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Abstract—This paper proposes an approach to the solution
of multi-objective optimisation problems that delivers a sin-
gle, preferred solution. A conventional, population-based, multi-
objective optimisation method is used to provide a set of solutions
approximating the Pareto front. As the set of solutions evolves,
an approximation to the Pareto front is derived using a Kriging
method. This approximate surface is traversed using a single
objective optimisation method, driven by a simple, aggregated
objective function that expresses design preferences. The ap-
proach is demonstrated using a combination of multi-objective
particle swarm optimisation (MOPSO) and the Simplex method
of Nelder and Mead, applied to several, standard, multi-objective
test problems. Good, compromise solutions meeting user-defined
design preferences are delivered without manual intervention.

I. INTRODUCTION

INCREASINGLY, in the engineering design process, the
prototyping stage is being replaced by computer modelling.

This is normally cheaper, allows a systematic exploration of
a wider range of scenarios and the possibility of optimisation
of the design. For example, mechanical engineering design
problems might require that components meet functional spec-
ifications and are also optimal in the sense of giving maximal
fatigue life [14]. Such problems can be solved by computing
the fatigue life, involving a finite element analysis of the
stress field followed by computation of the growth rate of
hypothetical pre-existing cracks under a given load regime.

In most real-world problems, an “optimal” solution involves
simultaneously satisfying several objectives. Minimizing cost
and risk while maximizing performance, maximizing strength
of a component while minimizing its weight, the goals are
often conflicting, and what is “optimal” subject to interpreta-
tion. Several approaches have been suggested to solve these
multi-objective optimisation problems.

Drawing on the existing depth of experience and algorithms
to solve optimisation problems with a single objective, the
design problem can be re-formulated as the problem of op-
timizing one of the objectives, perhaps that chosen as the
most critical, while the remaining objectives are applied as
constraints on the design parameters. While this may produce
an adequate compromise in some situations, where two or
more objectives are defined by the ultimate performance of
the model and the range of their possible values initially
unknown it can be difficult to formulate. It also becomes
awkward to readily find optimal values for several parameters
simultaneously.

If all the objectives are to be manipulated simultaneously,
three approaches can be identified [3]:
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• a priori specification of preferences relating to the objec-
tives;

• a posteriori selection of a particular solution from a
set, derived by the optimisation method, which defines
a trade-off surface or Pareto front;

• progressive specification of preferences, by interactive
dialogue with the optimisation method.

Of these approaches, the first found early, widespread
adoption because it again drew on the existing competence
in the solution of problems with single objectives. Typically,
some algebraic aggregation is made of the multiple objectives,
with weights specifying the design preferences, to form an ag-
gregate objective function (AOF) which is then solved using a
method suitable for single objective optimisation. The simplest
formulation of an AOF is a simple, weighted sum. However,
this has been demonstrated to have significant shortcomings
and, in fact, an inability to find solutions in regions of the
Pareto front that are non-convex. Koski regarded this difficulty
to be “well known” [7] and decades of research have been
devoted to its amelioration (see, for example, [9], [10], [15].)
The authors have experienced this difficulty first-hand when
trialling the approach for solution of a problem in the design
of dual-band antennas, where “middling” gain performance at
two frequencies is preferable to excellent performance at only
one, but impossible to find.

The third of the approaches outlined, that of an interactive
optimisation method, can be quite effective. It particularly
lends itself to problems in which the reduction of objectives
to numerical expression is difficult. However, it can be time-
consuming and impractical, in the sense of requiring the
frequent availability of a Decision Maker to supply preference
information over what may be long periods of execution.

Remaining is the method of populating, by some appropriate
method, the set of solutions defining the Pareto front. As
it places no extraneous demands on the formulation of the
multiple objective functions it has been widely adopted as
efficient methods for deriving the set of solutions have been
developed. It still has the drawback that it does not provide a
single, “optimal” solution. Instead it “half solves” the problem,
leaving the task of choosing a preferred solution, from what
may be a large number of proffered possibilities, to the
external Decision Maker. This is not an easy task. Indeed,
efforts have been made to simplify it by reducing the number
of solutions provided [8]. But if the problem involves a large
number of objectives, finding a single solution on what may
be a large and complex hypersurface becomes a significant
problem in itself: an optimisation problem.

