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Abstract— It is generally challenging to design decentralized

controllers for swarms of robots because there is often no
obvious relation between the individual robot behaviors and the
final behavior of the swarm. As a solution, we use artificial evo-
lution to automatically discover neural controllers for swarming
robots. Artificial evolution has the potential to find simple and
efficient strategies which might otherwise have been overlooked
by a human designer. However, evolved controllers are often
unadapted when used in scenarios that differ even slightly
from those encountered during the evolutionary process. By
reverse-engineering evolved controllers we aim towards hand-
designed controllers which capture the simplicity and efficiency
of evolved neural controllers while being easy to optimize for
a variety of scenarios.

I. INTRODUCTION

Artificial Evolution has been extensively used for

the development of robot controllers due to its capacity to

automatically engineer solutions displaying complex abilities

using simple and efficient behaviors [1], [2]. Systems of

interest generally can not be solved using conventional

programming techniques because they are highly non-linear,

stochastic or poorly understood [3]. Subsequently, artificial

evolution is particularly well suited for the design of

controllers for swarms of robots. Indeed, there currently

exists no conventional methodology to deterministically

design decentralized controllers which are capable of giving

rise to a desired emergent swarm behavior. Overcoming

this limitation, genetic algorithms and genetic programming

have successfully been used to design controllers for swarms

of ground [4], [5] and aerial vehicles [6]–[10] in simulation

or on-board physical robots in research environments.

However, evolved controllers are often unable to adapt

across different scenarios without being re-evolved. This

process takes time and is unrealistic for robot swarms

which are intended to be used out-of-the-box in critical

applications. Instead we propose to reverse-engineer

evolved controllers so as to capture the simplicity and

efficiency found through evolution in hand-designed robot

controllers whose parameters can easily be optimized for

various scenarios. In this paper, the entire process for

the design of swarm controllers includes 1) the evolution

of neural controllers for robots 2) the analysis of the

behaviors performed by the robots to achieve swarming 3)

the hand-design of robot controllers inspired from these

behaviors 4) the optimization of robot controllers for various

environments.
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Our endeavor is motivated by an application, whereby

a swarm of fixed-wing micro air vehicles (MAVs) must

cooperate to serve as a wireless relay for rescuers and

victims in disaster areas. In a typical scenario, rescuers

rapidly arrive at a disaster site and set up a base which is

equipped with a wireless device of limited range. MAVs are

launched from this base by hand, one after the other, and

must then self-organize to find other rescuers or victims in

the environment while maintaining a communication link

to the base. Once a user is found, the communication can

be established between the base and the user via the MAVs

which serve as relay nodes. The MAVs must maintain this

communication link active until it is no longer needed.

Flying robots are interesting for such applications because

they can easily deploy and spread out over difficult

terrain such as flooded areas or debris while providing

line-of-sight communication. Our MAVs are not equipped

with sensors such as Global Positioning Systems (GPS),

cameras, laser range finders or radars because we aim at

minimal platforms which are cheap, safe and light-weight.

The positioning information derived from these sensors is

typically primordial in current research on swarms of flying

robots [11]–[23]. Instead of relying on position information,

our MAV controllers use only local communication with

immediate neighbors and proprioceptive sensors which

provide heading, speed and altitude [6], [24].

The following section presents the evolution of controllers

for swarms of flying robots and the analysis of the robot

behaviors. Sect. III presents the hand-designed controllers

inspired from evolution and the optimization of their

parameters for various scenarios. In Sect. IV, we test the

controller optimization on different scenarios and choose one

to show the performance and behavior of the hand-designed

swarm in a specific network deployment application. Finally,

in Sect. V we summarize the work done so far and discuss

future developments.

II. EVOLVED CONTROLLER

As presented in [6] we use artificial evolution as a means

of automatically designing neural controllers for a swarm of

simulated fixed-wing MAVs. We hereby briefly summarize

this work, namely the scenario used to evolve the controllers,

the robot neural architecture and the behaviors displayed by

the individual MAVs.



Fig. 1. Trajectories of all the MAVs with the best evolved controllers during a 30 min trial. In this trial, the user has been placed to the North-East with
respect to the base in order to show the full extent of the sweeping behavior of the swarm. The trajectory of the first launched MAV is shown by a light
grey line.

