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Abstract— Our theoretical understanding of island models
(IMs) is much worse than of single-population evolutionary
algorithms (EAs). As a consequence there is relatively little
guidance available to a practitioner for even the most basic
aspects of IM design such as choosing the size and number
of the islands. In this paper we improve on this situation
by showing how a particular two-level perspective can in fact
provide guidance for IM design.

I. INTRODUCTION

Island models (IMs) are evolutionary algorithms (EAs),

in which individuals are split into sub-populations (islands),

each one evolving independently. Islands interact by means

of occasional migrations. One of the reasons for using IMs

is to take advantage of the parallelism obtained by distribut-

ing the computation over multiple machines. However, in

addition to a possible speedup, IMs also have very different

dynamics than standard single-population EAs, resulting in

different problem solving behavior. Unfortunately, our theory

for IMs is much less developed than for single population

EAs.

In this paper we show how our understanding of IMs

can be improved by taking a two-level perspective of their

structure and behavior. On one hand each island has its own

local EA. On the other hand interactions among islands can

be viewed as forming a higher-level structure. This duality

makes it possible to identify two interacting evolutionary

processes - one at the local level, and another at the inter-

island level. Such perspective makes it easier to understand

the dynamics of IMs and provides guidance for setting IMs

parameters.

The paper is organized as follows. After this introduction,

a short background on IMs is given in section II. Section III

describes experimental details. In section IV we discuss the

two levels of evolution. After we get a better understanding

of this perspective, in section V we show how this viewpoint

may be used for making various design decisions. In partic-

ular we explain how to set up the number and size of islands

and how those decisions interact with the choice of local EA.

The paper finishes with a discussion and conclusions.

II. BACKGROUND

Island models were initially studied in evolutionary bio-

logy. One of the first publications on the subject was a

Shifting Balance Theory by Wright [1]. In computer science

distributed EAs were both studied in theory and verified

in practice. A good background introduction was given in
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[2]. A short review was also included in our previous paper

[3]. Below we mention a few studies relevant to the design

decision guidelines developed in this paper.

Cantú-Paz developed a model for population sizing based

on an analysis of building blocks supply and decision [4].

Cantú-Paz and Goldberg also compared isolated runs of small

populations with single runs of a big population in [5],

generally concluding the advantage of the latter, but with

some exceptions.

Whitley et al. analyzed the behavior of IMs on linearly

separable problems and concluded that IMs are useful if

simply increasing population size in an EA does not help

[6].

Fernández et al. studied the number and size of sub-

populations using a genetic programming approach [7]. They

found that comparing to isolated setups, interaction between

islands improves the results considerably and smaller islands

(in bigger quantity) can be used. The total number of

individuals required were highly dependent on a particular

domain.

III. EXPERIMENTAL SETUP

In this section we describe a certain IM implementation

used in various experiments later. Unless explicitly stated

otherwise, we use the parameter values given below.

A default model with N = 10 identical islands of size

M = 10 individuals (described as NxM model) is used.

Generations are synchronized and migrations are occurring

every migration interval i = 10. Instead of specifying a

constant number of migrants we use a migration probability

α = 0.1 applied to each individual. Such approach allows us

to experiment in general with migration ratios different than

fractions resulting from an island size.

We use a dynamic full topology, which means that each

time a migration is about to occur, a single target island for

migrants is chosen randomly out of all islands. A similar

approach was used in the literature [7]. Dynamic topologies

let us compare setups with different number of islands and

constant α in a fair way, because the total number of

migrants remain constant. We use a random migration policy,

that is, we choose emigrants randomly and replace random

individuals in the target islands.

Two different EA setups are used, called EA-1 and EA-2

[8]. EA-1 has weaker selection using a binary tournament

parent selection, no survival selection and non-overlapping

generations (similarly to GA setups). EA-2 has stronger

selection using a uniform stochastic parent selection, a

truncation survival selection, overlapping generations, and a

brood ratio of 1.0 (similarly to (µ + λ) ES setups, where

µ = λ). Both recombination and mutation are used. For



recombination, uniform crossover is always used. Mutation

is performed at a 1/L ratio. It is either bit-flip mutation for a

binary representation, or a non-adaptive Gaussian mutation

with σ = 0.01% of each appropriate domain range (quite

small) for a real-valued representation.

