
Real-time evolution of an embedded controller for an
autonomous helicopter

PASSOW, Benjamin N., GONGORA, Mario, COUPLAND, Simon and
HOPGOOD, Adrian A.

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/5639/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

PASSOW, Benjamin N., GONGORA, Mario, COUPLAND, Simon and HOPGOOD,
Adrian A. (2008). Real-time evolution of an embedded controller for an autonomous
helicopter. In: IEEE Congress on Evolutionary Computation (IEEE World Congress
on Computational Intelligence) 2008. IEEE, 2538-2545.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Real-time Evolution of an Embedded Controller

for an Autonomous Helicopter

Benjamin N. Passow, Mario Gongora, Simon Coupland, Adrian A. Hopgood

Abstract— In this paper we evolve the parameters of a
proportional, integral, and derivative (PID) controller for an
unstable, complex and nonlinear system. The individuals of the
applied genetic algorithm (GA) are evaluated on the actual
system rather than on a simulation of it. This makes implicit
a formal model identification for the implementation of a
simulator. This also calls for the GA to be approached in
an unusual way, where we need to consider new aspects not
normally present in the usual situations using an unnaturally
consistent simulator for fitness evaluation. Although elitism is
used in the GAs, no monotonic increase in fitness is exhibited
by the algorithm. Instead, we show that the GA’s individuals
converge towards more robust solutions.

I. INTRODUCTION

Controller design and parameter identification and tuning

are complex tasks where much research is being carried

out [1], [2]; artificial intelligence methods, modern heuristic

approaches, and even various strategies for hand design and

tuning are reported in the literature.

Evolutionary computing (EC), and genetic algorithms

(GA’s) as a part of EC, are often used in optimisation and

search problems [3], [4]. This robust and flexible method can

handle complex problem domains as well as noise and can

be used for multi objective optimisation [1].

An example of a control problem for a highly complex

and unstable system, nonlinear, and very sensitive to external

disturbances [5] is a helicopter. Generally, six degrees of

freedom (DOF) are controlled by four inputs where constant

control feedback from the pilot is imperative. Because of

these characteristics, a controller for an autonomous he-

licopter must be fast in computing the control response.

Active control is traditionally implemented using a combi-

nation of proportional, integral, and derivative (PID) control

methods [6] which are suitable for efficient control of a

helicopter [7], [8], [9].

In this paper we present our research work in evolving the

parameters of a PID controller for a complex system, tested

on an autonomous helicopter. The individuals of the GA are

evaluated on the system itself rather than on a simulation

of it. This makes implicit any system identification for the

implementation of a simulator. The GA’s behaviour is then

analysed together with the results gathered.

Benjamin N. Passow is with the Institute of Creative Tech-
nologies (IOCT), De Montfort University, Leicester, UK, (email:
benpassow@dmu.ac.uk). Mario Gongora and Simon Coupland are with
the Centre for Computational Intelligence (CCI), De Montfort University,
Leicester, UK, (emails: mgongora@dmu.ac.uk, simonc@dmu.ac.uk). Adrian
A. Hopgood is a Professor and Dean of the Faculty of Computing Sci-
ences & Engineering at De Montfort University, Leicester, UK, (email:
aah@dmu.ac.uk).

The remainder of this paper is structured as follows.

Section 2 discusses the related background to this work

including some previous work in this area. Section 3 presents

the system control architecture of the helicopter’s embedded

system and the host system the GA is running on. Section

4 introduces the GA and the experimental setup. Section 5

shows the results and their analysis and section 6 presents

the conclusions.

II. BACKGROUND

There is a great deal of information available on a variety

of control methods, search and optimisation algorithms, and

on- and off-line tuning techniques [1], [2], [10]. This section

gives an overview of existing work related to the research

described in this paper.

Fleming and Purshouse present in [1] a survey of EC in

control systems engineering. A wide spectrum of control

related applications are presented including a section on

parameter optimisation and on-line applications. It is dis-

cussed that few real-time applications use EC methods for

control. Additionally, it is mentioned that little work shows

actual results rather than simulated results. A simulator of the

corresponding system is very often used in order to evaluate

the individuals’ fitness within a GA.

A. Evaluation in Simulation

Sekaj and Sramek present methods based on GAs for the

design of robust controllers [11]. The methods are applied

to a nonlinear differential equation and compared to other

methods, all in simulation. The results are promising, but no

application other than in simulation has been presented.

