
The engineering of concurrent simulations of complex systems

Fiona A. C. Polack Paul S. Andrews Adam T. Sampson

Abstract— Concurrent process-oriented programming is a
natural medium for simulating complex systems, particularly
systems where many simple components interact in an environ-
ment (which may itself be complex). There is little guidance
for engineering complex systems simulation. In the context of
simulation work to support immunological research, we explore
relevant approaches to modelling, and draw on concepts from
dependable and high-integrity systems engineering, including
the emphasis on the need to validate all aspects of the simula-
tion.

I. INTRODUCTION

Two software engineering issues in simulations of complex

systems are design modelling and validation. We explore

how these can be addressed, based on the experience of two

research projects on complex systems engineering1. We focus

on simulations designed to assist immunological understand-

ing, developed in close collaboration with immunologists at

the York Centre for Immunology and Infection (CII).

Our work addresses systems that are complex in the sense

of having elaborate behaviour at a high level that is the

consequence of many simple behaviours at a lower level.

The high-level behaviour cannot be deduced as a simple

combination of low-level behaviours. Time and the environ-

mental context are also critical. In a complex system, many

things happen in parallel, and thus a concurrent paradigm is

an obvious choice for computer simulation. Here, we focus

on simulations constructed as concurrent process-oriented

programs (POP).

Engineering guidance for such systems is limited. In

agent-based systems, support for complex systems sim-

ulation and agent modelling tends to be at the im-

plementation level (see, for instance, the ACE re-

sources, www.econ.iastate.edu/tesfatsi/ace.htm), and engi-

neering, though widely discussed, tends to focus on low-

level design and architectural issues. Our work draws heav-

ily on principles from state-of-the-art dependable systems

engineering. A guiding principle in dependable systems

engineering is that it must be possible to demonstrate how the

quality attributes of a system are met – that risks associated

with the system are as low as reasonably practicable (as

in UK Health and Safety Executive’s guidance on risk,

www.hse.gov.uk/risk/index.htm, and the UK MoD defence

standard 00-56 on safety requirements management). In

Fiona Polack and Paul Andrews: Department of Computer Science, Uni-
versity of York, YO10 5DD, UK: email{fiona,psa}@cs.york.ac.uk. Adam
Sampson: Computing Laboratory, University of Kent, Canterbury, UK: email
A.T.Sampson@kent.ac.uk

1The CoSMoS project, EPSRC grants EP/E053505/1 and EP/E049419/1,
www.cosmos-research.org/, is building capacity in generic modelling tools
and simulation techniques for complex systems; it follows on from a
feasibility study, TUNA, EPSRC grant EP/C516966/1, that investigated ways
to model and engineer complex systems using the occam-π language.

general, the safety (or security, reliability etc) of a system

is evaluated via a case that argues that risks are identified

and suitably mitigated; the argument is assessed by indepen-

dent evaluators (as, for instance, in the UK Civil Aviation

Authority air-safety certification processes).

Traditionally, computer simulation can be used in depend-

able systems engineering, but it is not considered suitable

as evidence in a dependability case. However, the need

to validate complex systems (such as human-scale systems

of systems – command and control, evacuation simulation)

has raised the profile of simulation in dependable system

development – see for example, recent work on the validity

of simulation evidence in safety assurance of systems of

systems [1].

There is a similar scepticism about the ability of computer

simulations to contribute to scientific research (see [2], [3],

[4], [5]). Computer simulations are often built by computer

scientists who are interested in a visual result (a game, an

imitation of Life), rather than any scientific reality. Typically,

a valid simulation is any program that produces the expected

(visual) results. At a slightly more rigorous level, there might

be an attempt to produce the expected results by a process

that looks a bit like reality, but there has generally been

little concern for the quality of the underlying simulation

[6]. Note that this lack of rigour extends also to the well-

respected mathematical models of many natural scientists –

it is rare to find an in-depth justification of the choice of

variables in models using differential equations, Markovian

or Bayesian processes. In the context of artificial life, Bullock

[4] represents an increasing concern in noting that, to assess

the role and value of complex systems simulation, we need

to address deep questions of comparability: we need a record

of experience, of how good solutions are designed, of how

to chose parameters and calibrate agents, and, above all, how

to validate a complex system simulation.