Maximal fitness is the best fitness value in any island in all

generations. To report the maximal fitness, simulations are

run until the whole system converges, if needed until 2000

generations. For all measures an average of 60 runs (with the

same configuration) is reported. This number of experiments

results in small confidence intervals, and therefore we do not

plot them in charts to avoid visual cluttering.

IV. TWO LEVELS OF EVOLUTION

In this section we focus on the two levels of evolution in

IMs, and suggest that they are to some extent independent.

Since the local-level evolution inside islands is better un-

derstood, we mainly discuss the importance of global-level

mechanisms.

Islands often converge quickly and represent areas around

single individuals. With N islands this results in a “popu-

lation” of N “individuals”. Local EAs play a function of

(directed) mutation at the global scale. Migrations between

two islands result in better individuals surviving, so they

correspond to selection. A recombination of individuals from

two islands (after migration) that creates a novel solution may

be treated as a recombination of islands.

A. Diversity measures

We can measure diversity of individuals at both levels of

evolution. Interaction between these levels will be reflected

in changes to appropriate diversities.

1) Local diversity: Local diversity is computed in a way

analogous to a standard EA approach. We compute standard

deviation of genotypes (they are fixed length) [9] and divide

by
√

L for normalization. For the i-th island, the centroid ci

can be computed by the following formula (please note that

we operate on vectors)

ci =

∑M

j=1 xij

M

and the diversity is computed by

di =

√

∑M

j=1 ‖xij − ci‖2

LM

where M is the number of individuals, L is the length of

genotypes, xij is the j-th individual in the i-th island. For

binary genotypes, we treat their alleles as 1.0 and 0.0 (and

one can speed up computation by appropriately regrouping

ones and zeros). Diversity inside each island may differ, but

we generally report an average local diversity dL =
P

i
di

N
.

2) Inter-island diversity: Analogously to the local diver-

sity, we could compute a global one, dG, using individuals

from all islands. However, instead of looking at the total

variation of all individuals in the system, we can analyze

only the diversity between populations, or more precisely

between their centroids. This approach reflects the diversity

of the global-level evolutionary process. Such inter-island

diversity is defined by

dP =

√

∑N

i=1 ‖ci − c‖2

LN

A standard analysis of variance lets us divide the total vari-

ance (global diversity) into “within islands” (local diversity)

and “between islands” parts (inter-island diversity)

N
∑

i=1

M
∑

j=1

‖xij − c‖2 =

N
∑

i=1

M
∑

j=1

‖xij − ci‖2 +M

N
∑

i=1

‖ci − c‖2

The left hand side is from definition equal to LNMd2
G

and the first component of the right hand side is equal to

LM
∑

i d2
i . Therefore the inter-island diversity dP is equal

to

dP =

√

LNMd2
G − LM

∑

i d2
i

LNM
=

√

d2
G −

∑

i d2
i

N

Assuming that islands on average have similar local di-

versities (as it should be with homogenous islands), we can

approximate
P

i
d2

i

N
≈ d2

L, and so dP ≈
√

d2
G − d2

L.

B. A growth of inter-island diversity

Similarly to a local evolution, diversity is also important

at the global level, i.e., islands should differ from each

other. The initial source of both local and global diversity

is stochasticity. All islands are usually initialized using the

same procedure and use the same EA, but due to their

finite sizes, random initialization and stochastic sampling

they follow different evolutionary paths. The initial random

state makes inter-island diversity relatively low. However,

due to local evolution focusing on different suboptimal peaks,

inter-island diversity grows quickly (please compare diversity

charts later).

C. Spreading and selection of solutions

Shifting Balance Theory (SBT) explained a benefit of dis-

tributed search and spreading good solutions among islands.

This behavior corresponds to a selection of better islands and

is to much degree independent from the local search, which

may but does not have to improve solutions. In fact SBT

suggests random drift as the main lower-level mechanism.

Spreading solutions is useful in finding peaks of multi-modal

functions, specially if they are located in an irregular way.

