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Abstract— AIRS (Artificial Immune Recognition System) 

has shown itself to be a competitive classifier. It has also proved 

to be the most popular immune inspired classifier. However, 

rather than AIRS being a classifier in its own right as 

previously described, we see AIRS more as a pre-processor to a 

KNN classifier. It is our view that by not explicitly classing it as 

such development of this algorithm has been rather held back. 

Seeing it as a pre-processor allows inspiration to be taken from 

the machine learning literature where such pre-processors are 

not uncommon. With this in mind, this paper takes a core 

feature of many such pre-processors, that of attribute 

weighting, and applies it to AIRS. The resultant algorithm 

called WAIRS (Weighted AIRS) uses a weighted distance 

function during all affinity evaluations. WAIRS is tested on 9 

benchmark datasets and is found to outperform AIRS in the 

majority of cases. 

I. INTRODUCTION 

AIRS is a supervised immune-inspired classification system 
capable of assigning data items unseen during training to one 
of any number of classes based on previous training 
experience. AIRS is probably the best known AIS for 
classification, having been developed in 2001 [1]. It has 
undergone a number of revisions and refinements in order to 
increase efficiency and increase accuracy [2, 3] and has been 
shown to work competitively on benchmark tests using 
standard public domain datasets [4, 5]. Indeed, when AIRS 
was tested on the well known Iris dataset, Pima Indians 
dataset, ionosphere dataset and Sonar dataset, AIRS was 
comparable with the fifth to eighth most successful 
classifiers found in the literature for three out of the four 
datasets (where the Pima Indians dataset was the exception) 
[6]. 

In the literature, AIRS is referred to as a classification 
algorithm. However, we believe it would be useful if this 
attitude was changed. Rather than a classification algorithm 
in its own right, we believe it would be more useful to think 
of AIRS as a pre-processor to a Nearest Neighbour (NN) or 
K-Nearest Neighbour (KNN) algorithm. In this case AIRS 
can be seen to perform an instance construction task, a 
common task in the data mining literature [7]. Instance 
construction is a data reduction technique that aims to 
summarise a training dataset by creating a set of typical 
instances or prototypes that best generalise those data. In this 
way the amount of training data are reduced, increasing the 
efficiency of the induction algorithm, and a correctly 
functioning instance construction algorithm will remove 
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outliers and other noisy instances from the training data, thus 
increasing classification accuracy over the test set. Re-
positioning AIRS as an instance construction algorithm can 
allow users to take inspiration from the lazy learning 
literature. As the subject of data pre-processing techniques 
for nearest neighbour algorithms has been around for many 
years there is a vast wealth of information available on this 
subject. The use of such ideas applied to AIRS in turn may 
give insight into improvements for AIRS. 

It is the aim of this paper to do such a thing. By 
identifying a weakness in the current AIRS implementation, 
solutions can be found in the data mining literature. The 
algorithm can then be augmented with these changes and the 
resulting algorithm tested against benchmark data to 
determine whether the changes have had a positive effect. 

In the following section the AIRS algorithm is briefly 
introduced and some points are raised concerning the 
similarities between the high-level procedure of the AIRS 
algorithm and other data reduction strategies applied to 
classification. Section III is concerned with introducing the 
reader to a number of data mining concepts pertinent to the 
research, this section includes some technical details of the 
chosen attribute weighting strategy. Section IV details the 
changes made to the AIRS algorithm and these are tested 
and evaluated in Section V. The final section contains a 
summary and some concluding remarks. 