Figure 1 shows the attainment surface obtained from opti-
misation of a problem in antenna design with three objectives.



Fig. 1. Attainment surface for three-objective problem in antenna design

This is a relatively simple surface, but demonstrates the
complexity of real-world problems compared to the artificially
simple test cases often considered. In the problem shown, f1
is to be minimised, while f2 and f3 are maximised. Finding
the particular solution corresponding to a desired trade-off, or
set of design preferences, is non-trivial.

This paper proposes an approach to the solution of this
difficulty, and demonstrates its use on several, standard, multi-
objective test problems. In essence, a conventional, population-
based, multi-objective optimisation method is used to provide
a set of solutions approximating the Pareto front; for the
purposes of this experiment a multi-objective particle swarm
optimisation (MOPSO) method [2] has been used. As the set
of solutions evolves, an approximation to the Pareto front is
derived using a Kriging method [5]. This approximate surface
is then traversed using a single objective optimisation method,
in this case the Simplex method of Nelder and Mead [13],
driven by a simple, aggregated objective function (AOF), and
finally a single, preferred solution is found.

II. APPROXIMATING THE PARETO FRONT

The first step is to provide an approximation to the Pareto
front. Population-based methods have proved very successful
at this task, and various forms have been developed. Their
operation is generally to sample the objective functions and
derive from the population a non-dominated set of Pareto-
optimal solutions which are then stored in an archive. Where
the number of objectives is M , this set of discrete points define
an (M − 1)-dimensional hypersurface, the attainment surface,
that approximates the Pareto front. The various methods then
use different means to progressively improve the set stored in
the archive.

For the MOPSO algorithm used, solution formulation begins
with the definition of a population, or swarm, of decision
vectors, denoted P t where t represents the generation. Each
i particle in the swarm has a position and velocity defined
in parameter space at time t as x = [x1, x2, ..., xn]T and
v = [v1, v2, ..., vn]T respectively. After each generation these
vectors are routinely updated using,

vt+1
i = wvt

i + c1R1(pt
i − xt

i) + c2R2(pt
g − xt

i) (1)

xt+1
i = xt

i + vt
i (2)

where w is generally a positive, constant, inertial term to
dampen the effects of the following accelerative terms, c1 and
c2 are positive weighting coefficients and R1 and R2 are ran-
dom numbers ∈ [0, 1]. In common with most population-based
methods, the PSO relies on an archive-like database of pareto-
optimal solutions which is updated after each generation in
order to maintain a pure set of non-dominated solutions. From
this archive the pt

g particle is chosen while pt
i is generally

some solution taken from the memory of the i-th particle. Both
positions contribute to determining the direction and velocity
of the particular particle. For a more detailed explanation of
the MOPSO algorithm the reader is referred to [11], [12].

The discrete points stored in the archive can provide only
a sampling of the current attainment surface. In the next step,
a single-objective optimisation method is used to traverse this
surface, and it may require objective function values for points
intermediate to those stored in the archive in the course of
its search. In order to reduce the computational overhead
of the use of the second optimisation method, surrogate
approximations are used for these interpolated points.

A. Interpolation of the Pareto Front

This method is not intended to be two, sequential steps, as
that would increase the time required to provide a solution.
Instead, the search for a single solution satisfying design
preferences is intended to proceed during execution of the
MOPSO algorithm. The passage of time allows a multi-
objective optimisation algorithm to build a progressively fuller
and more evenly distributed set of Pareto-optimal solutions. As
the set evolves, the search for the final, single solution will also
continue to refine its trial solution.

However, during execution the set available for use may be
incomplete or patchy, necessitating some form of interpola-
tion. Interpolation of unknown regions of the Pareto-optimal
hypersurface can be done using a variety of methods. Most
commonly encountered are low-ordered polynomial equations,
Radial Basis Neural Networks and Kriging methods (see, for
example, [16]). In this instance a Kriging formulation was
chosen. it was considered the most suitable method for approx-
imating deterministic sampled points as a Kriging output will
provide an exact interpolation at known points and a smooth
response through unknown regions. Mathematically expressed,
Kriging postulates a global model f(x) superimposed by
a realised, spatially-correlated, stochastic process Z(x) with
zero mean and a variance, s2, given by,

y(x) = f(x) + Z(x) (3)

Intuitively, f(x) approximates the parameter space while
Z(x) creates local deviations smoothing the interpolated data
across unknown regions of the Pareto-Front. In the work



presented here a constant global trend was assumed, implying
f(x) = β. This was estimated, along with the correlated
stochastic process, using a maximum likelihood heuristic. For
a full description and derivation of the Kriging formulation
the reader is referred to [5].