Let us create a function IM1, which consists of one wide

low peak and one narrow and high peak (see Fig. 1). The

function is defined over [0, 1]2 and the formula is
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Fig. 1. Selected functions used in this paper

IM1(x1, x2) = max(0,−(2x1 − 1)2 − (2x2 − 1)2 + 1,

−(5(x1 − 1))2 − (5(x2 − 1))2 + 1.25)

A single population running on this landscape would most

of the time converge to the suboptimal (wide) peak. However,

if we used a set of populations, a few of them would converge

to the high peak. If in addition migration was used, this

optimum would spread over in the whole system. In Fig.

2 we show the mean best fitness achieved with a constant

island size M , and a growing number of islands N . Bigger

N gives a better search ability and is a reason for fitness

improvement. For comparison, results from experiments with

a panmictic (single-population) model are also drawn.

A more exploitative EA-2 obtains better results which

may mean a focus put on global evolution, at the cost of

local exploration. A more explorative EA-1 means more local

exploration, from which however the global process does not

benefit and it is more difficult to spread solutions.
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Fig. 2. Spreading solutions becomes easier with bigger N . IM1 function.

D. Recombination of solutions

Due to inter-island diversity various individuals survive

in their niches. Many engineering problems have modular

solutions and such individuals can optimize different aspects

of a solution. This in turn may occur useful later after recom-

bination. Local interaction of individuals, due to an earlier

convergence of the islands and evolution after migration may

effectively cause an island to converge to a combination of

previously known solutions. Such process can be treated as

a higher-level “recombination” of islands.

Let us define a function IM2 (see in Fig. 1) over [0, 1]2

by the following formula

IM2(x1, x2) = max(0,−x2
1 − (

x2 − 1

2
)2 + 1,

−(
x1 − 1

2
)2 − x2

2 + 1,

−(30(x1 − 1))2 − (30(x2 − 1))2 + 1.25)

It is highly unlikely that the highest peak is found ran-

domly, so individuals representing the two lower peaks need

to be recombined. Since a single island will most likely

converge to either one or another, the probability of a

successful recombination grows with a higher number of

islands, as shown in Fig. 3.
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Fig. 3. Recombining solutions becomes easier with bigger N . IM2 function.

E. Interaction between global and local evolution

It is well understood that migrations increase local diver-

sity. However, such increase is very different from the effects

of simply increasing exploration with a higher mutation or

recombination rate. This is because it is not random and

occurs at a cost of the inter-island diversity, as will be seen

in diversity charts. This process keeps increasing the local

diversity until the “reservoir” of the inter-island diversity

finally runs out.

The diversity increase is “selective”, that is it affects only

those loci which had different alleles in migrants and locals.

In this way the global-level evolution serves as a first stage

of search, fixing certain loci. The local evolution, by mixing



migrants and local individuals focuses on details and parts

of solutions that still need optimization.

While the above mechanism is the most expected, there

exist problems deceptive for IMs, for which the interaction

between the two levels of evolution is harmful. In the rest of

this section we will show examples of such functions.

One such possibility are functions/problems which have

various “paths” to reach the global solution, and for which

mixing solutions from different paths creates stable but sub-

optimal solutions (a “trap”). With bigger N the probability

that islands choose different paths and get trapped after

migrations is higher.

Let us define a function IM-Trap, which operates on binary

genomes and returns the greater of two numbers: the number

of consecutive zeros starting from left or the number of

consecutive ones starting from the right. In addition there

is also a “trap” in the form of a sub-optimal, high value

returned if there is simultaneously a block of zeros from the

left and a block of ones from the right, of certain lengths.

The IM-Trap formula is

left(a) = max
i=0...L

{i : ∀j 1 ≤ j ≤ i ai = 0}

right(a) = max
i=0...L

{i : ∀j 0 ≤ j ≤ i − 1 aL−i = 0}

IM-Trap(a) =











0.9 · L if left(a) > L
4

and right(a) > L
4

max{left(a), right(a)} otherwise

This is an example of a situation when the local evolution

might solve a problem, but the global process disturbs

achieving this goal. If mixing is very low (and there is hardly

any inter-island evolution), a single island may discover

the global optimum before islands get trapped due to an

exchange of individuals. If mixing is very high (and inter-

island evolution converges fast), islands may unify and follow

the same path to the global optimum. If however mixing

is moderate (and inter-island evolution is present), building

blocks for the trap will be found in different islands, and

then mixed together.