In [10], Shim et al present a comprehensive study of

control design for an autonomous helicopter. Three different

control methodologies are compared and discussed: linear

robust multi-variable control, nonlinear tracking control, and

fuzzy logic control with evolutionary tuning. The genetic

algorithm is used to identify and tune the consequent parame-

ters of four controllers using fitness evaluated in a simulation.

The controllers are designed and evaluated on an artificial

model created from aerodynamics models.

Perhinschi [12] used a GA to identify the gain parameters

of linear differential equations which are used to stabilise

and control a helicopter’s longitudinal channel. The results

of four different GA strategies are compared by three cri-

teria employing the fitness of the best individuals. The GA

used a linearised model of a helicopter and the controller

performance is not tested in simulation nor on a real system.

Mao shows in [13] a robust flight controller for a helicopter

evolved using a GA. The H-infinity mixed sensitivity design

approach is used for the development of the controller. The

GA evolves the design parameters based on a mathematical

model and the final results are tested only in simulation.

B. Evaluation on the actual System

Ahmad et al present an on-line GA-tuned PI controller

system [14]. In this paper they present a system for tuning

a heating system’s controller, which is optimised in between

control cycles. This is possible due to the slow response time

required by such a system due to its high thermal inertia.

Nolle et al present a simulated annealing (SA) approach to

parameter identification where solutions are evaluated on the

actual system [15]. The approach shows promising results

outperforming trained experts in terms of time needed and

fitness of the results.

Phillips et al introduce a fuzzy logic based flight controller

for a UH-H1 “Huey” helicopter [16]. A GA is used to find the

parameters of the fuzzy controllers, evaluating the individuals

on a formal numerical model of the helicopter. The resulting

controller is tested in simulation and on the actual helicopter.

The tests on the real system showed oscillations and a small

problem in the design with the fuzzy logic controller where

the simulation showed no problems.

III. EXPERIMENTAL SYSTEM SETUP

The system that is to be controlled for our experimental

evaluation is a lightweight indoor helicopter. The system, its

dynamics, constraints, and its embedded control system are

explained in this section.

The system to be controlled in this work is a Twister

Bell 47 small indoor model helicopter1. It is a coaxial rotor

helicopter with twin counter-rotating rotors with 340 mm

span, driven by two high performance direct current motors

and two servos to control rotor blades’ plane angles. The

weight of the helicopter in its original state is approximately

210 grams and it can lift up to 120 grams. This helicopter

has six degrees of freedom (DOF) controlled by four inputs.

For more information on helicopters and their control and

dynamics the reader is referred to [17].

In this work, only the heading controller is considered.

Therefore we will only consider the dynamics related to the

control of a dual rotor helicopter’s heading in this paper.

A helicopter’s engine constantly drives the rotor. As every

action has an opposite counter-action, driving the rotor causes

the helicopter engine and body to turn in the opposite

direction to the rotor, known as the torque effect. Usually

single rotor helicopters have some kind of anti-torque system,

such as a tail rotor, to counteract the torque effect. The two

rotors of this dual coaxial rotor helicopter turn in opposite

directions, creating opposite torque effects that cancel each

other out. When both rotors are moving at the same speed

a constant heading is maintained. If either rotor’s speed is

1http://www.jperkinsdistribution.co.uk/detail.php?JPNO=6600035,
accessed 27. Nov. 2007

Fig. 1. Overview of experimental setup.

reduced the heading will change and lift will be reduced. The

change in heading results from the differing levels of torque

effect being produced by each rotor. If one rotor’s speed is

reduced, whilst the others speed is increased respectively, the

heading will change whilst a constant amount of lift will be

maintained.

As part of the embedded system, a digital compass is used

to determine the current heading. The sensor is connected to

a microcontroller which handles all on-board computation,

sensor inputs, motor outputs, and serial communication used

to transfer information to and from the host computer on

which the GA is running on. Figure 1 gives an overview of

the system to be controlled, the host system running the GA,

and the communication between them.

The control application running on the microcontroller

reads all sensors, calculates all four individual PID control

responses, one for each control input, and sends the overall

control responses to the actuators. In this system there are

13 control cycles executed each second.

There are many control methods available that could be

used for the control of this system. Classical PID control

has been shown to work well controlling such a system [8];

Puntunan and Parnichkun introduce a heading direction and

floating height controller for a single rotor helicopter. The

control system uses a proportional plus derivative controller

(PD) to maintain the heading and altitude, while a human

pilot controls the horizontal movements.

