The Learning layer corresponds to the

approach was used in [46.124]. negative selection process. The next layer, Local and
2) Learning and detection at a node get implemented-operative detection, suggests, an AlS should bene-
in a single instance for all neighboring nodes. Thi# from both local and cooperative detection. Both our
means a node is able to recognize anomaly (misbehsetup and the setup described [inl[26] 24] only apply
ior) but it may be unable to determine which one froocal detection. The uppermost layer, Local and co-
them neighboring nodes misbehaves. This implies thaperative response, implies, an AIS should also have
nodes would have to cooperate when detecting a ntise capability to undertake an action against one or sev-
behaving node, exchange anomaly information and &l misbehaving nodes; this should be understood in a
able to draw a conclusion from the obtained informavider context of co-operating wireless devices acting in
tion. An argument for this approach is that in orderllusion in order to suppress or minimize the adverse
to detect nodes that misbehave in collusion, it mightpact of such misbehavior. To our best knowledge,
be necessary to rely to some extent on information dkere is currently no AlS implementation for sensor net-
change among nodes, thus making this a natural saksrks taking advantage of this layer.
tion to the problem. We have used this approach; a pagf ichr is the correct one?

processing phase (using the list of misbehaving nodesAn interesting technical problem is to tune thea-

was necessary to determine whether a node was cor- . .
) . fameter for the--contiguous matching rule so that the
rectly flagged as misbehaving or not.

underlying AIS offers good detection and false posi-
We find the second approach to be more suited figves rates. One possibility is a lengthy simulation study
wireless sensor networks. It is namely less computich as this one. Through multiparameter simulation
tionally demanding. We are unable, at this time, to estiire were to able to show that= 10 offers the best per-
mate the frequency of a complete detector set compui@mance for our setup. In[12] we experimented with
tion. the idea of “growing” and “shrinking” detectors; this
Both approaches can be classified within the foudea was motivated by [19]. The initia}, for a grow-

Data Collection and
Preprocessing




ing detector can be chosenas = [[/2], wherel is used for the attack. On the other hand, a protection
the detector length. The goal is to find the smallestusing such more advanced computational platforms is,
such that a candidate detector does not match any skié to e.g. the need to supply them continuously with
antigen. This means, initially, a larger (more specifi€Jectric power, harder to imagine. It would also create
r is chosen; the smallestthat fulfills the above condi- a point of special interest for the possible attackers.
tion can be found through binary search. For shrinking
detectors, the approach is reciprocal. Our goal was to .
show that such growing or shrinking detectors woul@ Experlmental Setup
offer a better detection or false positives rate. Short of
proving this in a statistically significant manner, we obFhe purpose of our experiments was to show that AIS
served that the growing detectors can be used for s@i¢ a viable approach for detecting misbehavior in sen-
tuning ther parameter. The averagevalue was close sor networks. Furthermore, we wanted to cast light on
to ther determined through simulation (the setup in thénternal performance of an AIS designed to protect sen-
case was different from the one described in this docter networks. One of our central goals was to provide
ment). an in-depth analysis of relative usefulness of genes.
Definitions of input and output parameterghe in-
put parameters for our experiments wereparameter
for the r-contiguous matching rule, the (desired) num-
Our experiments show that only a small number of deer of detectors and misbehavior level. Misbehavior
tectors get ever used (less than 5%). The reason is, ti&s modeled as random packet dropping at selected
get produced in a random way, not considering structuredes.
of the protocols. For example, a detector that is able toThe performance (output) measures were arithmetic
detect whether i) data packets got correctly transmittederages and 95% confidence intervalgy, of detec-
and ii) 100% of all MAC layers handshakes were irtion rate, number of false positives, real time to compute
complete is superfluous as this case should never hagtectors, data traffic rate at nodes, number of iterations
pen. In[8], the authors concludé:. uniform coverage to compute detectors (number of random tries), num-
of non-self space is not only unnecessary, it is imprager of non-valid detectors, number of different (unique)
tical; non-self space is too big” Application driven antigens in a run or a time window, and number of
knowledge can be used to set up a rule based system thatches for each gene. The detection dates defined
would exclude infeasible detectors; seel[10] for a ru&s%, wheredns is the number of detected non-self
based system aimed at improved coverage of the nstrings anchs is the total number of non-self strings. A
self set. In[[17], it is suggested that unused detectdadse positive in our definition is a string that is not self
should get deleted and the lifetime of useful detectdpst can still be a result of anomaly that is identical with

5.2 Further Optimizations

should be extended. the effects of a misbehavior. A non-valid detector is a
candidate detector that matches a self string and must
53 Misbehavior therefore be removed.

