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Abstract— Ensuring  the  security  of  computers  is  a  non- 
trivial  task,  with  many  techniques  used  by  malicious  users 
to  compromise these  systems.  In  recent  years  a  new  threat 
has emerged in the form of networks of hijacked zombie 
machines used to perform complex distributed attacks such as 
denial of service and to obtain sensitive data such as password 
information. These zombie machines are said to be infected with 
a ‘bot’ - a malicious piece of software which is installed on a 
host machine and is controlled by a remote attacker, termed the 
‘botmaster of a botnet’. In this work, we use the biologically 
inspired Dendritic Cell Algorithm (DCA) to detect the existence 
of a single bot on a compromised host machine. The DCA is an 
immune-inspired algorithm based on an abstract model of the 
behaviour of the dendritic cells of the human body. The basis 
of anomaly detection performed by the DCA is facilitated using 
the correlation of behavioural attributes such as keylogging and 
packet flooding behaviour. The results of the application of the 
DCA to the detection of a single bot show that the algorithm 
is a successful technique for the detection of such malicious 
software without responding to normally running programs. 

 
I.  INTRO DUCTION  

 

Computer systems and networks come under frequent 
attack from a diverse set of malicious programs and activity. 
Computer viruses posed a large problem in the late 1980’s 
and computer worms were problematic in the 1990s through 
to the early 21st Century. While the detection of such worms 
and viruses is improving a new threat has emerged in the 
form  of  the  botnet.  Botnets  are  decentralised, distributed 
networks of subverted machines, controlled by a central 
commander, affectionately termed the ‘botmaster’. A single 
bot is a malicious piece of software which, when installed on 
an unsuspecting host, transforms host into a zombie machine. 
Bots can install themselves on host machines through sev- 
eral different mechanisms, with common methods including 
direct download from the internet, through malicious files 
received as emails or via the exploitation of bugs present in 
internet browsing software [15]. 

Bots  typically  exploit  traditional  networking  protocols 
for the communication component of their ‘command and 
control’ structure. Such variants of bots IRC (Internet Relay 
Chat) bots, HTTP bots and more recently Peer-to-Peer bots. 
In this research we are primarily interested in the detection 
of IRC bots as they appear to be highly prevalent within the 
botnet community, and seemingly little research has been 
performed within this area of computer security. IRC is a 
chat based protocol consisting of various ‘channels’ to which 
a  user  of  the  IRC  network  can  connect.  Upon  infection 
of  a  host,  the  bot  connects  to  the  IRC  server  and  joins 
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the specified channel waiting for the attacker’s commands. 
The bot is programmed to respond to various commands 
generated by the attacker through a Command and Control 
(C&C) structure using the IRC protocol [13]. In addition to 
the flexibility offered by IRC in the management and control 
of bots, this protocol is ideal for such attackers as it provides 
a high degree of anonymity for the attacker/botmaster. In 
early implementations, bots were used to perform distributed 
denial  of  services  attacks  (DDoS)  using  a  flood of  TCP 
SYN, UDP or ICMP ‘ping’ packets in an attempt to over- 
load  the  capacity  of  computing  resources.  More  recently 
bots are developed complete with keylogging features for 
closely monitoring user behaviour including the interception 
of sensitive data such as passwords, monitoring mouse clicks 
and the taking of screenshots of ‘secure’ websites [11]. 

In  this  paper  we  focus  on  the  detection  of  a  single 
bot  formulated  as  a  host-based  intrusion  detection  prob- 
lem, and avoids the technical problems of administrating a 
highly infective network within an academic environment. 
To perform this research, we rely on principles of ‘extrusion 
detection’ [2] where we do not attempt to prevent the bot 
from gaining access to the system, but we detect it as it 
attempts to operate and subvert the infected host. In addition 
to the monitoring of potential keylogging activity through 
keystroke analysis, network information is also incorporated 
into the implemented method of detection. 

The algorithm used for the detection of a single active bot 
is the immune-inspired Dendritic Cell Algorithm (DCA) [9]. 
This algorithm is a ‘2nd Generation’ Artificial Immune 
System (AIS), and  is  based on  an  abstract model of  the 
behaviour of dendritic cells (DCs) [16]. These cells are the 
natural intrusion detection agents of the human body, whom 
activate the immune system in response to the detection of 
damage to the host. As an algorithm, the DCA performs 
multi-sensor data fusion on a set of input signals, and this 
information  is  correlated  with  potential  ‘suspects’  which 
we term ‘antigen’. This results in a pairing between signal 
evidence and antigen suspects, leading to information which 
will state not only if an anomaly is detected, but in addition 
the culprit responsible for the anomaly. Given the success 
of this algorithm at detecting scanning activity in computer 
networks [8] the DCA is a good candidate solution for the 
detection of a single bot. 

The  aim  of  this  paper  is  to  apply  the  DCA  to  the 
detection  of  a  single  bot  and  to  assess  its  performance 
on  this  novel  problem  area.  For  these  experiments  the 
basis of classification is facilitated through the correlation 
of  malicious activities such as  keylogging, SYN or  UDP 
flooding attacks, anomalous file access and potential bot- 
related communications. Our results show that correlating the 



 
different behaviours exhibited by a single bot can enhance the 
detection of malicious processes on the system to determine 
the presence of a bot infection and to identify the processes 
involved in the bot’s actions. As part of this investigation 
we also introduce a more sophisticated analysis method for 
the DCA which may give an improved performance than 
the anomaly coefficient method described in Greensmith et 
al. [8]. 