In Fig. 4 we show the results of simulation for various

N , using EA-2 (for EA-1 different parameter settings would

have to be used). As expected, using more islands results in

a worse performance, even though we do not change the size

of islands, so more computational resources is used. There is

again a slight improvement for N > 5, as a result of either

effectively sparser interaction between islands (as we use a

dynamic topology) or simply much more individuals in the

system.

Another example of a problem difficult for an IM is

one in which local-level evolution diminishes rather than

enhances inter-island diversity. With M → ∞ islands start

to behave more similarly to each other, following a theo-

retical evolutionary path. This results in a low inter-island

diversity creating similar partial solutions, which cannot be

recombined effectively. With smaller M stochastic effects
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Fig. 4. Increasing N for IM-Trap function worsens the performance

play much bigger role. In IMs drift may be desired, specially

that it may last only until next migration.

Let us define a function IM2’ (see in Fig. 1) over [0, 1]2

by a formula given below. It is qualitatively similar to IM2,

but one of the wide peaks is higher than another.

IM2′(x, y) =

{

3 if x, y > 0.999

max(x2(y − 1)2, 2(x − 1)2y2) otherwise

It is not likely that the global optimum will be found by

random sampling. Islands will more likely converge to the

higher of the sub-optimal peaks and the tendency becomes

stronger with the growing size of the island. The best-in-

run fitness as a function of island size is shown in Fig. 5

and confirms our predictions. Additionally, we see that for

smaller islands more exploitative EA-2 achieves better results

but for bigger islands a higher exploration of EA-1 results

in better results.
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V. PARAMETER SETTINGS IN IMS

The understanding of the dual nature of IMs has implica-

tions on setting up IMs parameters and we will illustrate it



with two parameters: the number of islands and island size.

We will perform some more experiments with a function

IM6, defined over [0, 1]n and given by the following formula

IM6(x) =

n
∏

i=1

(x2
i − 0.45)2

0.3025

This function has local optima in each corner of the [0, 1]n

cube, and the global optimum in (1, . . . , 1) with a value of

1. IM6 can be understood as a more complex version of

IM2 function. A two-dimensional version is shown in Fig.

1. Multiplication used in the formula causes deep valleys

in the landscape and therefore mutation-based improvement

is highly unlikely. The easiest way for an EA to reach the

global optimum is through a combination of partial solutions.

Thanks to a real-valued representation, parents’ genomes are

mixed easily, and each gene can be treated as a module. Such

setup lets us study the behavior of both local and global

processes of IMs.

A. The number of islands

As already discussed, the number of islands N decide

about how many areas the system converges to (or the size of

“population” at the global level). Assuming that each island

quickly converges, N is obviously the upper limit on the

number of areas simultaneously analyzed in the system. If the

number of islands is too small, it may be difficult for an EA

to find solutions for modular or hierarchical functions that

require a combination of multiple partial solutions together.

Not surprisingly experiments with the IM6 function and

different number of N show that increasing the number of

islands increases the maximal fitness in the run. Increasing

N is useful until it reaches a level when the global optimum

is usually found. Increasing N further may speed up to some

degree the convergence (higher chance that one of them

will find the optimum and spread it), but generally seems

questionable. This is shown in Fig. 6. We have used M = 50.
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Looking at diversity plots gives us some more insight. In

Fig. 7(a), 7(c), 7(e) and 7(c) we see that bigger N results in a

higher inter-island diversity. The inter-island diversity is then
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Fig. 7. Inter-island and local diversity with various N , IM6 function, EA-1

gradually “transformed” by migrations into local diversity, as

seen by drops in its value occurring every migration interval.

In Fig. 7(b), 7(d), 7(f) and 7(h) we see an expected repeated

increase in local diversity due to migrations. We also see that

for bigger N the local diversity is maintained longer. This

may be counter-intuitive, because the size of islands did not

change. However, a higher inter-island diversity for bigger

N “helps” islands maintain their local diversity longer.

B. Island size

We have already seen that bigger M may have a negative

impact on the global-level evolution. In the same time, it

makes the local-level evolution produce better results, mainly

due to better local exploration and a smaller impact of drift

(similarly to a standard singe-population EAs).