A. Scenario

The aim is to deploy and maintain an ad-hoc wireless

network composed of swarming MAVs to enable commu-

nication between a base (BS) from which 20 MAVs are

launched every 15 ± 7.5 s and a user (US) positioned in

the environment within a ±30o angle from North and within

550 m of the base. The deployment and maintenance of

the network lasts 30 min and the communication range of

the MAVs, base and user is approximately 100 m. These

values are based on our acquired experience so far with real

platforms designed for our network of swarming MAVs [25].

B. Controller

Each MAV is equipped with identical controllers (ho-

mogenous swarm) to allow for scalable swarms composed

of interchangeable agents. In our system, MAVs maintain a

constant speed and altitude while modulating their turn rate.

Constant speed is justified given that fixed wing platforms

must always maintain forward motion so as not to stall, as

opposed to aircrafts capable of hovering or ground robots

which can stop moving when needed. A neural controller

with three inputs and four hidden neurons is used to output

the turn rate the MAVs should adopt. A low-level flight

controller is assumed to make sure the turn rate is achieved

within a certain time. Since no positioning information is

available, the inputs to the neural controller are exclusively

derived from an absolute heading sensor and the messages

received from neighboring MAVs every 50 ms. Inputs to the

neural controller are defined as follows:

• The heading of the MAV as computed using a magnetic

compass.

• The minimum number of network hops that sepa-

rate the base from the MAV (BSHopCount). MAVs

which are disconnected from the base are assigned a

BSHopCount of N where, N is the maximum number

of hops which can be obtained in a given network. For

our application, N corresponds to the number of MAVs

in the swarm (N=20).

• The minimum number of network hops that separate the

user from the MAV. When disconnected from the user,

MAVs are assigned a value of N .

A genetic algorithm is used to evolve the weights of the neu-

ral controllers based on a fitness which aims at maximizing

the quality of the connections between the base and user

over time. Colony level selection is used to favor inter-agent

cooperation [26].

C. Behavior analysis

An example showing the behavior of the best evolved

controllers can be seen in Fig. 1. The strategy adopted by

the swarm consists of forming a tight chain of MAVs which

grows as long as additional MAVs are launched. Once all

MAVs have been launched, the MAV chain shifts along the

communication range of the base, sweeping the area from

West to East until the user is found. The communication

link between the base and the user is maintained by having

all MAVs turn on the spot with the smallest possible radius

given the dynamics of the aircraft.

Fig. 2. Effect of the number of hops which separate the base from an
MAV (BSHopCount) on its trajectory. Here the trajectories of the best
evolved MAV controllers are plotted over 30 s. MAVs were disconnected
from the user during these experiments.



Through a qualitative analysis of the best evolved controllers,

the following simple behaviors were extracted to account

for the chain formation, sweeping and communication

maintenance performed by the swarm [6]:

1) MAVs continuously turn in the same direction, modulating

their turn rate based on their heading measurements and

their desired advancement direction and speed.

2) MAVs which are connected to the base (BSHopCount <

20) proceed following the trajectories shown in Fig. 2. The

typical number of hops separating an MAV from the base is

generally lower than 10, meaning that the MAVs move to

the North, away from the base.

3) MAVs which are disconnected from the base

(BSHopCount = 20) backtrack in the direction of

the base to tentatively reconnect (Fig. 2).

4) MAVs which are connected to the base turn with a

different average turn rate than when disconnected (Fig. 2).

5) MAVs which are connected to both the base and

the user turn on the spot following the smallest possible

turn radius given by the dynamics of the platform (Fig. 1,

right).

The first behavior allows the MAVs to simply modify

the global advancement speed and direction of their

trajectories by slightly modulating their turn rate with

respect to their current heading measurements. The second

and third behaviors allow for the formation of an MAV chain

with agents moving away from the base as long as they

are connected to it and backtracking when disconnected.

During the chain formation phase, MAVs are sequentially

launched to further extend the MAV chain. Once all

MAVs are launched, the swarm periodically disconnects

and reconnects to the base, alternating behaviors 2 and 3.

Given that the turn rates are different when connected and

disconnected (behavior 4), the MAVs are able to sweep

the area from one side to the other. Because of the slight

difference in trajectory depending on the hop information

of the MAVs (Fig. 2), the sweeping is radial and agents

closer to the base sweep slightly slower than agents further

away. Once the user is found, behavior 5 ensures a minimal

maintenance of the communication link between the base

and the user by having all MAVs turn on the spot.