This paper is structured as follows: Section II contains 
background information describing the DCA algorithm. Sec- 
tion III discusses the existing bots detection techniques. We 
present our methodology of bot detection in section IV. The 
conducted experiments are explained in section V. Our results 
and analysis are presented in section VI and we summarize 
and conclude in section VII. 

 
II.  THE DENDRITIC CELL ALGORITHM  

 

A. Algorithm Overview 

Artificial Immune Systems have been applied to problems 
in computer security since their initial development in the 
mid-1990’s. A recent addition to the AIS family is the DCA, 
which unlike other AISs does not rely on the pattern match- 
ing of strings (termed antigen), but instead uses principles 
from the danger theory to perform ‘context aware’ intru- 
sion detection. The danger theory is an alternative view of 
presenting the activation of the immune system. The danger 
theory states a response is generated by the immune upon the 
receipt of molecular signals which indicate that the body is 
in distress. DCs are sensitive to changes in the concentration 
of danger signals. In this work we have produced an abstract 
view of the essential features of DC biology, which are 
presented in this paper. For further information on the natural 
functions of DCs please refer to Lutz and Schuler [14]. A 
detailed description and formal analysis of the DCA is given 
in Greensmith et al. [9] 

In addition to the processing of signals, DCs consume 
any proteins within their locality and storing these antigen 
proteins for future use. DCs combine the evidence of damage 
with the collected suspect antigen to  provide information 
about how ‘dangerous’ a particular protein is to the host 
body. In addition to danger signals, two other sources of 
signal  are  influential  regarding  the  behaviour  of  DCs  - 
namely PAMPs (pathogen associated molecular patterns) and 
safe signals which are the molecules released as a result of 
normal cell death. 

In nature DCs exist in three states: immature, semi-mature 
and mature. The initial state of a DC is immature, where 
it performs its function of processing the three categories 
of input signal (PAMP, danger and safe) and in response 
produces three  output  signals.  Two  of  the  output  signals 
are used to represent the state of the cell, as the immature 
DC can change state irreversibly to either semi-mature or 
mature.  During  its  lifespan  collecting  signals,  if  the  DC 
has collected majority safe signals it will change state to 
a semi-mature state and all antigen collected by the cell is 
presented in a ‘safe’ context. Conversely, cells exposed to 

TABLE I 

SIGNA L  WEIGHT  VALUES  

 
csm semi mat 

PAMP 4 0 8 
DS 2 0 4 
SS 3 1 -6 

 
 
PAMP and danger signals transforms into a mature state, 
with all collected antigen presented in a dangerous context. 

To initiate maturity, a DC must have experienced signals, 
and in response to this express output signals. As the level 
of  input  signal  experienced  increases,  the  probability  of 
the DC exceeding its lifespan also increases. The level of 
signal  input  is  mapped  as  a  costimulatory  output  signal 
(CSM). Once CSM reaches a ‘migration’ threshold value, 
the cell ceases signal and antigen collection and is removed 
from the population for analysis. Upon removal from the 
population the cell is replaced by a new cell, to keep the 
population  level  static.  Each  DC  is  assigned  a  different 
migration threshold. This  results in  a  population of  cells 
whom sample for different durations and experience different 
input signal combinations. The transformation from input to 
output signal per cell is performed using a simple weighted 
sum (Equation 1) described in detail in [8] with the corre- 
sponding weights given in Table I, with values derived from 
preliminary experimentation. Pseudocode for the functioning 
of a single cell is presented in Algorithm 1. 
 

 
input  : Sorted antigen and signals (PAMP,DS,SS) 
output: Antigen and their context (0/1) 

Initilize DC; 
while CSM output signal < migration threshold do 

get antigen; 
store antigen; 
get signals; 
calculate interim output signals; 
update cumulative output signals; 

end 
cell location update to lymph node; 
if semi-mature output > mature output then 

cell context is assigned as 0; 
else 

cell context is assigned as 1; 
end 
kill cell; 
replace cell in population; 

Algorithm 1: DCA algorithm 
 
 

2 

Oj  = 
(

(Wijk  ∗  Si )  ∀ j, k (1) 
i=0 

where: 

•  W  is the signal weight of the category i 
•  i is the input signal category (i0  = P AM P , i1  = DS, 

and i2  = SS) 
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•  k  is the weight set index as shown in Table II (k  = 
1 . . . 5) 

•  j is the output signal value where: 

–  j = 0 is a costimulatory signal (csm) 
–  j = 1 is a semi-mature DC output signal (semi) 
–  j = 2 is a mature DC output signal (mat) 

 
B. Signals and Antigen 

In nature the three different categories of signal are derived 
from different sources and have different effects on DCs. 
To use such signals within a computational context, abstract 
semantic mappings between potential sources of input data 
and the signal categories are derived. The signal mappings 
are as follows, with the details of the signals used for the 
detection of bots given in section IV: 

•  PAMPs: A signature of abnormal behaviour. An increase 
in this signal is associated with a high confidence of 

for antigen type x and Yx  is the total number of antigen 
presented for antigen type x. 