In this work, the PID controller has been implemented

on the embedded system using the following strategy. The

proportional controller responds to an error by adjusting a

control element proportional to the given error. The integral

controller reacts based on the sum of recent errors, taking into

account not only the amount of error but also the duration

of it. The amount of previous error to take into account is

limited by the integral state maximum for positive error and

minimum for negative error. The derivative controller uses

the increase in error from the previous error value to generate

a response. The three gain values and two integral max/min

parameters of the controller were adjusted until the controller

performed well. Unfortunately, this task is difficult as each

of the three gain values has a big influence on the other

parameters.

There are a number of existing techniques for tuning

the parameters of a PID controller. Methods such as simu-

lated annealing (SA), population based incremental learning

TABLE I

HAND TUNED PARAMETERS.

Parameter Value

Proportional gain 0.30

Integral gain 0.02

Integral state maximum 100

Integral state minimum -100

Derivative gain 0.70

(PBIL), particle swarm optimisation (PSO) and differential

evolution (DE) can be used [2]. We created an initial ad

hoc hand-tuned controller to test the experimental setup. The

parameters used for this controller are shown in table I. We

are not going to evaluate formally the performance of the

hand tuned controller against the GA at this stage.

IV. GENETIC ALGORITHM STRUCTURE

In most cases, the evaluation of the fitness of the indi-

viduals is done with a simulator. In fact, this part of the

GA execution has traditionally been done in the computer

where the GA is running, using either the calculations of

the real problem (if it is computer based) or a simulator (if

it is an external or hardware system). For this last case the

main problem is to get a suitable simulator which can only

be as good as the model used to create it. Getting a model

then involves solving the issues of system identification and

accuracy of the model vs. computational resources required

to simulate it.

In the work presented here, rather than using a simulator,

we use the actual system for the evaluation of the individuals

for the GA. The GA itself runs on a host computer and

communication between the control system and the host

system is done via a serial connection. This section gives

details on how the GA has been configured.

A. Solution Encoding

Every possible solution the GA might use will be encoded

within a chromosome. Each individuals chromosome con-

tains five integer values in the range specified in table II. The

three gain parameters are stored in steps of one hundredth

and the two integral state limits are encoded in 16 steps of

25.

B. Initial Population

The initial population of the GA could be primed using

initial “good” solutions such as based on the hand tuned

parameters to speed up the optimisation process. Unfortu-

nately, we do not know if the hand tuned control parameters

are near-optimal and could possibly lie in a local minima of

the solution search space. Additionally we want to evaluate

the performance of the GA rather than the controller, so we

will initialise the system with a fresh and widespread initial

population. All initial individuals are created with random

chromosomes within the range specified in table II. The

population size of 20 is chosen to be small enough to have

TABLE II

GA’S PARAMETER VALUE RANGE.

Parameter Chromosome Real Value

Proportional gain 0 - 200 0 - 2.00

Integral gain 0 - 100 0 - 1.00

Integral state maximum 0 - 16 0 - 400

Integral state minimum 0 - 16 0 - 400

Derivative gain 0 - 400 0 - 4.00

a fast evaluation of each generation while providing enough

individuals to maintain variety.

C. Evaluation Function

Each individual’s fitness is evaluated on the real system

rather than on a simulated environment. The evaluation

function is shown in equation 1.

e =
∑

(h − s)2 (1)

where e is the measure of error, h is the current heading

and s is the setpoint. Squaring the current error in heading

increases the selective pressure on the individuals causing

the GA to find better solutions quicker. The sum of all the

squared errors is the measure used to determine the fitness.

The equivalent fitness is inverse proportional to the measure

of error.

D. Selection

The selection of individuals to “survive” to the next

generation is an important part of the GA. Here, the selection

method is based on the roulette wheel strategy but without the

possibility that an individual is chosen more than once. This

method enables even the weakest individual to be chosen,

although fitter individuals are more likely to be selected.

E. Genetic Operators

In this work, elitism is applied, which means that the

best individual of every generation is automatically copied

to the next generation without the need to be selected

first. In combination with this, 20% of the old population’s

individuals are copied to the next generation using a roulette

wheel like system.

For the crossover operator, two individuals are selected

to generate one offspring. This new individual is created by

taking the mean of every chromosome’s loci of the parents.