The number of matches for each gene was evalu-

In a companion paper [13], we have reviewed differeated using the--contiguous matching rule; we consid-
types of misbehavior at the MAC, network and transpaeted two cases: i) two bit-strings get matched from the
layers of the OSI protocol stack. We note that solutioffeft to the right and the first such a match will get re-
to many of these attacks have been already proposeelted (matching gets interrupted), ii) two bit-strings
these are however specific to a given attack. Additioget matched from the left to the right and all possible
ally, due to the limitations of sensor networks, these smatches will get reported. The time complexity of these
lutions cannot be directly transfered. two approaches i®(r(l —r)) and®(r(l —r)), respec-

The appeal of AIS based misbehavior detection resitgelly; » < [, wherel is the bitstring length. The first
on its simplicity and applicability in an environmenapproach is exactly what we used when computing the
that is extremely computationally and bandwidth linreal time necessary for negative selection, the second
ited. Misbehavior in sensor networks does not have approach was used when our goal was to evaluate rela-
be executed by sensors themselves; one or several ctive-usefulness of each gene.
putationally more powerful platforms (laptops) can be Scenario description: We wanted to capture “self”



(i) Negative selection algorithm: random-generate-asd-timplemented in C++, compiled with GNU g++ v4.0 with -Q3
option.
(i) Input parameters: 1. r-contiguous matching rule with= {7, 10, 13, 16,19, 22}. 2. Encoding: 5 genes each 10 bjts
long = 50 bits. 3. Number of detectof500, 1000, 2000, 4000}. 4. Misbehavior leve{ 10, 30, 50%} 5. Window size 500
seconds; 28 complete windows over 4-hour simulation time.

(iiiy Performance measures:real time to compute detectors, number of iterations to egmpletectors, detection rate
false positives rate, rate of non-valid detectors, daffidrate at nodes, number of different antigens in a run, remat
matches for each gene; their arithmetic averages and 95ftlence intervals (where applicable).

(iv) Network topology: Snapshot of movement modeled by random waypoint mobilitgehaoe. it is a static network
There were 1,718 nodes. The area was a square of 2,92®80m. The transmission range of transceivers was (100
meters.

(v) Number of connections:10 CBR (constant bit rate) connectiotdAC protocol : IEEE 802.11b DCHRouting pro-
tocol: DSR. Other parameters: (i) Propagation path-loss modelray (ii) Channel frequency: 2.4 GHz (iii) Topograph
Line-of-sight (iv) Radio type: Accnoise (v) Network protac|Pv4 (vi) Connection type: UDP.

(vi) Injection rate: 1 packet/second. 14,400 packets per connection wereedjePacket size was 512 bytes.

(vii) The number of independent simulation runs for each loimation of input parameters was 20. The simulation time
was 4 hours.
(viii) Simulator used: GlomoSim 2.03; hardware used: 3Qinux (SUSE 10.0) PC with 2GB RAM and Pentium 4 3GHz
microprocessor.

=<

Figure 4: Parameters used in the experiment.