In previous work [9], it has been shown that the MCAV 
for processes with low numbers of antigen per antigen type 
can be higher than desired. This can lead to the generation 
of false positives. In this paper we address this problem by 
producing an anomaly coefficient which is an improvement 
on the MCAV, by incorporating the number of antigen used 
to  calculate  the  MCAV.  This  improvement is  termed  the 
MCAV Antigen Coefficient or MAC. The MAC value is the 
MCAV of each antigen type multiplied by the number of 
output antigen per process and divided by the total number 
of output antigen for all processes. This calculation is shown 
in Equation 3. The MAC value also ranges between zero 
and one. As with the MCAV, the nearer the MAC value to 
one, the more anomalous the process. 
 

MC AVx  ∗  Antigenx
 

abnormality. 
•  Danger Signal: A  measure of  an  attribute which in- 

M ACx = nn 
i=1 

 

Antigeni 
(3) 

creases in value to indicate an abnormality. Low values 
of this signal may not be anomalous, giving a high value 
a moderate confidence of indicating abnormality. 

•  Safe Signal: A measure which increases value in con- 
junction with observed normal behaviour.This is a con- 
fident indicator of normal, predictable or steady-state 
system behaviour. This signal is used to counteract the 
effects of PAMPs and danger signals. 

In previous experiments with the DCA, the system calls 
invoked by running processes are used as antigen [7]. This 
implies that behavioural changes observed within the signals 
are potentially caused by the invocation of running programs. 
For the purpose of bot detection, antigen are derived from 
API function calls, which are similar to system calls. The 
resultant  data  is  a  stream  of  potential  antigen  suspects, 
which are correlated with signals through the processing 
mechanisms of the DC population. One constraint on antigen 
is that more than one of any antigen type must be used to 
be able to perform the anomaly analysis with the DCA. This 
will allow for the detection of which type of function call 
is responsible for the changes in the observed input signals. 
More details are given in Section IV-D regarding the mapping 
of antigen. 

 
C. Analysis 

Once all antigen and signals are processed by the cell pop- 
ulation, an analysis stage is performed. This stage involved 
calculating an anomaly coefficient per antigen type - termed 
the mature context antigen value, MCAV. The derivation of 
the MCAV per antigen type in the range of zero  to one is 
shown in Equation 2. The closer this value is to one, the 
more likely the antigen type is to be anomalous. 

 

Zx
 

where  MC AVx    is  the  MCAV  value  for  process  x and 
Antigenx  is the number of antigen processed by process 
x. 
 

III.  RELATED WORK: BOT S A N D THEIR DETECTION  

A. Bots 

The aim of a bot is to subvert a host machine for use by 
the central controller. In order to achieve this aim, each bot 
is armed with various methods to facilitate their malicious 
activities. To communicate with the bot commander, the IRC 
bot must connect to an IRC channel, where the bot is termed 
to have ‘membership’. Once a bot is installed and becomes 
active on a channel, it awaits commands from its controller. 
Bots frequently rely on the ability to perform keylogging. 
This is the means of intercepting and recording user activities 
such as keystroke typing. Keylogging represents a serious 
threat to the privacy and security of our systems as the 
keylogger can collect sensitive information from the user 
such as personal information, passwords and credit card 
numbers. The acquisition of this information can constitute 
identity theft and fraud. 

Another malicious activity is performing a denial of ser- 
vice  attack  by  sending numerous network packets  to  the 
remote host across the network, including both SYN and 
UDP packet flooding. SYN attacks are invoked when the 
controlling botmaster issues a SYN attack command to the 
bot and exploits the ‘3-way handshake’ of a TCP connection 
stream. The bot on the infected host sends a series of SYN 
packets to the target host, using modified packet headers 
to disguise the IP address of the infected host. The target 
host replies with a SYN ACK packet. The target host then 
waits to receive the corresponding ACK from the bot-infected 
machine. However, the bot never responds back because the 

MC AVx  = 
x 

(2) SYN ACK is sent to a random IP address as the bot had 
spoofed the IP address of the outbound packets. As a result, 

where MC AVx  is the MCAV coefficient for antigen type 
x, Zx  is the number of mature context antigen presentations 

multiple connection requests accumulate at the target host, 
resulting in the victim memory buffers become full so that it 



cannot accept further legitimate connection requests causing 
a denial of service, as the target is rendered unusable. In a 
similar manner, UPD floods are also used to slow down a 
target system to the point where further connections cannot 
be handled, by sending large number of UDP packets to a 
specified port on a remote host. 

In addition to the aforementioned attacks, the infection 
of a bot on a host machine seriously compromises the 
confidentiality of the data contained within the infected host. 
In effect, once a bot has infected a machine, it becomes 
under the control of the botmaster and can be subverted for 
whatever purpose the controller requires. 

 

B. Detection Techniques 

The majority of existing techniques for botnet detection are 
signature-based approaches, in a similar manner to many in- 
trusion detection systems. Such techniques frequently use the 
analysis of network traffic [4][5][6]. Although this approach 
is a useful mechanism for bot detection, it is impossible if 
the network packet data is encrypted. Freiling et al. [5][10] 
collect bot binaries by using a non-productive resource, such 
as a honeypot, to analyse bot traffic and collect useful 
information to  shut down the  remote control network by 
emulating bot activities. There are numerous problems with 
this approach. First, the non-productive resource needs to 
receive  activities  directed  against  it  in  order  to  analyse 
bot behaviour. In addition, emulating bots’ actions to join 
botnet community can be discovered if the botnet size is 
relatively small. To avoid these problems, our work focuses 
on monitoring API function calls. 