Small islands converge fast and are responsible for the

more local aspect of search, whereas the inter-island evo-

lution operates at the global level. If the domain requires

a lot of local improvements however, or is deceptive with

regard to details, bigger islands may be needed. Increasing



the island size, there is more space and time until con-

vergence for storing and mixing genes coming from other

islands and individuals. Such situation seems favorable for

modular/hierarchical functions, where mixing sub-solutions

is important.
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In Fig. 8 we see that for IM6 function increasing the

island size has positive effect on the performance. Inter-island

diversity chart is shown in Fig. 9. As expected, in all cases

migrations cause a temporary decrease in this diversity. What

is interesting is that for bigger islands we observe a further

decrease in periods between migrations, and for smaller

islands we observe an increase, which behavior ultimately

results in a longer period of high diversity. This suggests

that in one case the effects of migration are enhanced (inter-

island diversity is further diminished, presumably by either

migrants or locals dominating the other), and in the other

the effects are diminished (inter-island diversity grows back,

which suggests that the islands remain different, so migrants

genes must have not survived). A faster drop in diversity

is correlated with a higher maximal fitness values achieved

for big islands. Smaller islands resulted in worse fitness

of individuals, and smaller differences in fitness between

individuals might caused that migrants were rarely domi-

nating the target islands. Even though smaller islands seem

to maintain diversity longer, it is probably just an artifact

resulting from no fitness improvement.

Nevertheless, again we observe a transition of diversity

from the global to the local level. Initially, smaller islands

converge faster, and bigger ones maintain diversity. After a

few migration intervals though, in all cases local diversity

drops considerably. It is then small islands for which a high

inter-island diversity keeps increasing the local diversities

much longer.

C. The interaction between the number and size of islands

If the total number of individuals N ·M is limited, island

size is coupled with the number of islands. How should one

split individuals in such case to maximize the solving ability

of an IM?

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 400 300 200 100 0

generations

(a) 10x5 IM, inter-island diversity

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 400 300 200 100 0

generations

(b) 10x5 IM, local diversity

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 400 300 200 100 0

generations

(c) 10x20 IM, inter-island diversity

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 400 300 200 100 0

generations

(d) 10x20 IM, local diversity

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 400 300 200 100 0

generations

(e) 10x50 IM, inter-island diversity

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 400 300 200 100 0

generations

(f) 10x50 IM, local diversity

Fig. 9. Inter-island and local diversity with various M , IM6 function, EA-1

Previous analysis suggests that increasing N favors the

inter-island evolution and increasing M favors the local

evolution. Therefore, to keep a balance, islands cannot be

too small, but also there cannot be too few of them. There is

some middle ground, where the optimum is reached. Where

exactly it is, it depends both on a particular problem (the

difficulty at finding and combining sub-solutions) as well as

the EAs used on islands.

In Fig. 10 we show some results for the IM6 function.

For both EA-1 and EA-2 setups we see that a large number

of relatively small islands yield the best results. Comparing

between EA-1 and EA-2, the more exploitative EA-2 is able

to effectively evolve solutions with smaller islands. With

stronger selection small islands converge very fast anyway,

so a minimal M is probably a better choice, allowing for

maximizing N and focusing on inter-island evolution. A

more explorative EA-1 apparently requires bigger islands for

local evolution. Note that for the islands of size one local

evolution becomes a random walk for EA-1 (non-ovelapping

generations) and a stochastic hill-climbing for EA-2.

Hierarchical if-and-only-if (H-IFF) is the original function

used by Watson [10]. It operates on binary genomes. Evalua-

tion procedure checks whether gene blocks of length 2, 4, 8,

. . . , 2log
2
(L) consist of all 1s or all 0s. Only blocks starting at

positions resulting from composing proper two subblocks of

lower level are checked. Each such block may contribute to

fitness. Longer blocks can contribute only if their sub-blocks

also contributed (were homogeneous). Each next level has
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Fig. 10. Maximal fitness when keeping N · M constant, IM6 function.

twice less potential blocks, but its weight is doubled, so it

may have the same contribution to the general fitness. H-

IFF is a hierarchical function and requires improvement of

solutions through combining modules at multiple levels of

generality.

In Fig. 11 we show results with a H-IFF function [10].