These five simple behaviors are responsible for the

deployment and maintenance of a swarming MAV network

between a base and a user.

III. HAND DESIGNED CONTROLLER

Our interest lies in taking inspiration from behaviors

found through evolution to design novel swarm controllers

which capture their simplicity and efficiency. We do not

however exactly copy the evolved solution, in particular, our

proposed hand-designed controller contains a simplification

which makes it suitable for applications whereby a chain of

MAVs is able to sweep in parallel (i.e. not radially like in

the evolved solution). We then show that this controller can

be rapidly adapted to a variety of different scenarios.

A. Controller

We hereby show how the five behaviors discovered

through evolution (Sect. II) can be implemented as

parameterized controllers.

1) Similar to the evolved controllers, MAVs with speed v

can perform trajectories which follow a global direction ψ

by adopting different turn rates depending on their heading

measurements ψMAV . As shown in Fig. 3 this is achieved

by having an MAV perform a small turn radius r1 when

its heading forms an obtuse angle with ψ and a large turn

radius r2 when the angle is acute. Intuitively, if r1 and r2
are identical, the MAV will perform circular trajectories and

remain on the spot. Finally, for a trajectory described by

ψ, r1 and r2, the turn rate ωr1,r2,ψ of an MAV is set as

follows:

ωr1,r2,ψ(ψMAV ) =

{

−
v
r1

if obtuse(ψMAV , ψ)

−
v
r2

if acute(ψMAV , ψ)

Fig. 3. Example of an MAV trajectory formed by the alternation of
circular trajectories of radius r1 and r2 based on the heading of the MAV
ψMAV and the global advancement direction of the trajectory ψ. When the
angle between the MAV’s heading and the direction ψ is obtuse, the MAV
performs a circle of radius r1 while an acute angle yields a circle of radius
r2.

2) MAVs which are connected (even indirectly) to the

base adopt turn rate ωr1,r2,ψUS
(ψMAV ) where ψUS reflects

the approximate direction in which a user might be found.

This parameter is given by the scenario specifications (Fig.

4 A).

3) MAVs which are disconnected from the base adopt

turn rate ωr3,r4,ψBS
(ψMAV ) where ψBS is the direction

opposite to ψUS which will allow the MAVs to advance in

the direction of the base (Fig. 4 B).

4) Given the difference between an MAV’s average

turn radius when connected (r1, r2) or disconnected from

the base (r3, r4), the MAV chain will translate along the



communication range of the base (sweeping) (Fig. 4 C).

5) MAVs which are connected to both the base and

the user adopt turn rate ωrmin,rmin,null so as to turn on

the spot following the smallest possible turn radius rmin.

This allows the swarm to maintain a communication link

between the base and the user (Fig. 4 D).

As a summary, each MAV will adopt a turn rate

ω(ψMAV , BS, US) based on information concerning

its connection to the base (BS = 1 if the MAV is connected

to the base and 0 otherwise) or the user (US = 1 if the

MAV is connected to the user and 0 otherwise) and its

heading ψMAV following equations

ω(ψMAV , BS, US) =







ωrmin,rmin,null(ψMAV ) if BS ∧ US

ωr1,r2,ψUS
(ψMAV ) if BS ∧ !US

ωr3,r4,ψBS
(ψMAV ) otherwise

An example of possible trajectories obtained by an

MAV controller with parameters chosen as rmin = 10,

r1 = 10, r2 = 30, r3 = 20, r4 = 30, ψUS = North

and ψBS = South can be seen in Fig. 4. When using

this controller, the swarm can perform behaviors similar to

those discovered through evolution to deploy and maintain

a wireless network, namely chain formation, sweeping and

communication maintenance.

Fig. 4. MAV trajectories depending their heading and connectivity to the
base (BS) and user (US).

B. Scenario

We aim at showing that our controller can quickly be

adapted to a number of different scenarios. In particular, we

look at a scenario where rescuers, when arriving by road,

deposit several wireless beacons along the way at a small

enough interval for the beacons to be directly or indirectly

interconnected. Here, beacons with a communication range

of 100 m are dropped from a rescue vehicle, every 50 m,

along a straight road which extends from West to East.

The result is an enlarged base as can be seen in (Fig. 5).