This method is applied in order to get 40% of the new

population.

Mutation is the source of new variety. In this work, a

probabilistic random mutation is used on every loci of the

selected individuals to form 40% of the new population. This

method of mutation uses a bell shaped probability where the

chance of a small mutation is higher than the chance for a

big mutation to take place.

0 5 10 15 20 25 30
0

2

4

6

8

10

12
x 10

5

Generations

M
e
a
s
u
re

 o
f
e
rr

o
r

Fig. 2. Each generation’s mean measure of error in three independent GA
runs.

F. Termination Criteria

Often, there is a termination criterion in place where the

GA is stopped when a certain fitness, by one or more individ-

uals, is reached. Additionally, another termination criterion

often used is where the GA is stopped when no increase

in fitness is found within a defined number of generations.

Because in this work we are studying the behaviour of the

GA applied to a real world system at this stage we will only

use a time-out as the termination criteria, stopping the GA

only after an specific number of generations is reached

G. Hardware Setup

The system to be controlled, the helicopter, is attached

to a ball bearing supported turntable, restricted to turn to

90◦ and -90◦ degrees from its middle position at 0◦. The

evaluation of one individual takes about 20 seconds and

the system is cooled down in additional 20 seconds before

the next individual is evaluated. Each individual is tested

by perturbing the helicopter to each side and analysing the

controller’s reaction.

First, an individual’s chromosome (the controllers’ param-

eters) are sent to the embedded controller using a direct serial

connection. Then, the helicopter starts the motors and the

controller reacts on the heading error based on the parameters

received. In order to test the controller’s performance on a

given error, the helicopter is initially perturbed by 90◦ to

the set point by driving the two rotors with different power

levels. The helicopter turns but cannot go beyond 90◦ as the

experimental setup physically blocks it there. At this point

the controller starts responding together with its actual eval-

uation. After 92 control cycles the evaluation and controller

are paused and the helicopter is perturbed -90◦, i.e. into the

other direction. The controller and its evaluation are started

again.

This setup, in combination with the GA running on a

host computer, enables the automatic implementation and

0 5 10 15 20 25 30
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

5

Generations

M
e
a
s
u
re

 o
f
e
rr

o
r

Fig. 3. Best individual’s measure of error of each generation in three
independent GA runs.

evaluation of individuals and thus the execution of the GA

on the real system without any human intervention.

V. ANALYSIS OF RESULTS

The GA was run autonomously using the real helicopter

platform to measure the fitness of each individual. The results

of three complete runs are presented and discussed below.

As said in the previous section, the population size was

20 individuals per generation, and the termination criteria

was set to time-out after generation 30. Each individual was

set to execute 189 control cycles which took approximately

20 seconds in the helicopter’s embedded system, the total

individual evaluation time was 40 seconds allowing the same

time for cooling as for running. The time taken for the

GA manipulation and scheduling parts, being run in the

host computer, is negligible in comparison. Therefore, in all,

from a search space of over 2 billion, the GA evaluated 600

possible individuals, taking each complete run just under 7

hours.

An initial general evaluation shows that the results are

consistent with an evolutionary process as seen in Figure 2,

where the mean error for each of the three complete GA

runs is shown. The average error of the population drops

sharply during the first third of the generations and after this

the evolution process slows down as individuals converge

around the best solutions in the search space.

On closer inspection of the error values, a more interesting

effect is observed, which relates specifically to our approach

of running the fitness function of the GA in a real system.

As said in the previous section, elitism was used. With this

operator the best individual of every generation is determin-

istically copied into the next. In usual GA experiments where

a simulator is used, elitism forces a monotonic decrease in

the error, and therefore increase in the fitness, of the best

individual in each generation. Figure 3 shows the error of the

best individuals for the three GA runs presented in this paper.

TABLE III

MINIMUM, MEAN, MAXIMUM AND STANDARD DEVIATION OF MEASURE

OF ERROR OF 12 TESTS OF HAND TUNED AND BEST GA INDIVIDUALS.

Min Mean Max StD

Final best individuals:

GA 1 64119 77243 107348 9018

GA 2 63726 77106 146877 14270

GA 3 48072 70803 92014 8925

Individuals from Figure 4:

1. 56723 76244 112263 14241

2. 60820 77131 108455 10249

3. 61677 74230 121826 11824

4. 53257 73458 112576 10672

5. 57553 83109 180897 18010

6. 48072 70803 92014 8925

Although elitism was used, the error of the best individuals

of every generation is not always lower or even the same as

the previous one, which in theoretical systems is impossible.