and “non-self” packet traffic in a large enough synthetaeived or sent by a node we have captured the following
static sensor network and test whether using an AIS imdormation: IP header type (UDP, 802.11 or DSR in
are able to recognize non-self, i.e. misbehavior. this case), MAC frame type (RTS, CTS, DATA, ACK in
The topology of this network was determined bthe case of 802.11), current simulation clock, node ad-
making a snapshotof 1,718 mobile nodes (eachdress, next hop destination address, data packet source
with 100m radio radius) moving in a square area afd destination address and packet size.
2,900mx 2,950m as prescribed by the random waypoint Encoding of self and non-self antigeng&ach of the
mobility model; see Figurigl5(a). The motivation in udive genes was transformed in a 10-bit signature where
ing this movement model and then creating a snapskath bit defines an interifabf a gene specific value
are the results in our previous paper [7] that deals withnge. We created self and non-self antigen strings by
structural robustness of sensor network. Our preferemommcatenation of the defined genes. Each self and non-
was to use a slightly bigger network than it might bgelf antigen has therefore a size of 50 bits. The interval
necessary, rather than using a network with unknowepresentation was chosen in order to avoid carry-bits
properties. The computational overhead is negligiblghe Gray coding is an alternative solution).
simulation real time mainly depends on the number Constructing the self and non-self setde have ran-
of events that require processing. Idle nodes increakemly chosen 28 non-overlapping 500-second windows
memory requirements, but memory availability at conin our 4-hour simulation. In each 500-second window
puters was in our case not a bottleneck. self and non-self antigens are computed for each node.
We chose source and destination pairs for each cdris was repeated 20 times for independent Glomosim
nection so that several alternative independent routass.
exist; the idea was to benefit from route repair and routeMisbehavior modeling:Misbehavior is modeled as
acquisition mechanisms of the DSR routing protocol, sandom data packet dropping (implemented at the net-
that the added value of AIS based misbehavior detectionrk layer); data packets include both data packets
is obvious. from the transport layer as well as routing protocol
We used 10 CBR (Constant bit rate) connectiongackets. that should get dropped will simply not be in-
The connections were chosen SO that their lengthis 4The interval encoding of genes is adapted from [26]. This way
hops and so that these connections share some COM@@bne of the 10 bits is set to 1, i.e. there are only 10 pissiiue
intermediate nodes; see Figlife 5(b). For each packetiegels that it is possible to encode in this case.
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Figure 5: (a) Topology of our 1,718-node network with 100mioaadius. (b) Measured forwarding path of the

10 connections for a single simulation run without misbétigeonnections shown with all alternative forwarding
routes, if they exist.

serted into the IP queue); we have randomly chosen 238. Using the runs with{10, 30,50%} misbehavior

nodes and these were forced to ddap, 30, 50%} of levels, the process shown in Hig. 2 was used for de-
data packets. However, there were only 3-10 nodes with tection; we restricted ourselves to nodes that had in
misbehavior and with atatistically significanhumber both the normal and misbehavior traffic at least a
of packets for forwarding in each simulation run; see certain number of data packets to forward (packet
constraint C2 in Sectidd 7. threshold).

Detection: A neighboring node gets flagged as mis-
behaving, if a detector from the detector set matches arf he experiment was then repeated with different
antigen. Since we used a single learning phase, we [§&gired number of detectors and misbehavior level.
to complement this process with some routing informa- The parameters for this experiment are summarized
tion analysis. This allowed us to determine, which ori@ Fig.[4. The injection rate and packet sizes were cho-
from the neighboring nodes is actually the misbeha¥en in order to comply with usual data rates of sensors
ing one. In the future, we plan to rely on co-operativ€-9. 38.4kbps for Mica2; seel[9]). We chose the Glo-
detection in order to replace such a post-analysis. mosim simulator[[B] over other options (most notably

Simulation phases‘[’he experiment was donein fournSZ) because of its better Scaling characteristics [6] and
phases. our familiarity with the tool.

1. 20 independent Glomosim runs were done for one
of {10, 30, 50%} misbehavior levels and “normal”7  Resuylts Evaluation
traffic. Normal means that no misbehavior took

place. When evaluating our results we define two additional

2. Self and non-self antigen computation (encodingPnstraints:

3. The 20 “normal” traffic runs were used to com€1. We define a node to be detected as misbehaving if
pute detectors. Given the 28 windows and 20 runs, it gets flagged in at least 14 out of the 28 possible
the sample size was 2@28 = 560, i.e. detectors windows. This notion indirectly defines the time
at each node were discriminated against 560 self until a node is pronounced to be misbehaving. We
antigens. call this awindow threshold
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C2. A nodes; has to forward in average at least for some extremely low threshold values (not shown)
packets over the 20 runs in both the “normal” antthe detection rate stays constant. This figure also shows
misbehavior cases in order to be included into otlrat when misbehavior level was set very low, i.e. 10%,
statistics. This constraint was set in order to maltee AIS struggled to detect misbehaving nodes. This
the detection process more reliable. It is dubious partly a result of our coarse encoding with only 10
to flag a neighboring node of as misbehaving, different levels.
if it is based on “normal” runs or runs with mis- At the 30 and 50% misbehaving levels the detection
behavior, in which node; had no data packets torate stays solid at about 70-85%. The range of the 95%
forward (he was not on a routing path). We call thisonfidence interval of detection rate is 3.8-19.8%. The
a packet thresholdm was in our simulations cho-fact that the detection rate did not get closer to 100%
sen from{500, 1000, 2000, 4000}. Example:for suggests, either the implemented genes are not suffi-
a fixed set of input parameters, a node forwardetkent, detection should be extended to protocols at other
in the “normal” runs in average 1,250 packets ardyers of the OSI protocol stack, a different ordering of
in the misbehavior runs (with e.g. level 30%Yyenes should have been applied or our ten level encod-
750 packets. The nodg would be considereding was too coarse. It also implicates that watchdog
for misbehavior detection ifn = 500, but not if based genes (though they perfectly fit the implemented
m > 1000. In other words, a node has to get anisbehavior) should not be used in isolation, and in
chance to learn what is “normal” and then to usgeneral, that the choice of genes has to be very careful.
this knowledge on a non-empty packet stream.  Figure[7(b) shows the impact ofon detection rate.