A rescuer will then sequentially launch 20 MAVs every

15±7.5 s by simply throwing them into the air from the West-

most beacon. The swarm must establish a communication

link between the base and a single user positioned to the

North of the base and within a d x w area. Once the user

is found, the communication relay must be maintained until

the end of the mission duration which is of 30 min.

Fig. 5. The swarm composed of 20 MAVs must be able to find any user
positioned to the North of the base and within a d x w area. The beacons
forming the base have a communication range of 100 m and are positioned
every 50 m along a straight road. MAVs are launched from the West-most
beacon.

C. Parameter optimization

For real world applications, it is interesting to be able to

rapidly optimize the parameters of a robot controller given

the requirements of a scenario. For the scenario described in

Sect. III-B we look to optimize the parameters r1, r2, r3 and

r4 of the robot controllers (Sect. III-A) for a desired area

coverage d x w. The remainder of the parameters are set by

the scenario specifications (ψUS = North, ψBS = South

and rmin is defined by the limitations of the platform).

Thanks to the simple geometry of the MAV trajectories, we

are able to design a model which can be used to predict

the area coverage of the swarm given by the distance dpred
reached by an MAV chain and the translation wpred of this

chain sweeping along the communication range of the base

(Fig. 5). The values dpred and wpred are computed using

Eq. 1 and Eq. 2 in the Appendix.

To optimize the parameters, we compute the summed

square error e = (d − dpred)
2 + (w − wpred)

2 for each

combination of r1, r2, r3, r4 in the range of natural

numbers from rmin to rmax with the constraint that r1 < r2
and r3 < r4. The combination with the smallest error e is

selected as the optimized parameter set. To ensure that the

turn radius of the MAV remains small with respect to the

communication range rcomm we define the maximum turn

radius rmax as equal to a quarter of rcomm.



IV. RESULTS

Experiments are run in a realistic event-based simulator

which implements 802.11b communication models, physics-

based wave propagation and a first order model of an MAV

platform which flies at 10 m/s, has a minimum turn radius of

10 m and is affected by sensor and actuator noise as described

in [24].

A. Parameter Optimization

Using the approach presented in Sect. III-C we are able

to determine the parameters r1, r2, r3 and r4 of the robot

controllers described in Sect. III-A for a desired area cover-

age d x w. We test our approach on five different coverages

with the corresponding parameters listed in Table I. For each

desired area coverage, 100 deployments are done with no

user present in the environment to allow the swarm to reach

out as far as possible. Fig. 6 shows the distances dsim and

wsim reached in simulation for each desired area coverage.

As can be seen, the optimized robot controllers are successful

since the simulated swarms are able to achieve the desired

area coverages. For the remainder of this paper we will

consider the robot controller optimized for an area coverage

of 500 m x 500 m.

TABLE I

OPTIMIZED PARAMETERS FOR VARYING AREA COVERAGES d X w

d x w r1 r2 r3 r4
[m x m] [m] [m] [m] [m]

250 x 500 11 13 12 15

500 x 750 14 22 23 24

500 x 500 16 25 23 25

750 x 500 10 21 10 25

500 x 250 14 22 16 22

Fig. 6. Chain length dsim and sweep translation wsim along the
communication range of the base (Fig. 5) reached by the swarm over 100
trials for desired area coverages of 250 m x 500 m, 500 m x 500 m, 750 m
x 500 m, 500 m x 250 m and 500 m x 750 m. No users are positioned in the
environment to determine the full extent of the swarm coverage. For each
of the five desired area coverage, we plot the mean coverage obtained in
simulation with a point and the standard deviations as bars extending from
this point.

B. Behavior

The trajectories of all the MAVs during a 30 min trial

can be seen in Fig. 7. As in the evolved system, the MAVs

are able to form a tight chain which reaches out from

their initial launching site. The MAVs in the chain are

then able to translate along the communication range of the

base, sweeping the area from West to East. Once an initial

connection between the base and the user in the environment

is created, it is maintained by having all MAVs turn following

the smallest possible turn radius.

C. Performance

All the users positioned within the desired search area of

500 m x 500 m are found by the swarm. Once a connection

between the base and a user is established, the probability of

receiving a data packet, sent every second from the base, at

the user end is given in Fig. 8. Results show that the median

probability is of 81%, this is sufficient to achieve usable

communication networks. The probability is not maximal

because the MAVs generally navigate at the edge of the

communication range of the base where they are subject to

noise and disconnections. Finally, although intermittent, the

communication links are maintained in 100% of the cases to

the end of the trial durations.