II. AIRS 

For technical details regarding the AIRS algorithm, the 
reader is referred to the literature such as [1, 2] although it is 
worth giving a quick overview of the algorithm. The AIRS 
algorithm has three main stages. First there is an initial 
seeding phase in which randomly chosen data vectors are 
used to form an initial population of memory cells. These 
cells will be of different classes as dictated by the underlying 
data. The second phase is a training phase.  During this 
phase the affinity between cells and training data items is 
computed, this affinity is based on a notion of Euclidean 
distance. Cells are stimulated based on this degree of match 
combined with a match between the training data and the 
cell’s class. Processes of cloning and mutation take place 
based on this stimulation value. While cloning would have 
the effect of increasing the population size the number of 
cells is controlled by a resource allocation mechanism where 
ARBs (Artificial Recognition Balls) compete for resources 
based on their stimulation level. This competition for 
resources applies strong selective pressure on the population, 
as any ARBs surviving this stage will go on to produce 
offspring. The aim of this stage is to create a set of memory 
cells that best summarise the training data that has been 
seen, in order to maximise the classification accuracy and 
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efficiency of the following stage. These memory cells will 
be derived from the best performing ARBs in this stage. The 
final stage of the AIRS algorithm is the classification stage, 
during which data items as yet unseen by the algorithm are 
assigned a class based on the result of the algorithm’s 
training. This classification is performed by the well known 
nearest neighbour (NN) or K-nearest neighbour (KNN) 
procedure, the details of which are expanded in the 
following section. 

Notice here how the AIRS algorithm pre-processes the 
data but the actual classification is left to a standard 
classification technique (NN or KNN). This follows the 
same template as other instance selection or instance 
reduction algorithms, such as IB2 [8] in which the raw 
training data set is reduced in size before the actual 
classification is performed by a standard lazy learning 
technique using those reduced data. 

AIRS was compared in [1] against four standard datasets: 
iris, ionosphere, diabetes and sonar datasets from the UCI 
repository [9]. It was noted that AIRS was very competitive 
with other algorithms, achieving a higher classification 
accuracy than both C4.5 and a Bayesian approach over the 
diabetes dataset. 

AIRS was updated to AIRS2 in [5]  with five small 
changes being made, including slight updates to the mutation 
and cloning routines. AIRS2 was updated further to work as 
an efficient parallel system in [3, 4]. 

III. DATA MINING ISSUES 

Nearest neighbour classification algorithms use the available 
training set, or a subset of it, to classify unseen data. During 
training they do not infer any specific classification model, 
rather they defer any induction until a classification is 
requested. For this reason they are referred to as lazy 
algorithms rather than eager, such as decision tree building 
or rule induction. In essence, a simple nearest neighbour 
classifier will store all training data. When a new instance is 
to be classified it determines the most similar training 
instance and assign the new item the class of that instance. It 
is possible that the K most similar training instances will be 
retrieved and the new item assigned the most frequent class. 
In this case the algorithm is referred to as a K-nearest 
neighbour. 

As every training instance is interrogated every time a 
classification is requested, the time taken to classify test 
instances can be intractable if the training set size is very 
large. Thus, a reduction in the size of the training set is 
commonly sought to increase efficiency. It is the aim of a 
data reduction algorithm to reduce the size of the training 
set, whilst still maintaining that dataset’s characteristics and 
therefore its predictive ability. In the most simple case, 
instance selection [10], instances deemed redundant will be 
removed from the training set. The goal here is to remove as 
many training instances as possible whilst not significantly 
impacting the final classification accuracy. [11] describes 
how a concept (class) may be represented by a small number 
of typical instances of that concept. This approach is 
common in the literature, with a typical and easy to 
understand example being IB2 [8]. The IB2 algorithm 

selects only those instances from the training set that would 
have been misclassified when a KNN classifier is applied. 
This tends to leave only those instances close to class 
boundaries while redundant and noisy instances are 
removed. 

Consider the example in Fig. 1 (A simplified version of 
one given in [8]). Two linearly separable classes are 
represented in two dimensions. The original training set is 
shown in Fig. 1 (A), while the reduced set on instances is 
shown in Fig. 1 (B). It can be seen that after the instance 
selection step, point X for example ,would still be classified 
as “-“ based on its nearest neighbour, even though its 
neighbours are different between A and B. In this case the 
redundant instances have been removed. The goal of such an 
algorithm is, therefore, to remove as many instances as 
possible whist retaining the information about the class 
boundaries that was present in the original training set. I.e. 
there should be no difference in the predictive accuracy of 
an algorithm when it is using the original training data or the 
reduced set of instances for training. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Example of distribution of examples in a training set (A), the 
reduced set of examples after processing by an instance selection algorithm 
(B) and the reduced set of examples after processing by an instance 
construction algorithm (C). 
 