III. SEARCHING THE PARETO FRONT

Once some set of approximately Pareto-optimal solutions
and a method for interpolation of unknown values is available,
it is possible to traverse the generated hypersurface seeking a
solution that satisfies user-specified design preferences. It is
proposed this be performed using a secondary optimisation
search with a single objective. This single objective should
provide some expression of the user-specified design pref-
erences. A simple, weighted sum was considered sufficient,
contrary to the objections of Wilson et al. [16], since it need
only serve to express the design preferences. It is not called
upon to find all points necessary to define the Pareto front,
as that task is handled by the MOPSO algorithm. Therefore,
once the archive had been populated, and an approximation to
the Pareto-Front derived using the Kriging model, a single-
objective optimisation algorithm, the Simplex method, was
used to find the minimum of an (M-1)-Dimensional space
transformed using the augmented Tchebycheff function:

F = max(ω1f1(x), ..., ωMfM (x)) + ρ

M∑
i=1

ωifi(x) (4)

where ωi is the user defined scalar weight of the i-th objective
value, M was the number of objectives and ρ is a positive
constant, here set to 0.05. This function was chosen as the non-
linear component allows the traversing of non-convex regions
of the Pareto-Front [6]. The initial starting point of the Simplex
was chosen as the best known minimum of F among the
archive points. The individual objective functions were nor-
malised with respect to the maximum objective function values
found in the archive to prevent biassing of the objectives.

When a stationary point was identified by the Simplex
optimisation algorithm, its location in objective space was ver-
ified by evaluation of the original, multiple objective function
values using the coordinates of the point in parameter space.
The operation of the Simplex algorithm implicitly assumes
piecewise linearity and continuity of the Pareto front, and
a piecewise linear mapping between the hypersurface of the
Pareto front in objective space and the corresponding smooth
surface through the solution locations in parameter space.

IV. TEST FUNCTIONS

Three well known test functions were used in this work,
taken from [17]. All had the form:

f1(x) = x1

f2(x) = g(x) · h(f1, g)

where the choice of the h and g functions dictate the shape of
the Pareto-Front. The dimension of parameter space, N , was
5 for all test functions.

A. Convex

A Convex shaped Pareto front was derived when

g(x) = 1 +
9

N − 1

N∑
n=2

xn (5)

h(f1, g) = 1−

√
f1
g

(6)

B. Non-Convex

Conversely, a non-convex shaped Pareto Front was derived
when

g(x) = 1 +
9

N − 1

N∑
n=2

xn (7)

h(f1, g) = 1−
(
f1
g

)2

(8)

C. Discontinuity

Discontinuity in objective space, but not in parameter space,
was created using

g(x) = 1 +
9

N − 1

N∑
n=2

xn (9)

h(f1, g) = 1−

√
f1
g
− f1

g
sin(10πf1) (10)

V. COMPUTATIONAL RESULTS

Following are graphical representations of the results of
computational experiments using each of the test functions.
Figures 2, 6 and 10 show the attainment surfaces, the exper-
imentally achieved approximations to the Pareto fronts, for
convex, non-convex and discontinuous test functions, respec-
tively. Following each of these figures are three contour maps,
one for each, individually-weighted AOF, showing the AOF
on a two-dimensional slice through the parameter space. The
contour maps are marked with a “•” at the location of the
preferred solution found by the single-objective optimisation
pass, demonstrating the degree to which this search was able
to find a minimum of the weighted AOF.