Fig. 8. Probability of receiving a data packet, sent every second from
the base, at the user end, when tested over 100 trials with users randomly
positioned in a 500 m x 500 m as shown in Fig. 5. Data packets are only
sent after the swarm has created a first connection from the base to the user.
The box has lines at the lower quartile, median, and upper quartile values.
The whiskers extend to the farthest data points that are within 1.5 times the
interquartile range. + symbols denote outliers.

V. CONCLUSION

Artificial evolution has proven to be a powerful

mechanism for the development of simple and yet efficient

controllers for robot swarms [4]–[10]. In order to extend

the applicability of these controllers to a wider range of

scenarios than those used during evolutionary experiments, it

is possible to reverse-engineer the simple evolved strategies.

Reverse-engineered controllers have the advantage of being

easy to parameterize for various scenarios.

Our aimed application envisions the deployment of a

swarm of fixed wing robots to serve as communication

relay between a base from which the robots are launched



Fig. 7. Trajectories of all the MAVs during a 30 min trial. The user is located in (400, 400). The trajectory of the first launched MAV is shown by a
light grey line. Notice the chain formation, sweeping and maintenance of the communication link between the base and the user.

and a single user present on the ground. Artificial evolution

was used to automatically design MAV controllers,

resulting in swarm strategies to create chains which can

sweep over a given area while maintaining a connection

with the base. After the swarm is able to establish a

communication link between the base and the user in the

environment, it is efficiently maintained throughout the

duration of the experiment [6]. We then reverse-engineer

these three strategies, namely chain formation sweeping and

maintenance. The resulting MAV controllers are very simple

and the value of their parameters can be rapidly optimized

given a desired area coverage.

In the future, we aim at taking advantage of our

understanding of reverse-engineered robot controllers

to provide the basis for a safeness and liveness analysis

of the swarm system [27], [28]. Furthermore, we are

investigating the effect of wind and its mitigation on

the flying robots as described in [24]. Finally, current

developments are aimed towards the implementation of the

robot controllers presented in this paper on actual MAV

platforms.

APPENDIX

A. Area coverage model

We aim at predicting the distance dpred reached by an

MAV chain and the translation wpred of the swarm sweeping

along the communication range of the base in Fig. 5.

During chain formation, n MAVs with a communication

range rcomm are launched on average every tlaunch seconds

and advance at speed v m/s. As long as MAVs are connected

to the base, they continue to advance as shown in Fig. 4

A. Once disconnected, they backtrack as shown in Fig. 4

B. As a result, the maximum distance reached by the chain

is equal to nrcomm. When MAVs are launched before the

chain has had time to advance sufficiently to disconnect

from the base, the overall distance d reached by the MAVs

is dependent on the average advancement speed of an MAV

v′ = 2v(r2−r1)
π(r1+r2)

when performing ωr1,r2,ψUS
(ψMAV ) (Sec.

III). Assuming r1 < r2, MAVs turn clockwise and the chain

is given sufficient time to entirely deploy, the maximum

distance dpred reached by the chain is given by

dpred = min(nrcomm, (n− 1)tlaunchv
′ + rcomm) (1)

As shown in Fig. 4 C, MAV chains sweep by alternating

between turn radii r1, r2, r3 and r4 based on their heading

and connection status to the base. It typically takes tdis
seconds for an MAV to realize that it is disconnected from

the base (time-out or update time). Because the MAVs move

together, we consider the advancement speed v′′ of the

sweeping chain as being identical to that of a single MAV.

The geometry of the trajectories gives us the maximum

translation wpred along the communication range of the base,

reached during a deployment of duration ttrial seconds:

wpred = (ttrial −
rcomm

v′
− ntlaunch)v

′′ (2)



where

γ =
vtdis

r2
ydis = r2sin(γ)

α = cos−1(
2r1r4 − r1r3 − r2r4 − ydisr1 + ydisr4

r1r3 − r2r4
)

β = cos−1(
2r2r3 − r1r3 − r2r4 + ydisr2 − ydisr3

r1r3 − r2r4
)

s = r1(π − β) + r2α+ r3(π − α) + r4β

t =
s

v
s′ = −r1sin(π − β) − r2sin(α)

+r3sin(π − α) + r4sin(β)

v′′ =
s′

t
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