The above example concerns instance selection, but a 
reduction in the size of the training set may be accomplished 
in one of two ways, by instance selection or instance 
construction [7]. In the case of instance construction the 
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original training set is used to determine a new training set, 
presumably of smaller size than the original, so that the 
original training data are discarded and the algorithm trained 
on this abstracted set. The important distinction here is that 
instance selection algorithms use a subset of the original 
instances while instance construction algorithms construct 
new instances which are not present in the original data. Fig. 
1 (C) shows how an instance construction algorithm may 
represent the class boundary as Fig. 1 (A) but this time the 
instances used to represent each class have been moved (i.e. 
they are not present in the original training set) yet point X 
will still be correctly classified. This example shows that 
instance construction can be more efficient than instance 
selection as the algorithm may place instances where they 
are most efficient, rather than where the original training set 
dictates. Indeed because this constraint is not present, the 
constructed instances have the potential to better represent a 
class boundary and therefore have the potential to increase 
the classification accuracy compared with an instance 
selection approach. 

Examining the high-level outline of the AIRS algorithm 
on Section II, it can be seen that AIRS effectively performs 
instance construction, rather than instance selection. ARBs 
are constructed to best represent the original training set, 
which is discarded. The size of the ARB set is presumably 
much smaller than the original training set. Not only does 
this procedure have the effect of increasing the efficiency of 
the classifier, but it can also serve to enhance the generality 
of the training set and thus improve the classification 
accuracy over test data. Hereafter we focus on instance 
construction. 

There exist a number of changes that could be made to 
the basic AIRS algorithm to try to improve classification 
accuracy. For example, a wealth of different distance 
measures may be used. As standard, AIRS uses Euclidean 
distance, but this distance measure may not be the best for a 
given problem. Different distance measures have different 
inductive biases making them suitable to different kinds of 
data sets (Freitas and Timmis, 2006). [12] contains a 
discussion of such distance metrics and presents a 
comparison of these over three data sets. However, the 
testing of different distance metrics is not the concern of this 
study. 

Predictor attributes should be normalised so that one 
attribute with a large range or generally high values does not 
dominate another attributes with a smaller ranges or values. 
Attribute normalisation is performed by default in AIRS 
already. 

A. Attribute weighting 

An important improvement to the standard KNN procedure 
is that of weighting attributes.  It stands to reason that, in 
most cases, not all predictor attributes will contribute equally 
to a correct classification. Weighting schemes may be 
introduced such that irrelevant attributes are given a low 
weighting while relevant attributes are given a large 
weighting. These weightings are used when the distance 
between a training instance and a classification instance is 
computed such that relevant attributes exert a 

disproportionately large influence on the final distance 
value. In effect this weighting lengthens the axes of relevant 
attributes in Euclidean data space, while shrinking the axes 
of irrelevant attributes. In extreme cases, attributes can be 
assigned a weight of 0, meaning they are deemed totally 
irrelevant and as such are disregarded in the distance 
calculation. A special case of this is feature selection, where 
the weights 1 or 0 are assigned to attributes. This can have 
the advantage of reducing the dimensionality of the data, 
resulting in an increase in classification speed. However, as 
a binary weight is assigned the algorithm is judging the 
attribute to be either completely relevant or completely 
irrelevant. This may not reflect the actual data where 
features are likely to have varying degrees of relevance. 

There are numerous examples in the literature where 
attribute weighting has been shown to be beneficial on some 
problems [13-17] while there is also a small amount of 
theoretical work concerning the calculation of optimum 
feature weights [18]. In addition to this, the addition of 
attribute weighting to AIS algorithms has been encouraged. 
In [19], the case is made that unweighted distance measures 
are likely to be a suboptimal choice of affinity function for 
AIS used as classifiers. The implementation of weighted 
distance functions is one of ten research directions suggested 
in that article. 

The use of AIRS in situations where noisy or irrelevant 
attributes have been present has been briefly investigated 
before. In [20], the authors tested AIRS on an artificial 
problem and found a reduction in predictive accuracy of 
around 5% but with a large increase in the number of output 
cells, which is undesirable. 