Whenr = {7,10} the AIS performs well, for- > 10

7.1 Overall Performance the detection rate decreases. This is cagsed by the inad-

equate numbers of detectors used at higher levets of

The results related to computation of detectors af@e limited ourselves to max. 4,000 detectors).

shown in Figuré 6. In our experiments we have con- Figure[T(c) shows the number of false positives. We

sidered the desired number of detectors to be magmind that in our definition false positives are both

4,000; over this threshold the computational requiraedes that do not drop any packets and nodes that drop

ments might be too high for current sensor devices. \Wackets due to other reasons than misbehavior.

remind the reader, each time theparameter is incre- In a separate experiment we studied whether the

mented byl, the number of detectors should double ia-hour (560 samples) simulation time was enough to

order to make these two cases comparable. capture the diversity of the self behavior. This was

Figure [6(a) shows the real time needed to cordene by trying to detect misbehavior in 20 independent
pute the desired set of detectors. We can see the ma@behavior-free Glomosim runs (different from those
time necessary increases proportionally with the desingskd to compute detectors). We report that we did not
number of detectors; this complies with the theoreticabserve a single case of an autoimmune reaction.
results presented in[11]. Figurk 6(b) shows the percent-

age of non-valid detectors, i.e._ candidate_ detectors tlﬁ)ai Detailed Performance

were found to match a self string (see Figure 1). This

result points to where the optimal operation point of dn Fig.[8(a) we show the total number of runs in which a

AIS might lie with respect to the choice efparameter node was identified as misbehaving. The steep decline

and the choice of a fixed number of detectors to corfor valuesr > 10 (in this and other figures) documents

pute. We remind the reader, the larger isthparameter that in these cases it was necessary to produce a higher
the smaller is the probability that a detector will matchumber of detectors in order to cover the non-self anti-

a self string. Therefore overhead connected to choosgen space. The higher thethe higher is the specificity

the r» parameter prohibitively small should be considsf a detector, this means that it is able to match a smaller

ered when designing an AlS. Figliie 6(c) shows the tosat of non-self antigens.

number of generate-and-test tries needed for computai Fig.[8(b) and (c) we show the number of detec-

tion of detector set of a fixed size; the 95% confidenters that got matched during the detection phase (see