The  technique  used  by  Cooke  et  al.  [4]  performs  bot 
detection through the  analysis of  two  types  of  bot-based 
communications, namely bot-to-bot and between bots and 
their controllers. In the approach taken by Cooke et al., bot 
payloads are analysed using pattern matching of known bot 
commands and in addition examines a system for evidence 
of non-human characteristics. They conclude that bots can 
run on non-standard ports and that the analysis of encoded 
packets is very costly on high throughput networks. They 
determined that there are no simple characteristics of the 
bot communication channels that can be used for detection, 
which makes the detection of bots an interesting and difficult 
problem. They also discuss the approach of detecting bots by 
their means of distribution or attack behaviour by correlating 
data from different sources. While it is suggested in their 
work that correlation would be beneficial for the detection 
of a single bot, they did not provide information regarding 
how this correlation should be performed. To alleviate this 
problem, the DCA is applied to bot detection, with their 
suggestions further promoting the use of such correlation 
algorithms for this type of detection problem. 

A  alternative  method  for  detecting  bots  introduced  by 
Goebel  and  Holz  [6]  through  monitoring  IRC  traffic for 
suspicious IRC nicknames, IRC servers and  non-standard 
server ports. Such potentially suspicious packets are assessed 
using regular expressions to classify suspicious nicknames, 
resulting in a scoring function per packet. However, their 

approach can be overcome in numerous ways such as using 
hitlists which contain normal names or again, through the 
encryption of such vital information. 

Anomaly detection is  also  used  to  detect  the  presence 
of a bot [3], where deviations from a defined ‘normal’ are 
classed as an anomaly. In anomaly detection, behavioural 
attributes are often profiled to perform the assessment of 
potentially anomalous data. An approach for detecting bots 
using  behavioural  analysis  is  presented  by  Racine  [15]. 
This method is based on the discovery of inactive clients 
and their subsequent assignment to a network connection. 
Any active clients are then classified according to the IRC 
channel membership. This approach is successful in detecting 
idle IRC activity, but suffers from high false positive rates 
when applied to a scenario consisting of both active users 
and active bots. As with similar techniques, searching for 
such IRC patterns can be costly and difficult especially if 
the  packets  are  encrypted.  However,  we  believe  the  use 
of  behavioural monitoring is  a  promising method for the 
detection of bots, especially if such attributes can be used 
to correlate the behavioural changes with evidence of active 
IRC  bots.  This  provides us  with  a  strong  motivation for 
using an algorithm designed for the purpose of correlating 
behaviour with activity, as performed by the DCA. 

In summary the majority of techniques for the detection of 
a single bot are based on developing signatures and through 
the use of network packet header information. These tech- 
niques are limited - if packet streams are encrypted then these 
measures can be circumvented with relative ease. Current 
behaviour-based approaches are also limited, generating high 
rates of  false positives, which have the potential to slow 
down a system. We believe that using the DCA to perform 
this detection task will be successful as it contains elements 
of signature based detection through the use of the PAMP 
signals, which is combined with the anomaly-based approach 
represented  by  the  danger  signals.  In  addition  the  DCA 
can be used to correlate relevant behavioural attributes with 
programs potentially involved with a bot infection. 
 

IV.  METHODOLOGY  
 

A. Bot Scenarios 

For the purpose of experimentation two different types 
of bot are used, namely spybot and sdbot [1]. The spybot 
is a suitable candidate bot as it uses various malicious 
functionalities such  as  keylogging and  SYN  attacks. The 
sdbot is also used as it contains the additional functionality 
of a UDP attack. As a communication vessel, IceChat [12], 
an IRC client, is used for normal conversation and to send 
files to a remote host. To provide suitable data for the DCA 
a ‘hooking’ program is implemented to capture the required 
behavioural attributes and to intercept and capture function 
calls. To emulate real-world bot infections, three different 
scenarios are constructed including inactive (E1), attack 
(E2.1-2.3) and normal (E3) scenarios. The attack scenario 
consists of  three sessions: a  keylogging attack session, a 
flooding session and a combination session comprising both 



keylogging and packet flooding. The derived sessions include 
the following: 

•  Inactive bot (E1): This session involves having inactive 
bots  running  on  the  monitored  host  in  addition  to 
normal applications such as an IRC client, Wordpad, 
Notepad and CMD processes. Spybot is used for this 
session. The bot runs on the monitored victim host and 
connects to an IRC server where it joins a specified 
channel to await commands from its controller, though 
no attacking actions are performed by this idle bot. This 
results in minimal data, with the majority of transactions 
involving simple PING messages between the bot, the 
IRC server and the IceChat IRC client. 

• Keylogging Attack (E2.1): The sdbot is capable of 
intercepting keystrokes, upon receipt of the relevant 
command from the botmaster. Bots use various methods 
to perform keylogging - both techniques involves the bot 
intercepting API (Application Programming Interface) 
function calls. In this scenario, two methods of key- 
logging are used including the ”GetKeyboardState” and 
”GetAsyncKeyState” function calls. However, detection 
cannot be performed by examining these two function 
calls alone, as normal legitimate programs often rely on 
such function calls. For example, MS Notepad utilises 
GetKeyboardState as  part  of  its  normal  functioning. 
The DCA will be employed to discriminate between 
malicious and legitimate keystroke function calls. 