Computing the optimum weight for an attribute is a 
complex problem. There are two general methods for the 
discovery of weights; wrapper and filter (sometimes called 
performance bias and preset bias respectively). In the case of 
the wrapper approach, the predictive accuracy of the 
classification algorithm is used as a feedback to guide the 
weighting algorithm. The classification algorithm that will 
use the attribute set should provide a better estimate of 
accuracy than a separate measure that may have an entirely 
different inductive bias. However, the major disadvantage is 
the computational cost which results from calling the 
classification algorithm to evaluate each set  of attribute 
weights [21]. In the investigation undertaken here, the 
expected computational costs are too high to use this 
approach and so a filter approach is preferred. A filter 
approach will use the available training data to adjust the 
attribute weights without using the classification algorithm 
for feedback. Thus filter methods are usually independent of 
the classification algorithm.  

A great many attribute weighting algorithms exist in the 
literature. Considering only filter approaches, methods such 
as Continual Probabilities [22] and Class Projection [23] are 
found in the literature.  

An empirical comparison of weighting algorithms is 
performed in [14] in which four common filter-based 
weighting algorithms are compared. The mutual information 
(MI) approach is seen to perform the best on average. The 
MI of two variables is the reduction in uncertainty of one 



 
 

 

variable’s value given the knowledge of the other [24]. In 
this case, the weighting changes as the mutual information 
between a predictor attribute and the instance’s class change. 
Thus if an attribute provides absolutely no information about 
the class, its weight will be 0. The weight w of feature 
(attribute)  f is computed as shown in Equation 1. 
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There exists a problem with this metric in that one must 

determine the frequency with which an attribute value 
predicts a given class. This is meaningless over continuous 
attributes as there are an infinite number of values a 
predictor attribute may take. Instead, some kind of attribute 
discretization must be undertaken to assign each continuous 
attribute value to one discrete value (an interval of 
continuous values). In this way the probability of a discrete 
value predicting a class may be computed as shown in 
Equation 1. 

B. Attribute Discretization 

Discretization is the process of converting a numerical 
attribute into a symbolic attribute by partitioning the 
attribute domain [25]. Discretization of continuous attributes 
is fundamental to many decision tree algorithms and is 
therefore a well researched area in data mining [26]. Many 
decision tree algorithms such as ID3, C4.5 and CART all 
require binary splits at decision nodes [27]. The value at 
which this split occurs is usually determined by a 
discretization algorithm, although the difference here is that 
this discretization will occur in a dynamic manner as the tree 
is built, rather than occurring as a pre-processing step as 
occurs in nearest neighbour algorithms. As such there are 
commonalities with algorithms such as naïve Bayes in which 
discretization often occurs before the classification 
algorithm is run. In these cases the discrete values resulting 
may not be binary, rather, numerous partitions may be 
created if the data requires and it is this multiple splitting 
that is the concern of this section. 

 
TABLE I 

EXAMPLE OF NAÏVE DISCRETIZATION 

Predictor attribute value Class Symbolic value 
1 - 
2 - 

A 

3 - 
4 + 

B 

5 + 
6 + 

C 

 
The most straightforward method for discretization is to 

assign data instances to a partition based on user defined 
partition boundaries. However, this strategy causes two 
issues that may negatively impact the performance of the 
algorithm. Firstly the number of partitions may not naturally 
fit the data and secondly the partition boundaries that result 
may not naturally fit the data. Consider a case in which the 

data can be classified into two classes. A “low” value of a 
predictor attribute indicates one class while a “high” value 
indicates another. Forcing this data into three subsets may, 
incorrectly, force the position at which the boundary point 
occurs into one of the subsets. Notice in the example, Table 
I, how the data naturally partitions into two classes while 
forcing it into three symbolic, discrete values would lead to 
substandard performance as discrete value B contains data 
from two classes. 