interval is less thag%. Fig.[2). Fig. (b) shows the number of detectors matched
In Figure[T(a) we show the dependence of detectiper run, Fig. (c) shows the number of detectors matched
ratio on the packet threshold. We conclude that exceggar window. Fig. (b) is an upper estimate on the number
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of unique detectors needed in a single run. Given tH&BR) and a Poisson distributed data traffic. In many
the total number of detectors was 2,000, there were lsggnarios, sensors are expected to take measurements
than 5% detectors that would get used in the detectimnconstant intervals and, subsequently, send them out
phase. The tight confidence interiiHfisr the number of for processing. This would create a constant bit rate
unigue detectors matched per window (see Fig. (c)) israffic. Poisson distributed traffic could be a result of
direct consequence of the small variability of antigesensors taking measurements in an event-driven fash-
as shown in Fid.19(a). ion. For example, a sensor would take a measurement
Fig.[9(a) shows the number of unique antigens thaitly when a target object (e.g. a person) happens to be
were subject to classification into self or non-self. Thg its vicinity.
average for- = {7,10} is about 1.5. This fact does The setup for this experiment was similar to that pre-
not directly imply that the variability of the data trafficsented in Fig[J4 with the additional fact that the data
would be inadequate. It is rather a direct consequenafic model would now become an input parameter.
of our choice of genes and their encoding (we only us¥dth the goal to reduce complexity of the experimen-
10 value levels for encoding). Figl. 9(b) shows the nurtel setup, we fixed- = 10 and we only considered
ber of matches between a detector and an antigen inthses withb00 and 2000 detectors. In order to match
following way. When a detector under thecontiguous the CBR traffic rate, the Poisson distributed data traffic
matching rule matches only a single gene within an antiodel had a mean arrival expectationlopacket per
gen, we would increment the “single” counter. Othesecond § = 1.0). As in the case with CBR, we com-
wise, we would increment the “multiple” counter. It iputed the detection rate and the rate of false positives
obvious that with increasing, it gets more and morewith the associated arithmetic averages 5% confi-
probable that a detector would match more than a silence intervals.
gle gene. The interesting fact is that the detection rateThe results based on these two traffic models were
for bothr = 7 andr = 10 is about 80% (see Fifil 7(a))similar, actually, we could not find the difference be-
and that the rate of non-valid detectors is very differetwween them to be statistically significant. This points
(see Fig[B(b)). This means that an interaction betweeut that the detection process is robust against some
genes has positively affected the later performance meariation in data traffic. This conclusion also reflects
sure, without sacrificing on the former one. This leag®sitively on the usefulness of the used genes. More
to a conlusion that genes should not be consideredimportantly, it helped disperse our worries that the re-
isolation. sults presented in this experimental study could be un-
Fig.[9(c) shows the performance of Gene #1. Tlaeceptably data traffic dependent.
number of matches shows that this gene contributed
to the overall detection performance of our AIS.
Figs.[I0(a-c) sum up performance of the five genes ©r Related Work
different values of-. Again, an interesting fact is the
contribution of Gene #1 to the overall detection perfol? [26,[24] the authors introduced an AIS based misbe-
mance. The usefulness of Gene #2 was largely expedi@yior detection system for ad hoc wireless networks.
as this gene was tailored for the kind of misbehavidihey used Glomosim for simulating data traffic, their
that we implemented. The other three genes came 88tup was an area of 88800m with 40 mobile nodes
as marginally useful. The importance of the somewh@peed 1 m/s) of which 5-20 are misbehaving; the rout-
surprising performance of Gene #1 is that it can be coiig protocol was DSR. Four genes were used to capture

puted in a simplistic way and does not require continlgcal behavior at the network layer. The misbehavior
ous operation of a node. implemented is a subset of misbehavior introduced in

this paper; their observed detection rate is about 55%.

i Additionally, a co-stimulation in the form of a danger
7.3 The Impact of Data Traffic Pattern signal was used in order to inform nodes on a forward-
In an additional experiment, we examined the imp QL path abo_ut msb_ehawor, thus propagating informa-
. fol about misbehaving nodes around the network.

of data traffic pattern on the performance. We use In 1071 th thors describe an AIS able to detect
two different data traffic models: the constant bit rate [ .] € authors describe a able 1o detec

anomalies at the transport layer of the OSI protocol

5For practical reasons we shaviyso only for 7 < r < 13. stack; only a wired TCP/IP network is considered. Self
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is defined as normal pairwise connections. Each detéter parameter on the detection process. In general, the
tor is represented as a 49-bit string. The pattern matechsults in Figl-I0 show that Gene #1 and #2 obtained of
ing is based on r-contiguous bits with a fixee= 12. all genes the best results, with Gene #2 showing always

Ref. [23] discusses a network intrusion system ththite best results. The contribution of Gene #1 suggests
aims at detecting misbehavior by capturing TCP packbéat observing the MAC layer and the ratio of complete
headers. They report that their AIS is unsuitable ftwandshakes to the number of RTS packets sent is useful
detecting anomalies in communication networks. THigr the implemented misbehaviour.
result is questioned in [4] where it is stated that this is Gene #2 fits perfectly for the implemented misbehav-
due to the choice of problem representation and dueido It therefore comes as no surprise that this gene
the choice of matching threshatdor r-contiguous bits showed the best results in the detection process. The
matching. guestion which remains open is whether the two genes