An alternative to the proposed hybrid optimisation method
for a priori specification of design preferences, as outlined
in the introduction, is to use a single-objective optimisation
method directly with the specified AOF. As noted, this has
been found to experience difficulties but, as a point of com-
parison, a single objective particle swarm optimisation (PSO)
algorithm was run for each of the test cases, using equal
preference weights, i.e. ω1 = ω2 = 0.5. The PSO algorithm
used 10 particles, was allowed 100 iterations, and five different
runs were performed using different random seeds, for each
of the test cases. The best result obtained for each test case
is marked with a “⊕” and the median result of the five runs
with a “◦”, in each of Figures 4, 8 and 12. A summary of
the comparison between the hybrid and a priori results is
presented in Table I



TABLE I
COMPARISON OF RESULTS OF HYBRID AND a priori METHODS

(ω1 = ω2 = 0.5)

Global Hybrid PSO PSO
Best Best Best Median

Convex 0.210 0.261 0.287 0.825
Non-convex 0.340 0.502 0.531 0.652
Discontinuous 0.219 0.341 0.413 0.561

In Figure 2 the final solution points for each AOF can be
observed, the equal-weighted solution being near the centre of
the front, and the biassed-weight solutions being dislocated to
either side. It is interesting to note that, by virtue of the final,
validation step, the final solutions found all lie in advance of
the approximation to the Pareto front that the (only partially
converged) MOPSO search has found. In each of Figures 3,
4 and 5 it can be seen that a near-optimal solution of each
corresponding AOF has been found.

In Figures 6, 7, 8 and 9, similar results for the non-convex
test function can be seen to those for the convex test function.
The solutions found lie closer to the attainment surface, and
the quality of the validated solutions is slightly less than for
the convex test case. An hypothesis for this behaviour is that
the tangent to the concave attainment surface that would form
the search direction for the Simplex algorithm is generally
directed toward the region of dominated solutions behind the
advancing approximation to the Pareto front that the points
stored in the archive represent. It would be unlikely for a point
predicted by the Simplex search to be significantly better than
the current approximations. As the MOPSO algorithm did not
proceed to full convergence in these experiments, the resulting
solutions found are also observably of lower quality.

In Figure 10 the attainment surface for the discontinuous
test function is shown. The final solutions derived from the
Simplex search are also indicated. For one AOF, it can be seen
that the predicted solution falls well behind the attainment sur-
face, and the sub-optimality of the solution can be confirmed
by reference to Figure 13. This particular solution can be seen
to be in one of the discontinuous regions of the Pareto front.
The Simplex algorithm, with its assumption of continuity of
the Pareto front, has predicted a minimum in this region that,
when the evaluation has been made to validate it, has been
shown to be false. Figure 10 also shows the minimum values
of the test function in this region – the “false minimum” can be
seen to lie close to this line: a reasonable approximation to the
minimum value of the test function, but not a Pareto-optimal
solution.

It would be possible to modify the algorithm, for practical
application, so that if the value predicted at the endpoint
and the actual value differed by more than some reasonable
tolerance, the solution presented reverted to the nearest archive
member. For purpose of illustration, this point is shown in
Figure 13, as the open circle, “◦”, showing how this course
of action could improve the quality of solution delivered.

When the results using the a priori PSO method are
inspected, in Figures 4, 8 and 12 and Table I, it can be seen
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Fig. 2. Attainment surface for the convex test function
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Fig. 5. AOF for convex test function ω1 = 0.25, ω2 = 0.75
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Fig. 6. Attainment surface for the non-convex test function
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Fig. 7. AOF for non-convex test function ω1 = 0.75, ω2 = 0.25
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Fig. 8. AOF for non-convex test function ω1 = 0.5, ω2 = 0.5 (• = hybrid,
⊕ = PSO best, ◦ = PSO median)
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Fig. 9. AOF for non-convex test function ω1 = 0.25, ω2 = 0.75
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Fig. 11. AOF for discontinuous test function ω1 = 0.75, ω2 = 0.25
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Fig. 13. AOF for discontinuous test function ω1 = 0.25, ω2 = 0.75

Fig. 14. Location of preferred solutions in an antenna design problem

that the hybrid method has found better solutions in all cases.
The a priori method achieved a reasonably good result for
the convex test case, as might be expected, but a surprisingly
large degree of variability, as can be seen from the very poor
median value of the five trials. This variability can also be
seen for the other test cases. In all cases, the hybrid approach
was more robust in providing better results.