This example illustrates that it is generally beneficial for 
a discretization algorithm to choose the number of partitions 
and the partition boundaries in a data driven manner, i.e. 
discretization algorithms should be supervised. Many well-
known discretization algorithms are supervised and as such 
fulfil the criteria above. Suitable choices include ChiMerge 
[28] and Vector Quantization [29] or Recursive Minimal 
Entropy Partitioning [30]. An empirical comparison of these 
was undertaken in [26]. The strategy of Fayyad and Irani is 
used in this paper as it is found to be common throughout 
the literature [31] and was seen to fare well in the above 
empirical evaluation on a number of standard public domain 
datasets. The chosen method uses the calculated entropy of 
each class to select the most suitable partition boundary, 
where the class information entropy can be calculated as 
shown in Equation 2. 
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In Equation 2, S is a set of instances, A is a given feature 

(attribute) and T is a partition boundary. For feature A, the 
boundary Tmin that minimises the entropy over all possible 
boundaries is selected [27]. The application of this will 
therefore result in a binary split, and the method can be 
applied recursively until a stopping criterion is met, in this 
case, a criterion based on the Minimum Description Length 
Principle. 

IV. A NEW, ATTRIBUTE WEIGHTED VERSION OF THE AIRS2 

ALGORITHM 

Attribute weighting was added to the AIRS algorithm as a 
pre-processing stage. The Mutual Information weighting 
scheme was implemented according to Equation 1. This used 
the Fayyad and Irani’s discretization technique as described 
in Section III.B and Equation 2. The code used to perform 
the discretization was taken from the open source “Bayesian 
Network Classifiers Toolbox (JBNC)” [32]. 

The data used to determine the weight of each attribute 
was the same training data used by AIRS. Once initialised, 
the weights do not change during the run of AIRS. 

The standard Euclidean distance measure is changed to 
include the weight w of a feature f such that the distance d 
between two data instances, x and y, is determined as 
follows [16]: 
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While, in this paper, the concept of attribute weights was 

introduced in the context of the KNN classifer, it should be 
noted that the inclusion of attribute weights will affect the 
whole AIRS algorithm, not just the final KNN classification 
routine. This modified Euclidean distance measure is used 
whenever an affintiy is evaluated during the training stage. 

It should be noted that while this investigation only uses 
Euclidean distance, other distance measures are available for 
AIRS [6]. Not only do these new distance measures inclue 
measures for continuous attributes (i.e. manhattan distance), 
they also include measures for symbolic data (Value 
Distance Metric) and mixed data (Hetrogeneous Euclidean-
Overlap Metric). The intrioduction of these metrics was not 
only found to make AIRS more flexible as it could be used 
for more datasets, in some cases the use of a non-Euclidean 
distance measure was found to increase the accuracy of the 
classifier. 

V. COMPUTATIONAL RESULTS 

Experiments were carried out in order to determine how an 
AIRS with weighted features performed compared to a 
standard AIRS implementation. Java source code was 
obtained from the original author of the AIRS algorithm 
[33]. This source code was for the revised AIRS algorithm, 
AIRS2, as described in [2].  Both the WAIRS (Weighted-
feature AIRS) and standard AIRS algorithms were run with 
the default parameters found in the code, i.e. no optimisation 
of parameters was performed. This makes the comparison 
between the two algorithms as fair as possible. The values of 
the parameters can be found in Table II. 

A number of datasets were retrieved from the well-known 
UCI machine learning repository [9]. Due to the inability of 
AIRS to handle datasets in which continuous and discrete 
attributes are present, the chosen datasets used continuous 
attributes only. The datasets were temporarily discretized, as 
explained earlier, just for the sake of computing feature 
weights in a pre-processing phase. Once those weights have 
been determined, they are fixed throughout the run of 
WAIRS – i.e., the algorithm learns a classification model 
from the originally continuous features. The “waveform 40” 
dataset is as used in [14] and [16] to evaluate the quality of 
weighting methods, as this includes 19 artificially irrelevant 
attributes. Along similar lines the “Iris+4” dataset is the 
standard iris dataset with an additional 4 irrelevant attributes. 
The remaining datasets are left as standard. 