In a real world system, small variations are expected when

running an experiment a number of times, and that is the

same for our GA fitness function. When evaluating the same

individual in different generations slightly different fitness

values are found. Table III shows the standard deviation for

the best individuals of the three GA runs; when tested 40

times in the helicopter. This significant variability of the

system can be seen graphically in Figure 4. This is the reason

why Figure 3 does not show a monotonic behaviour of the

error. Due to the natural uncertainties of our system, the GA

cannot converge to an absolute optimal solution and therefore

we have to determine what is the validity of the final solution

presented by the algorithm and the validity of the fitness

values.

To revisit the termination criteria in the context of fitness

variability, we confirmed that at this point we cannot rely

on fitness alone to stop the evolution. Not only do we have

no initial idea of what a “good” or “acceptable” value of

fitness is, but we have seen that reaching a fitness value in

a particular generation does not necessarily mean that an

“acceptable” individual has been found.

It is important to note here that due to the long time taken

to run each GA, we have not tried an alternative method in

which we would evaluate an individual more than once to

get an average fitness rather than from a single test. To have

a statistically significant average measure of fitness, relative

to the variance observed, would require an extremely long

time to evaluate even a single GA generation. We will see

later that this is not necessary, since even with our “single

test” based system we have found that the GA arrives to very

suitable solutions.

By keeping the GA running over a number of generations,

even after a floor had been apparently reached in the measure

of error, we have found that the GA still managed to evolve,

but rather than converging to a specific “optimal” solution for

an unnatural consistent simulator, it was converging toward

0 50 100 150 200
−100

−80

−60

−40

−20

0

20

40

60

80

100

Time [control cycles]

E
rr

o
r

[d
e

g
re

e
s
]

Hand tuned

GA tuned

Fig. 5. GA (black) and hand tuned (gray) PID controllers response to
heading perturbed by 90◦ at t=0 and -90◦ at t=92. Mean of 12 individual
tests for each controller.

a more “consistent” solution for a real system. This suggests

that the usual concept that, when a reasonably suitable

solution is found in a GA with a simulated fitness function,

the algorithm can be stopped (e.g. as seen in generation 11 in

Figure 3) does not apply for real system evaluated algorithms.

In our case the termination criteria have to be considered

from a different point of view.

In a GA based on a fitness function using the real world

system, continuing the GA for a while even after apparently

reaching a fitness plateau helps ensure the consistency of

the final solutions. This has been confirmed by a closer

analysis of the best individuals of the generations from where

peaks of fitness (or low errors if seen from this point of

view) occurred. Figure 4 shows the behaviour of six “best”

individuals across the evolution of a GA run. Each graph

shows an individual being tested 40 different times in the

helicopter. Table III shows the instant fitness during evolution

(in each particular generation) and the variance of the error

of these individuals when tested later.

Both from the statistical analysis and a visual inspection

of the graphs, it can be seen that although the particular

error in the particular generation for these individuals is

variable (increases or decreases with generations rather than

decreasing monotonically), there is a steady increase in the

consistency of the solution in terms of variability when

tested multiple times on the helicopter. This suggests that the

GA, although it cannot evolve towards an specific “optimal”

solution, still evolves and finds its way towards a more robust

solution that can perform better, which serves the exact

purpose of our experiments in tuning a controller for the

system.

These results and analysis show a critical and important

difference between using simulated models with an unnatural

consistency compared to working with a real system.

The final five fittest individuals of each of the three GA

runs are shown in table IV together with their corresponding

0 50 100 150 200
−100

−80

−60

−40

−20

0

20

40

60

80

100

Time [control cycles]

E
rr

o
r

[d
e
g
re

e
s
]

(a) Best individual from generation 8

0 50 100 150 200
−100

−80

−60

−40

−20

0

20

40

60

80

100

Time [control cycles]

E
rr

o
r

[d
e
g
re

e
s
]

(b) Best individual from generation 12

0 50 100 150 200
−100

−80

−60

−40

−20

0

20

40

60

80

100

Time [control cycles]

E
rr

o
r

[d
e
g
re

e
s
]