VI. CASE STUDY

To confirm the applicability of the method to real-world
applications, it was tested on the antenna design problem
illustrated in Figure 1. The problem was solved using the
MOPSO algorithm, with the “second-phase” search being
performed using the Simplex method of Nelder and Mead.
Interpolation was again implemented using the same Kriging
method. To build the Kriging model, it is necessary to optimise
model parameters over a correlation matrix whose size is O(n)
where n is the number of points in the data set. The optimi-
sation process involves repeated matrix inversion operations,
making this a time-consuming task. For this reason a K-means
clustering technique was used to reduce the data set. Figure 14
shows a representation of the attainment surface from Figure 1
with the points of the reduced data set superimposed.

Three different sets of user preferences for each of the
three objectives were applied: one in which all objectives
were equally weighted, and two others in which objective
1 and objective 2 were preferentially weighted, respectively.
The final points found by the “second-phase” search for
each set of user preferences are also shown in Figure 14. It
may be seen that the equally weighted case has successfully
found a compromise solution. The case for which objective 1
was favoured has been displaced toward a low value in that
objective, which coincidentally yields a low value for objective
3, but a high value for objective 2. For the case favouring
objective 2, it can be seen that a low value was obtained for
that objective, at the expense of the other two objectives.

The major computational cost of performing the “second-
phase” search lies in construction of the Kriging model. For
the reduced data set of 200 points and three models, one for



each objective, this task required approximately 3 minutes
execution time on the computational cluster used for the
experimental tests. Evaluation of the computational electro-
magnetics simulation that provides objective function values
required approximately 10 minutes execution time on the same
platform and, since there were sufficient nodes available in the
cluster to concurrently evaluate all particles, this was also the
time required for a single iteration of the MOPSO algorithm.
Since the “second-phase” search is intended to be carried
out between iterations of the MOPSO algorithm, i.e. at the
same time as objective function evaluation, the technique can
be applied with little or no additional overhead. At most it
may require additional time for one pass after MOPSO has
completed. Since the MOPSO algorithm may take tens or
hundreds of iterations, even this overhead is negligible.

VII. CONCLUSION

An approach of hybridising a multi-objective optimisa-
tion method and subsequent single-objective search has been
proposed as a means to automate the process of solution
selection from the set of Pareto-optimal solutions typically
delivered. A Kriging method was used to provide surrogate
approximations to reduce the computational overhead of the
interpolated “second-phase” search. In this way, the search
for a single, preferred solution can proceed without requiring
any additional function evaluations, except for a single, final
evaluation to confirm the feasibility of the chosen solution.

Demonstrated using the conventional Multi-Objective Par-
ticle Swarm optimisation (MOPSO) algorithm and the Sim-
plex method of Nelder and Mead, and applied to a number
of standard test problems, the approach showed an ability
to deliver close approximations to user-preferred solutions
without manual intervention. The proposed approach was also
demonstrated to yield superior results to an alternative, a
priori aggregation of weighted objectives and use of a single
objective optimisation method.

All experiments were performed using standard test cases.
Sampling real-world applications of multi-objective optimisa-
tion as reported in the literature, on average the maximum
number of objectives considered was three. For example, in a
review paper across a range of problems in manufacturing [4],
a majority of cases considered three objectives, many reduced
problems to single objectives using weighted-sum approaches
and, of over 20 applications reported, only one considered
a maximum of five objectives. Coincidentally, this figure
lies near the limit of what may conveniently be graphically
represented to allow determination of preferred solutions by
visual inspection. It remains an open question whether:

• there are not sufficient real-world problems of interest
with more than three or four objectives that cannot
adequately be solved by aggregation of objectives,

or
• practitioners do not generally attempt to solve problems

where the number of objectives required precludes using
visual inspection to determine a preferred solution.

If the latter is true, the method described in this paper
offers the potential for a wider range of problems to become
tractable.

The method was also demonstrated to yield practical results
on a realistic problem in antenna design with insignificant
overhead.

Further work will be directed at testing the method with
different component algorithms, and application to problems
of higher dimensionality in both objectives and parameters. A
refined implementation will be integrated in a comprehensive
optimisation framework [1] for use as a complete design
optimisation methodology.
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