 
TABLE II 

ALGORITHM PARAMETERS 

Parameter Value 
Clonal rate 10 
Mutation rate 0.7 
Affinity threshold 0.2 
Stimulation threshold 0.95 
Resources 200 
Hypermutation rate 10 
K value in KNN classifier 3 

 
A 10-fold cross validation approach was taken to estimate 

the predictive accuracy of the algorithms. In this approach, 
data instances are randomly assigned to one of 10 
approximately equal size subsets. At each iteration, all but 
one of these sets are merged to form the training set while 
the classification accuracy of the algorithm is measured on 
the remaining subset. This process is repeated 10 times, 
choosing a different subset as the test set each time until all 
data instances have been used 9 times for training and once 
for testing. The weighting algorithm is run once per fold 
using the same training data as the main AIRS algorithm. 
The final predictive accuracy is computed over all folds in 
the usual manner but dividing the number of correct 
classifications taken over all folds by the number of data 
instances in all folds. As there is a certain amount of non-
determinism involved both in the random partitioning of the 
data and the running of AIRS, at each of the 10 iterations of 
the cross-validation procedure both WAIRS and AIRS2 
were run 10 times, varying the random seed used to create 
the initial population in each run. 

Table III shows the mean classification accuracy obtained 
when running AIRS on the selection of publicly available 
datasets. The AIRS and WAIRS columns show the mean 
predictive accuracy of the respective algorithm. The 
‘significance’ column shows the probability of the accuracy 
obtained for AIRS2 and WAIRS do not differ. A value in 
this column of <0.05 is deemed significant while a value of 
<0.01 is highly significant. This figure was obtained by 
comparing the results of each algorithm using  a two-tailed 
unpaired Student’s t-test [34, 35]. Significant results are 
shown in bold type. 

 
TABLE III 

COMPARISON OF CLASSIFIACTION ACCURACY 

Dataset AIRS2 WAIRS Significance 
Iris+4 88.07% 94.73% 6.2226E-07 
Waveform 40 75.92% 81.91% 3.5782E-17 
Iris 95.00% 94.53% 0.17303348 
Waveform 80.24% 81.59% 3.5147E-06 
Wine 95.74% 97.47% 0.00010374 
Sonar 77.10% 79.34% 0.02448068 
Ionosphere 88.40% 87.81% 0.12493906 
Glass 60.77% 60.03% 0.31628134 
Diabetes 71.52% 71.29% 0.32420265 

 
The results show that WAIRS achieves significantly 

higher predictive accuracy in both datasets where irrelevant 
attributes have been artificially injected into the data. The 
increase in accuracy is really quite striking in both cases. 
Out of the remaining 7 datasets, WAIRS achieves a 
significantly higher predictive accuracy over 3 of the 7 
datasets. Of the remaining 4 datasets, any difference in the 
accuracies reported was not found to be statistically 
significant. On no occasion did WAIRS result in a 
significantly lower classification accuracy than AIRS2. 

The main test of this algorithm was whether the 
classification accuracy would increase over AIRS2 when run 
on data with attributes known to be irrelevant. Thus it can be 
concluded that the weighting procedure is working as 
expected.  The results shown here contrast with those found 



 
 

 

in [20], in which the accuracy was found to decrease when 
AIRS was tested using a dataset with known irrelivet 
attributes. 

Over the remaining datasets, those taken directly from the 
UCI repository produced mixed, although no negative, 
results. While these public datasets are comprised of real-
world data, they are often pre-processed, including the 
selection of attributes particularly suited to the target data 
mining task. As such it is likely that no or few irrelevant 
features are included in the data, thus it was not expected 
that any large increase in accuracy would be seen. The fact 
that there was no significant difference in the classification 
accuracy over these datasets was pleasing and suggests the 
chosen strategy may be robust. 