(c) Best individual from generation 16

0 50 100 150 200
−100

−80

−60

−40

−20

0

20

40

60

80

100

Time [control cycles]

E
rr

o
r

[d
e
g
re

e
s
]

(d) Best individual from generation 21

0 50 100 150 200
−100

−80

−60

−40

−20

0

20

40

60

80

100

Time [control cycles]

E
rr

o
r

[d
e
g
re

e
s
]

(e) Best individual from generation 24

0 50 100 150 200
−100

−80

−60

−40

−20

0

20

40

60

80

100

Time [control cycles]

E
rr

o
r

[d
e
g
re

e
s
]

(f) Best individual from generation 30

Fig. 4. Control responses of six individuals of the third GA. Each graph is a composite of 40 individual tests.

TABLE IV

SOLUTIONS OF 5 BEST INDIVIDUALS OF 3 INDEPENDENT GA RUNS PLUS

MEASURE OF ERROR.

PGain IGain IMin IMax DGain Error

0.89 0.98 200 0 2.68 45237
0.83 0.43 75 0 3.13 59385
0.86 0.56 75 0 2.97 59886
0.88 0.54 125 0 3.38 61173
0.84 0.49 100 0 3.00 61901

0.93 0.34 75 0 3.67 52080
1.08 0.15 0 0 3.95 55174
1.05 0.49 25 0 3.73 56036
0.93 0.34 25 0 3.65 56045
1.15 0.58 75 0 3.95 56209

0.96 0.69 275 0 3.20 48092
0.93 0.00 0 0 3.15 51827
1.12 0.81 325 0 3.07 53210
1.02 0.56 0 0 3.55 54975
0.94 0.59 75 0 3.90 55372

measure of error. Based on these results we can identify

parameters that quickly converge to a specific value region,

where the parameters are more important for the controller’s

performance. This can be seen looking at the proportional

gain. The derivative gain converged to a value region too, al-

though not as clearly as the proportional gain parameter did.

The integral gain together with the integral state maximum

on the other hand seem not to have a strong influence on the

performance of the controller. The integral state minimum,

however, converged to zero. From the three GAs’ final 60

individuals, only five did not have an integral state minimum

of zero. This shows that the system is not symmetrical

in nature. The helicopter controller needs a higher control

response in one direction than in the other and the GA

identified this.

Figure 5 shows the PID controllers’ response for the hand

tuned parameters and the GA’s best individual’s parameters,

each the mean of 12 independent tests. After the first and

positive perturbation, the GA optimised controller reaches

the setpoint and maintains it. The hand tuned controller

overshoots slightly and then maintains the setpoint with

less accuracy. After the second and negative perturbation,

the hand tuned controller overshoots and then very slowly

approaches the setpoint. The GA based controller overshoots

the setpoint too, although not as far, and then reaches the

setpoint and keeps at it.

VI. CONCLUSIONS

In this work we evolved the parameters of a PID con-

troller for a complex, nonlinear, and unstable system. The

individuals of the GA were evaluated on the actual system

rather than on a simulation of it. This made implicit any

system identification and the implementation of a simulator.

The GA’s behaviour has been analysed together with results

gathered.

The GA found suitable solutions as shown by the tests and

an informal comparison with the hand-tuned example.

We presented the results of three independent GA runs,

each evaluating 600 individuals on the actual system. We

found that the GA’s behaviour differs from the behaviour

often seen when evaluating individuals in a simulation.

Although elitism was used in the GAs, no monotonic increase

in fitness is exhibited by the algorithm. Instead, we have

shown that the GA’s individuals converge towards more

robust solutions. The cause for this behaviour is uncertainties

and noise within the system. High variations in fitness when

re-evaluating individuals supports this point.

The rather high variance in fitness when evaluating indi-

viduals on the real system brings additional problems. The

termination criteria for a GA, where the individuals are

evaluated on the real system where noise and uncertainties

are present, need to be studied further.

Looking at the GA’s final individuals as well as informa-

tion from the execution of the GA does provide a source

of information about the system. One example of this was

that the GA correctly identified the asymmetrical nature

of the heading behaviour, and this was represented in the

parameters evolved. We showed that the behaviour in which

the parameters converge may tell us even more about the

system. This can be further extended to formally identify a

model of a given system.

FUTURE WORK

We will continue to investigate methods for testing each

individual so that we can get an average fitness and decrease

the variance. A study of multiple evaluations and the strategy

described here, where the GA is left running to find more

robust solutions, will be considered.