•  Flooding   Attack   (E2.2):   This   involves   performing 
packet flooding using the spybot for a SYN flood attack 
and the sdbot for a UDP attack. These flooding methods 
are designed to emulate the behaviour of a machine 
partaking in a distributed denial of service attack. As 
part  of  the  process  of  packet  flooding the  bots  rely 
heavily on socket usage, as part of the packet sending 
mechanism. Therefore to  detect these attacks, socket 
uses monitors are employed, with the exact nature of 
this data given in the forthcoming section. It is important 
to note that during the flooding attack no ‘normal’ 
legitimate applications are running. 

•  Combined Attack (E2.3): In this session, both keylog- 
ging and SYN flooding are invoked by the bot. As with 
session E1, spybot is used to perform this attack. Note 
that the two activities can occur simultaneously in this 
scenario. 

•  Normal Scenario (E3): The normal scenario involves 
transferring a file of 10 KB from one host to another 
through IRC client. Other applications such as Wordpad, 
Notepad, cmd and the hook program are running on the 
victim host. Note that no bots are used in this scenario as 
this is the normal/uninfected session used to assess the 
occurrence of any potential false positive errors made 
by the DCA. 

B. Data Collection 

It is assumed that either bot is already installed on the 
victim host, through an accidental ‘trojan horse’ style infec- 
tion mechanism. Therefore we are not attempting to prevent 

the initial bot infection but to limit its activities whilst on a 
host machine. The bot runs as a process whenever the user 
reboots the system and attempts to connect to the IRC server 
through IRC standard ports (in the range of 6667-7000). The 
bot then joins the IRC channel and waits for the botmaster 
to login and issue commands. 

For  the  purpose  of  use  by  the  DCA  an  interception 
program is implemented and run on the victim machine to 
collect the required signals and antigen data. These collected 
data  are  then  processed, normalised and  streamed  to  the 
DCA. In terms of the function calls intercepted, three specific 
types of function calls are used as signal and antigen input 
to the DCA. These function calls are as follows: 

•  Communication functions: socket,  send,  sendto,  recv 
and recvfrom. 

•  File access functions: CreateFile, OpenFile, ReadFile 
and WriteFile. 

•  Keyboard state functions: GetAsyncKeyState, GetKey- 
boardState, GetKeyNameText and keybd event. 

Invoking these function calls within specified time-window 
can represents a security threat to the system, but also may 
form part of legitimate usage. Therefore, an intelligent cor- 
relation method such as the DCA is required to determine if 
the invocations of such function calls are indeed anomalous. 

C. Signals 

Signals are mapped as a reflection of the state of the victim 
host. A major function of the DC is the ability to combine 
signals of different categories to influence the behaviour of 
the artificial cells. Three signal categories are used to define 
the state of the system namely PAMPs, DSs (danger signals) 
and SSs (safe signals), with one data source mapped per 
signal category. These signals are collected using a function 
call interception program. Raw data from the monitored host 
are transformed into log files which are then analysed by the 
DCA, following a signal normalisation process. The resultant 
normalised signals are in the range of 0 - 100 for the PAMP 
and DS with the SS having a reduced range, as suggested in 
Greensmith et al [8]. This reduction ensures that the mean 
values of each signal category are approximately equal, with 
preliminary experiments performed to verify this. 

In  terms  of  the  signal  category  semantics,  the  PAMP 
signal  is  a  signature based  signal. This  signal  is  derived 
from  the  rate  of  change  of  invocation  of  selected  API 
function calls used for keylogging activity. Such function 
calls include GetAsyncKeyState, GetKeyboardState, GetKey- 
NameText and keybd event when invoked by the running 
processes. To use this data stream as signal input, the rate 
values are normalised. For this process np   is defined as the 
maximum number of function calls generated by pressing a 
key within one second. Through preliminary experimentation 
it is shown that by pressing any key on the keyboard for a 
one second it generates np   number of calls. Subsequently 
np   is set to be the maximum number of calls that can be 
generated per second. The resultant normalised the PAMP 
signal based on this value by applying linear scale between 
0 and 100. 



 
The danger signal is derived from the time difference 

between receiving and sending data through the network. As 
bots respond directly to botmaster commands, a small time 
difference between sending and receiving data is observed. 
In contrast, normal chat will have a higher value of time 
difference between sending and receiving activity. As with 
the  PAMP  signal,  the  normalisation of  the  danger  signal 
involves calculating a maximum value. For this purpose nd  is 
the maximum time difference between sending a request and 
receiving a feedback. If the time difference exceeds nd , the 
response time is normal. Otherwise, the response time falls 
within the abnormality range and is scaled between 0 and 100 
through the use of this maximum value. We set up a critical 
range (0 to nd ) that represents a abnormal response time. 
The zero value is mapped to 100 (danger) and nd  is mapped 
to zero (not danger). If the response time falls within the 
critical value, it means that the response is fast and consider 
to be dangerous. 