It should be noted that in previous publications where 
datasets have been used to evaluate AIRS2, the reported 
accuracies differ from the figures in Table III. This is due to 
differences in the testing strategy and in the parameters used. 
In [1, 36] a 5-fold cross validation approach was taken, 
while in [4] different datasets were tested differently with 5, 
10 or 13 folds used. However in the case of the Ionosphere 
dataset, no cross validation was applied and a single 
test/training set was used. In all cases the tests were repeated 
three tines and the averages taken. In addition to this,. the 
parameters were optimised for performance on each dataset 
separately. In the case of [2], no details of the testing 
strategy or the parameter values are given, but taking 
information from [4] it is believed that test procedures and 
parameters were the same as the previous papers. Thus is 
likely that these two factors conspire to result in the 
accuracies reported here that are slightly lower than those 
previously reported. the interested reader wishing to assess 
the quality of AIRS classification accuracy in the wider 
context of machine learning should therefore consult 
previously published papers such as [5] which contain tables 
comparing AIRS with other state-of-the-art classifier 
systems in a fairer context. 

A.  Data reduction 

As discussed in Section III, when performing classification 
with a KNN type algorithm one major goal is a reduction in 
training data while maintaining accuracy. We have shown in 
the previous subsection that predictive accuracy is either 
improved or not significantly impacted but it is of interest to 
observe the number of final memory cells produced after 
training to determine whether WAIRS produces fewer 
memory cells than AIRS2. The results are shown in Table 
IV. All results obtained were statistically highly significant 
(probability less than 1%) and so a significance column 
would be redundant. 

From Table IV, it can be seen that in 5 of the 9 datasets 
WAIRS resulted in a decrease in the number of data items 
used to perform the KNN classification. There does not, 
however, seem to be much consistency in these results, for 
example, an increase in classification accuracy (Table III) 
does not necessarily predict an increase/decrease in B-cells 
produced. Bold values show a reduction in memory cells. 
Rather it is expected that this may be dataset dependent. 
Notice how the numbers of cells for both the Iris datasets 

have reduced while the numbers of cells for both the 
Waveform datasets has increased. This, as yet, cannot be 
explained. What is important is that the increase in the 
number of cells is not exclusively for the datasets that 
resulted in the better classification accuracy.  Significantly, 
however, the massive increase in memory cells reported in 
[20] was not repeated when datasets containing noisy 
attributes are compared to the same dataset which does not 
contain noisy attributes (Iris vs. Iris+4 and Waveform vs. 
Waveform 40). 
 

TABLE IV 
COMPARISON OF THE NUMBER OF MEMORY CELLS LEFT AFTER TRAINING 

 Final memory cells 
Dataset AIRS2 WAIRS 
Iris+4 124.56 37.57 
Waveform 40 3086.3 3513.9 

Iris 49.61 37.22 
Waveform 3330.4 3472.6 

Wine 137.38 133.16 
Sonar 127.41 153.32 

Ionosphere 144.79 159.86 

Glass 89.49 74.95 
Diabetes 494.05 422.41 

 

VI. CONCLUSION 

In this paper we have highlighted that the well known AIS-
based classification algorithm, AIRS, can be thought of as a 
pre-processor to a KNN algorithm functioning as a powerful 
instance construction algorithm. The case was made that 
inspiration could be taken from the data mining literature 
and the performance of AIRS could be enhanced by 
determining individual weights for data attributes. An 
enhanced affinity function was utilised to make use of the 
attribute weights, with the same function being used to 
compute the distances during KNN classification. The 
results of a comparison between this new algorithm, 
WAIRS, and the previously published AIRS2 showed that 
WAIRS outperformed AIRS2 significantly in 5 out of 9 
datasets. Of the remaining 4 datasets no significant 
difference between the results of both algorithms was found. 
In cases where a dataset contains irrelevant attributes, 
WAIRS is likely to outperform AIRS, while in cases where 
no irrelevant attributes are present both algorithms work 
equally well.   

It was noted in the background section that filter type 
attribute weighting schemes such as that implemented here 
can not take account for attribute interaction as it is 
independent of the classification algorithm used. An obvious 
improvement would be to use a wrapper approach to further 
improve attribute weighting. 

As part of the aim of this paper was to illustrate that 
AIRS may be better classified as an instance construction 
algorithm rather than a classifier in itself, the next logical 
progression of this work would be to compare 
AIRS2/WAIRS to other instance construction algorithms in 
terms of both data compression and the ability of each to 
maintain or improve classification accuracy. 
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