Furthermore, we are going to investigate the possibility of

identifying the system formally using the data collected from

the GA runs, to create an accurate model of it. Based on this

formal model, we can implement a simulator and be able to

compare formally the GA’s behaviour in simulation and on

the real system.

ACKNOWLEDGMENT

The authors would like to thank Prof. Andrew Hugill,

Director of the Institute of Creative Technologies, De Mont-

fort University, for his support of this research project.

REFERENCES

[1] P. Fleming and R. Purshouse, “Evolutionary algorithms in control
systems engineering: a survey,” Control Engineering Practice, vol. 10,
no. 11, pp. 1223–1241, 2002.

[2] P. De Moura Oliveira, “Modern heuristics review for pid control
systems optimization: A teaching experiment,” 2005, pp. 828–833.

[3] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-

ductory Analysis with Applications to Biology, Control and Artificial

Intelligence. University of Michigan Press, 1975.
[4] R. Haupt and S. Haupt, Practical Genetic Algorithms. Wiley-

Interscience, 2004.
[5] I.Rojas, H. Pomares, C. Puntonet, F.Rojas, M.Rodriguez, and O. Valen-

zuela, “On-line adaptive fuzzy controller: Application to helicopter sta-
bilization of the altitude of a helicopter,” in Proc. Of the International

Symposium on Computational Intelligence for Measurement Systems

and Applications, Lugano, Switzerland, 29-31 July 2003.
[6] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:

Analysis and Design. Wiley, 1996.

[7] S. Saripalli, J. Montgomery, and G. Sukhatme, “Vision-based au-
tonomous landing of an unmanned aerial vehicle,” in Robotics and

Automation, 2002. Proceedings. ICRA’02. IEEE International Confer-

ence on, vol. 3, Washington, DC, May 2002, pp. 2799–2804.
[8] S. Puntunan and M. Parnichkun, “Control of heading direction and

floating height of a flying robot,” in Industrial Technology, 2002. IEEE

ICIT’02. 2002 IEEE International Conference on, vol. 2, Bangkok,
Thailand, 2002, pp. 690–693.

[9] E. Sanchez, H. Becerra, and C. Velez, “Combining fuzzy and pid
control for an unmanned helicopter,” in Annual Meeting of the North

American Fuzzy Information Processing Society, Unidad Guadalajara,
Mexico, 2005, pp. 235–240.

[10] H. Shim, T. Koo, F. Hoffmann, and S. Sastry, “A comprehensive study
of control design for an autonomous helicopter,” in Decision and

Control, 1998. Proceedings of the 37th IEEE Conference on, vol. 4,
Tampa, Florida, USA, December 1998, pp. 3653–3658.

[11] I. Sekaj and M. Sramek, “Robust controller design based on genetic
algorithms and system simulation,” in Decision and Control, 2005

and 2005 European Control Conference. CDC-ECC ’05. 44th IEEE

Conference on, 12-15 Dec. 2005, pp. 6881–6886.
[12] M. Perhinschi, “A modified genetic algorithm for the design of

autonomous helicopter control system,” in Proceedings of the AIAA

Guidance, Navigation and Control Conference, 1997, pp. 1111–1120.
[13] J. Mao, “Robust flight controller design for helicopters based on

genetic algorithm,” in Proceedings of Fifth IFAC Congress, Barcelona,
2002.

[14] M. Ahmad, L. Zhang, and J. Readle, “Online genetic algorithm tuning
of a pi controller for a heating system,” in Genetic Algorithms In

Engineering Systems:Innovations And Applications, 1997. GALESIA

97. Second International Conference On (Conf. Publ. No. 446), 2-4
Sept. 1997, pp. 510–515.

[15] L. Nolle, A. Goodyear, A. Hopgood, P. Picton, and N. Braithwaite,
“Improved simulated annealing with step width adaptation for lang-
muir probe tuning,” Engineering Optimization, vol. 37, no. 5, pp. 463–
477, 2005.

[16] J. Chang Doo, S. Seung Il, K. Sang Keun, C. Phillips, C. Karr, and
G. Walker, “Helicopter flight control with fuzzy logic and genetic
algorithms,” Engineering Applications of Artificial Intelligence, vol. 9,
no. 2, pp. 175–184, 1996.

[17] S. Coyle, The art and science of flying helicopters. Arnold, 1996.