To overcome the deficiencies of the generate-and-tes still as useful when exposed to different attack pat-
approach a different approach is outlined(in|[22]. Seterns.
eral signals each having a different function are em-It is currently unclear whether genes that performed
ployed in order to detect a specific misbehavior in sewell with negative selection, will also be appropriate
sor wireless networks. Unfortunately, no performander generating different flavors of signals as suggested
analysis was presented and the properties of these ®ihin the danger theony1, [16]. It is our opinion that
nals were not evaluated with respect to their misuse. any set of genes, whether used with negative selection

The main discerning factor between our work arer for generating any such a signal, should aim at cap-
works shortly discussed above is that we carefully coiwing intrinsic properties of the interaction among dif-
sidered hardware parameters of current sensor devieggnt components of a given sensor network. This con-
the set of input parameters was designed in orderttadicts approaches applied in [26) 22] where the genes
target specifically sensor networks and our simulati@tie closely coupled with a given protocol. The rea-
setup reflects structural qualities of such networks wigion for this statement is tr@ombined performancef
regards to existence of multiple independent routifgene #1 and #2. Their interaction can be understood
paths. In comparison to [26, 24] we showed that in cage follows: data packet dropping implies less medium
of static sensor networks it is reasonable to expect entention since there are less data packets to get for-
detection rate to be above 80%. warded. Less data packets to forward on the other hand

implies easier access to the medium, i.e. the number

of complete MAC handshakes should increase. This is
9 Conclusions and Future Work an interestingcomplementaryelationship since in or-

der to deceive these two genes, a misbehaving node has
Although we answered some basic question on the suit-appear to be correctly forwarding data packets and,
ability and feasibility of AIS for detecting misbehaviomt the same time, he should not significantly modify the
in sensor networks a few questions remain open.  “game” of medium access.

The key question in the design of AlS is the quantity, It is improbable that the misbehaving nodéne
quality and ordering of genes that are used for measwould be able to estimate the impact of dropped packets
ing behavior at nodes. To answer this question a d the contention level. Therefore, he lacks an impor-
tailed formal analysis of communications protocols witant feedback mechanism that would allow him to keep
be needed. The set of genes should be as “completettescontention level unchanged. For that, he would need
possible with respect to any possible misbehavior. Tteact in collusion with other nodes. The property of
choice of genes should impose a high degree of seemplementarity moves the burden of excessive com-
sor network’s survivability defined @ke capability of munication from normally behaving nodes to misbehav-
a system to fulfill its mission in a timely manner, even ing nodes, thus, exploiting the ad hoc (local) nature of
the presence of attacks, failures or accidd2g]. Itis sensor networks. Our results thus imgygood” mix-
therefore of paramount importance that the sensor nigtre of genes should be able to capture interactions that
work’s mission is clearly defined and achievable undamode is unable to influence when acting aldbé an
normal operating conditions. open question whether there exist other useful proper-

We showed the influence and usefulness of certdies of genes, other than complementarity.
genes in order to detect misbehavior and the impact ofWe conclude that the random-generate-and-test pro-
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cess, with no knowledge of the used protocols and thej2] U. Aickelin, J. Greensmith, and J. Twycross. Im-

behavior, creates many detectors which might show to
be superfluousin detecting misbehavior. A process with
some basic knowledge of protocol limitations might

lead to improved quality of detectors.

In [28] the authors stated that the random-generat({ﬁ]
and-test procesSs innefficient, since a vast number
of randomly generated detectors need to be discarded,
before the required number of the suitable ones are ob-

tained”. Our results show that at = 10, the rate of

discarded detectors is less th#fé. Hence, at least in
our setting we could not confirm the above statemen
A disturbing fact is, however, that the size of the self set
in our setting was probably too small in order to justify
the use of negative selection. A counter-balancing ar-
gumentis here the realistic setup of our simulations anb]

a decent detection rate.

We would like to point out that the Fisher iris and
biomedical data sets, used in [28] to argue about the
apropriateness of negative selection for anomaly detec-
tion, could be very different from data sets generated b
our simulations. Our experiments show that anomal
(misbehavior) data sets based on sensor networks could
be in general very sparse. This effect can be due to
the limiting nature of communications protocols. Since
the Fisher iris and biomedical data sets weré in [28] n
evaluated with respect to some basic properties e.g. de-
gree of clustering, it is hard to compare our results with

the results presented therein.

In order to understand the effects of misbehavior bet-
ter (e.g. the propagation of certain adverse effects), we
currently develop a general framework for AIS to be

used within the JiIST/SWANS network simulator [6].
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