Finally, the safe signal is derived from the time difference 
between two outgoing consecutive communication functions 
such as [(send,send),(sendto,sendto),(socket,socket)]. This is 
needed as  the  bot  sends  information to  the  botmaster or 
issues SYN or UDP attacks. In normal situation, we expect 
to  have  a  large  time  difference between two  consecutive 
functions. In addition, we expect to have a short period of 
this  action in  comparison to  SYN attack or  UDP attack. 
Therefore ns1  and ns2  are the maximum time differences 
between calling two consecutive communication functions. 
If the time difference is less than ns1 , the time is classified 
as abnormal. If the time difference falls between ns1  and 
ns2 , the time difference is classified as uncertain time. If 
the time difference is more than ns2 , the time difference is 
classified as safe time. These timings are scaled between 0 
and 10. Using statistical analysis, we notice that the mean 
value for bot to respond to the command is around 3.226 
seconds. Therefore, we set up a critical range for the safe 
signal. We divide our critical range into three sub-ranges. The 
first range is from zero  to ns1  where ns1 = 5. Any value 
that falls within this range is considered as an unsafe signal. 
The second range is where there is uncertainty of response. 
The uncertainty range is between ns1  and ns2 = 20. The 
third range is that the time difference is above ns2  and is 
considered as the confidence range. In this range, we are sure 
that the time difference between two consecutive function 
calls is generated as a normal response. 

 

D. Antigen 

The collected signals are a reflection of the status of the 
monitored system. Therefore, antigen are potential culprits 
responsible for any observed changes in the status of the 
system. In  order to  detect the bot, correlation of  antigen 
signals is required to define which processes are active when 
the signal values are modified. Any process executed one of 
the selected API function calls explained in section IV, the 
process id which causes the calls is stored as an antigen in 
the antigen log file. The more active the process, the more 
antigen it generates. Each intercepted function call is stored 

TABLE II 

WEIGHT  SENSITIVITY  ANA LY SIS  

 
signal WS1 WS2 WS3 WS4 WS5

csm 
PAMP
DS 
SS 

2
1 
2 

4 
2 
6 

4 
2 
3 

2
1 

1.5 

8
4 

0.6 

semi
PAMP
DS 
SS 

0
0 
1 

0 
0 
1 

0 
0 
1 

0
0 
1 

0
0 
1 

mat 
PAMP
DS 
SS 

2
1 
-3 

8 
4 

-12 

8 
4 
-6 

8
4 
-6 

16
8 

-1.2 
 
 
and is assigned the value of the process ID to which the 
function call belongs and the time at which it is invoked. 
Both signal and antigen logs are combined and sorted based 
on time. The combined file form a dataset which is passed 
to the DCA through a data processing client. The combined 
log files are parsed and the logged information is sent to the 
DCA for processing and analysis. 
 

V.  EXPERIMENTS  
 

The aim of these experiments is to use the DCA to perform 
detection of the bot. Various experiments are performed to 
verify this aim. Each experiment is repeated ten times which 
is sufficient, as the results from the repeated experiments 
produce a small variation on standard deviation by using 
Chebyshev’s Inequality. After collecting and processing the 
data, one dataset is selected randomly from each repeated 
experiments. The dataset is passed to the DCA using a data 
collection client. Each scenario (E1 - E3) is used for the 
purpose of experimentation with three hypotheses tested: 

1)  Null Hypothesis One: Data collected per dataset are 
normally distributed. The Shaprio Wilk test is used for 
this assessment. 

2)  Null Hypothesis Two: The MCAV/MAC values for the 
normal processes are  not  statistically different from 
those produced by  the  bot  process. This is  verified 
through the performance of a two-sided Mann-Whitney 
test, where p =0.95. 

3)  Null Hypothesis Three: Variation of the signal weights 
as described in Table II produces no observable dif- 
ference in the resultant MCAV/MAC values and the 
detection accuracy. Wilcoxon signed rank tests (two- 
sided) are used to verify this hypothesis. 

 
A. System Setup 

In all experiments, the parameters used are identical to 
those implemented in Greensmith and Aickelin [8], with the 
exception of the weights, as per Null Hypothesis Three. All 
experiments are performed in a small virtual IRC network 
on a VMWare workstation. The VMWare workstation runs 
under  a  Windows  XP  P4  SP2  with  2.4  GHz  processor. 
The  virtual  IRC  network  consists  of  two  machines,  one 
IRC server and one infected host machine. Two machines 
are sufficient to perform these experiments as one host is 
required to be infected (i.e. the monitored machine) and the 



TABLE III 

THE RESULT S O F T HE MCAV/MAC VA LUES  GENERATED FROM  DCA 

BA SED  O N SIGNA L W EIGHTS  O F TABLE  I. THE VA LUES  THAT  HAVE 

ASTERISKS  A RE  NOT  SIGNIFI CANT  

 
Expe- 
riment 

 
Process 

Output 
Antigen 

mean Mann-Whitney
P-Value 

MCAV MAC MCAV MAC
 

E1 
bot 
IRC 

35 
24 

0.0978 
0.0625 

0.0578 
0.0255 

 
0.1602* 0.0202

 
E2.1.a 

bot 
IRC 

1329.7 
59 

0.4736 
0.2881 

0.4542 
0.0122 

 
0.0002 0.0002

 

 
E2.1.b 

bot 
IRC cmd 
Notepad 
Wordpad 

1296.2 
464.9 

8.9 
239.4 
268.8 

0.5441 
0.5284 
0.7889 
0.6916 
0.8286 

0.3098 
0.1077 
0.0031 
0.0726 
0.0977 

 
0.0089 
0.0002 
0.0002 
0.0002 

0.0002 
0.0002 
0.0002 
0.0002

 
E2.2.a 

bot 
IRC 
cmd 

19206.3 
18 
9.8 

0.6047 
0.3441 
0.2889 

0.6038 
0.0003 
0.0002 

 
0.0002 
0.0003 

0.0000 
0.0000

 
E2.2.b 

bot 
IRC 

5790.5 
19 

0.4360 
0.2772 

0.4346 
0.0009 

 
0.0002 0.0000

 
E2.3.a 

bot 
IRC 

41456 
20.5 

0.8218 
0.5480 

0.8214 
0.0003 

 
0.0002 0.0000

 

 
E2.3.b 

bot 
IRC cmd 
Notepad 
Wordpad 

22446 
59.1 
9.7 

23.1 
233.6 

0.9598 
0.7802 
0.6300 
1.0000 
0.8801 

0.9461 
0.0021 
0.0003 
0.0010 
0.0090 

 
0.0000 
0.0002 
0.0001 
0.0002 

0.0002 
0.0002 
0.0002 
0.0002

E3 IRC 135.5 0.1136 0.1136 N/A N/A
 
 

other to be an IRC server to issue commands to the bot in 
question. 