We used 64 bits and a 0.015 mutation rate. Again EA-2

shows better results, with an exception for setups with a

few big islands – which matches previous observations. A

stronger selection does not harm small islands that are about

to converge fast anyway. However, in the case of a few big

islands selection must be weaker so that local evolution takes

over the task of finding good solutions.
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Finally, in Figure 12 we show results with four other multi-

modal functions often used as test functions in literature:

Rastrigin, Rosenbrock, Schwefel and Griewangk functions.

Please note that these are minimization problems. Their

formulas are given below.
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Rosenbrock(x) =

n
∑

i=2

(100(xi − x2
i−1)

2 + (1 − xi−1)
2)

Schwefel(x) =

n
∑

i=1

−xisin(
√

|xi|)

Rastrigin(x) = 10n +
n

∑

i=1

(x2
i − 10cos(2πxi))

Griewangk(x) = 1 +

n
∑

i=1

x2
i

4000
−

n
∏

i=1

cos(
xi√

i
)

These experiments confirm that the best fitness is usually

achieved for many small islands. One must be however care-

ful of a sudden drop in performance when islands become

too small. Not surprisingly, results for extreme 100x1 setups

often lay far outside the charts’ boundaries.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have shown that adopting a two-level

perspective on IMs allows for a better understanding of their

behavior and provides guidance for setting IMs parameters.

By understanding the interaction between local processes

operating inside islands and global evolutionary process at

the inter-island level, a better understanding of the overall

behavior of IMs is obtained.

An important aspect of this interaction was obtained by

analyzing diversity changes, which illustrated how IMs first

“accumulate” inter-island diversity, and then slowly “release”

it to help the local-level evolution. Because the whole process

occurs gradually, each individual has a better chance to

contribute to evolution, unlike in single-population models

where a fast decrease of diversity occurs. Examples of when

the two levels of evolution disturb each other were also

shown.

Both the global and the local processes, while gener-

ally complementary, may contribute with different strength



toward the overall result. A proper balance between the

two levels allows for improving performance. Understanding

their dynamics for a given problem, helps us correctly set

IMs parameters. Below we summarize concrete guidelines

resulting from our experiments.

The number of islands affects evolution mainly at the

global level, and the size of islands affects local evolution.

With a fixed budget for evaluations these parameters are

coupled. Contrary to a standard approach of setting up a few

big islands, we saw that many small islands may be more

beneficial. An N = M balance seems reasonable, giving

equal chances to both levels of evolution. Fixation in islands

is not a big problem any more, because migration brings

local diversity up again, and in fact it is the inter-island

evolution that may be more sensitive, because there is no

standard mechanism effectively increasing its diversity back.

For simpler functions even a N > M setup may occur the

best. Note that technically nothing prevents from setting up

more than one island on a single machine.

Selection pressure plays an important role too, and the

NxM setup should be correlated with a proper choice of the

island EA. We have shown that more exploitative EA requires

using more islands which can be smaller. In the view of the

two-level model, this can be explained by global evolution

becoming responsible for a major part of the exploration task.

A more explorative EA requires bigger islands, but possibly

fewer of them. In such case, because local evolution is carried

out by a more balanced EA, global evolution only serves to

exchange bigger parts of solutions.

Although not studied directly in this paper, the two-level

evolution approach helps us also predict a relation between

migration level and required island EA. A higher level

of migration (bigger migrations, smaller migration interval,

denser topology, stronger migration policy) results usually

in a faster global convergence. To keep the evolvability at

the global scale, this convergence should be opposed by

an increased global exploration. This in turn means that

populations should either converge to new individuals or

simply evolve into new regions. Thus local evolution should

be more explorative, which can be achieved by a weaker

selection pressure in islands.

A smaller level of migration (smaller migrations, longer

migration intervals, sparser topology, weaker migration pol-

icy) means a slower convergence at the global scale. This

keeps inter-island diversity higher and thus more exploitation

is allowed at the global scale. Islands may dominate others in

the result of migration and we may use a stronger selection

pressure in islands.

Finally, one must remember that we have experimented

with very simple functions, and for more complex domains

significant amount of resources for “local” improvement may

be required – and the global scale may have a less significant

function of mixing a few partial solutions. The methodology

shown in this paper was to first understand the dynamics

of the two levels of evolution, and then appropriately set up

parameters. This methodology should help in deciding proper

values even for quite different domains.
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