 

VI.  RESULTS AND ANA LY S I S 

The results from the experiments are shown in Table III,IV 
and V. The mean MCAV and the mean MAC values for each 
process are presented, derived across the ten runs performed 
per scenario. 

 

A. Null Hypothesis One 

Upon the application of the Shapiro-Wilk test to each of 
the datasets, it was discovered that the resultant p-values 
imply that the distribution of scenarios E1, E2.1 and E3 are 
normal, with E2.2 and E2.3 not normal. Given these two 
rejections of the null, Null Hypothesis One is rejected. As a 
result of this, further tests with these data use non-parametric 
statistical tests such as the Mann-Whitney test, also using 
95% confidence. 

 

B. Null Hypothesis Two 

For all scenarios E1-E3, a comparison is performed using 
the  results  generated for  the  bot  versus  all  other  normal 
processes within a particular session. The results of this com- 
parison are presented in Table III. In this table, the computed 
p-values using an unpaired Mann-Whitney test are presented, 
with those results deemed not statistically significant marked 
with an asterisks. In experiment E1, significant differences 
do  not  exist  between the  resultant MCAV values for  the 
inactive bot and the normal IRC process, and so for this 
particular  scenario  the  null  cannot  be  rejected.  This  can 
be attributed to the fact that the total number of antigen 
produced by both processes is too small in number to give 

 
an accurate description of the state of the monitored host. 
This is supported by the fact that the MAC values differ 
significantly for this experiment. This implies that the MAC 
is a useful addition to the analysis of the data output from 
the DCA as it allowed for the incorporation of the antigen 
data, which can influence the interpretation of the results. 

Significant differences are shown by the low p-values pre- 
sented in Table III for experiments E2.1.a and E2.1.b for both 
the MAC and MCAV coefficient values, where the sample 
size is equal to ten. The differences are further pronounced 
in  the  generation of  the  MAC  values,  further  supporting 
its use with the DCA. We can conclude therefore, that the 
DCA can be used in the discrimination between normal and 
bot-directed processes and  that the  DCA is  successful in 
detecting keylogging activities. This trend is also evident for 
scenarios E2.2.a/b and E2.3.a/b, where the bot process MAC 
and MCAV are consistently higher than those of the normal 
processes, IRC and notepad inclusive. This information is 
also displayed in  Figures 1  and 2.  This implies that in 
addition to the detection of the bot itself the DCA can detect 
the performance of outbound scanning activity - further 
supporting the  experiments performed in  Greenmsith and 
Aickelin [8]. Therefore the null hypothesis can be rejected as 
in the majority of cases the DCA successfully discriminates 
between normal and bot processes, with the exception of E1. 
 
C. Null Hypothesis Three 
 

Tables IV and V include the results of the sensitivity 
analysis on the weight values for the bot process. The figures 
presented are  mean  values  taken  across  the  ten  runs  per 
session (E1-E2). An arbitrary threshold is applied at 0.5: 
values above deem the process anomalous, and below as 
normal. From these data, it is shown that changing the 
weights used in  the  signal processing equation has  some 
influence on the performance of the system. For example, in 
the case of session E2.1.a, weight set (WS) WS1 produces 
a MAC value of 0.09 for the bot yet produces a value of 
0.72 for WS5. This increase is likely to reduce the rate of 
false negatives. To further explore these effects, the resultant 
data are plotted as boxplots as the data are not normally 
distributed. To assess the performance of the DCA as an 
anomaly detector the results for the anomalous bot and the 
normal IRC client are shown for the purpose of comparison. 
For these boxplots, the central line represents the median 
value, with the drawn boxes representing the interquartile 
ranges. 

In Figure 3 the median MCAV values are presented, 
derived per session across the ten runs performed for each 
WS (n=50). For the bot process, (Figure 3(a)) the MCAV is 
low for session E1, in-line with previous results. For E1, 
variation in  the  weights  does  not  influence the  detection 
results, as this process has low activity and therefore does 
not generate any great variation in the signals. Therefore, 
without input variation, the output does not vary in response 
to changing the manner in which the input is processed. This 
is also evident in Figure 4(a) when using the MAC value. 



 

 
 

(a) Bot’s MCAV value using weight set (WS3) (b) IRC client’s MCAV value using weight set (WS3) 

Fig. 1.    The MCAV values generated by DCA based on the weights described on Table I 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Bot’s MAC value using weight set (WS3) (b) IRC client’s MAC value using weight set (WS3) 

Fig. 2.    The MAC values generated by DCA based on the weights described on Table I 
 
 

For all other sessions, much greater variation is observed 
upon weight modification, as shown by the large interquartile 
ranges produced for both MCAV and MAC values of the 
bot processes. While the similar trends are shown across 
the sessions in the MCAV of the IRC client, differences are 
evident for the MAC value. In Figure 4(b) it is evident that 
all sessions have low MACs for this process across all weight 
sets. Therefore as the weights are modified, there is a greater 
influence on the anomalous processes than on the normal 
processes. Should the arbitrary threshold applied to the MAC 
values be set at 0.2 as opposed to 0.5, then the performance 
of the DCA on botnet detection is good, producing low rates 
of false positives and high rates of true positives. 

To further explore this effect, an alternative plotting is 
presented in Figures 5 and 6. Here, each bar represents the 
results for each WS, derived from the ten runs per session 
(E1-E2 inclusive) totaling 70 runs per bar. As with Figures 3 
and 4 some influence is shown through weight modification. 

WS1 produced low MCAV and MAC values for both 
processes. This indicates that these weights, used previously 

with the DCA, are less suitable for this particular application. 
WS2 shows little improvement when compared to WS1, 
producing the lowest MCAV and MAC for the bot process. 
WS3 shows an improved performance, producing much 
higher MAC values for the bot process and very low values 
for the IRC client. WS4 produced even higher values for the 
bot process, whilst keeping the values low for the normal 
IRC client process. WS5 also produced high MCAV and 
MAC values for the bot, but the interquartile range of the 
normal process increased. This suggests that as the ratio of 
PAMP to safe signal weight for producing the mature output 
signal must be sufficiently small to avoid false positives, and 
sufficiently large to avoid potential false negatives. 

Finally, to verify these findings statistically, each set of 
results per  session per  weight are  compared exhaustively 
using the non-parametric Wilcoxon signed rank test. For each 
test performed the resultant p-value is less than 0.001. This 
allows us to conclude that modification of the weights has 
a significant effect on the output of the DCA when applied 
to this detection problem, and leads to the rejection of Null 



Expriment WS1 WS2 WS3 WS4 WS5
E1

E2.1.a 
E2.1.b 
E2.2.a 
E2.2.b 
E2.3.a 
E2.3.b

0.0288
0.0947 
0.2168 
0.5479 
0.2886 
0.8798 
0.9418

0.0495 
0.1882 
0.2355 
0.3155 
0.1764 
0.6342 
0.9306 

0.0578 
0.4543 
0.3098 
0.6038 
0.4345 
0.8214 
0.9461 

0.0671
0.5246 
0.3340 
0.9255 
0.5845 
0.9108 
0.9507

0.0810
0.7274 
0.4572 
0.9305 
0.9395 
0.9949 
0.9726

 

 
 

(a) Bot’s mean MCAV value (b) IRC client’s mean MCAV value 
 

Fig. 3.    The mean MCAV/MAC values generated by DCA using different signal weight values (WS1-WS5) 
 
 

 
 

(a) Bot’s mean MAC value (b) IRC client’s mean MAC value 
 

Fig. 4.    The mean MCAV/MAC values generated by DCA using different signal weight values (WS1-WS5) 
 

 
 

Hypothesis Three. 
 
 
 
TABLE IV 

TABLE V 

WEIGHT  SENSITIVITY A NA LY SIS FOR  T HE BOT ’S MAC VA L U E S 

WEIGHT  SENSITIVITY  A NA LY SIS  FOR  T HE  BOT ’S  MCAV VA LUES  

 
Expriment WS1 WS2 WS3 WS4 WS5

E1 
E2.1.a 
E2.1.b 
E2.2.a 
E2.2.b 
E2.3.a 
E2.3.b 

0.0484 
0.1030 
0.3823 
0.5488 
0.2995 
0.8802 
0.9553 

0.0834 
0.1964 
0.4123 
0.3119 
0.1770 
0.6345 
0.9443 

0.0978 
0.4736 
0.5440 
0.6047 
0.4360 
0.8218 
0.9598 

0.1140 
0.5477 
0.5861 
0.9269 
0.5863 
0.9112 
0.9641 

0.1377
0.7595 
0.8032 
0.9319 
0.9427 
0.9955 
0.9873

 
 

VII.  CONCLUSION A ND FUTURE WORK 

In this paper, we have applied the DCA to the detection 
of a single bot with three null hypotheses explored. It is 
shown that the DCA is capable of discriminating between 
bot and normal processes on a host machine. Additionally, 
the incorporation of the MAC value has a positive effect on 
the results, significantly reducing false positives. Finally, the 
modification of the weights used in the signal processing 

component  has  a  significant effect  on  the  results  of  the 
algorithm. It is concluded that appropriate weights for this 
application include high values for the safe signal weight 
which appears to be useful in the reduction of potential false 
positives without generating false negative errors. We now 
intend to apply the DCA to the detection of “peer-to-peer” 
bots, which pose an interesting problem as the use of peer- 
to-peer networks increases. In addition we aim to use the 
results  of  these  experiments to  further  our  understanding 
of the DCA, to ultimately enhance the performance of this 



 

 
 

(a) Bot’s mean MCAV value (b) IRC client’s MCAV value 
 

Fig. 5.    Affect of changing signal weights of the MCAV values on DCA detection performance 
 
 

 
 

(a) Bot’s MAC value (b) IRC client’s MAC value 
 

Fig. 6.    Affect of changing signal weights of the MAC values on DCA detection performance 
 
 

immune-inspired detection algorithm. 
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