Our simulations are built in process-oriented programming

(POP) languages – mainly in the occam-π language (for

details of why we choose this approach see [7]). This is

a fast, efficient concurrent implementation medium. Because

there is typically a close analogy between complex system

components and programming processes, the construction

and maintenance of simulations is intuitive, and it is easy to

modify, adapt and reuse simulation programs [8]. Currently,

there are no software engineering methods for working with

POP media. Here, we report on our attempts to extend and

adapt approaches to the modelling and validation of computer

simulations.

217978-1-4244-2959-2/09/$25.00 c© 2009 IEEE

A. Some existing work on simulation engineering

Sudeikat et al [9] have an insightful review of multi-agent

system development methods, which focuses on matching

methods to the requirements of specific simulation targets.

Some of the reviewed methods are sophisticated software-

engineering approaches. For example, the Prometheus devel-

opment method for agent-oriented systems is illustrated in

Figure 1.

Fig. 1. The Prometheus development method [10]

Approaches such as Prometheus are based on general

object-oriented (OO) or procedural design methods. The

focus is on different system views (the agents, their data

and interactions, actions and object message-passing), rather

than on critical features of complex systems – the compo-

nents, their environment, and desired or undesirable emergent

behaviours. In software engineering terms, these approaches

do not provide the right tools for our POP approach. We can

characterise the general problem as one of continuity.

Continuity of paradigm is an important consideration in

software engineering. For example, object or class models

map cleanly on to OO programming, reducing the scope for

introducing inconsistencies between design and implemen-

tation. Problems arise where inappropriate design models

are used as the basis for implementation. Historically, this

has arisen whenever a new paradigm appears, as witness

methods from the 1990s that use procedural models such

as Jackson structures to design information systems (ie.

relational database applications – for example, SSADM [11])

or OO applications (as reviewed in [12, chapter 12]).

Continuity is improved if design models are compact.

However, the need to express designs through multiple views

can lead to continuity pitfalls. For example, an OO design

language such as UML [13] support many different views

of a system, but, currently, there is limited support for

consistency checking across views (this is being addressed in

the context of metamodelling and model-driven engineering,

but is not yet widely accepted). Although a UML class

diagram maps well to an OO program, the mapping from

the other design diagrams to OO program concepts is less

than obvious.

If design modelling can achieve continuity and consis-

tency, this helps in verifying a program. For POP, we need

modelling tools that are as simple as is compatible with

expressivity, and that allow us to identify and design the

components of a complex system, the environmental context

of the simulation, and the interactions of components with

each other and the environment. The design concepts also

need to map cleanly to POP programming concepts.

B. Some existing work on simulation validation

Validation checks that the right system is built – it is

about meeting requirements and quality (whereas verification
checks that the system is built right – it is about correctness

of construction). Here, we are concerned with scientific

validity as well as engineering validity. It must be possible

to demonstrate, with evidence, how models express the

scientific realities. Validity implies both adequate abstraction,

and adequate development processes.

In high-integrity systems engineering, the validation of

simulation has been a focus of interest since the late 1970s.

Although several groups [1], [14], [15] are now applying this

research to complex system simulations, until recently the

work had little impact outside its original context. The central

theme is Sargent’s development lifecycle [16], shown in Fig-

ure 2. The problem entity is the phenomenon to be modelled.

From understanding the problem entity, a conceptual model
is developed in a suitable representation – Sargent reviews

diagrammatic models [17], and also considers mathematical

or logical representations [16]. The computerised model
implements the conceptual model as a simulation.

(System)
Problem Entity

Data
Validity

Analysis

Modeling
andExperimentation

Validation
Model

Conceptual

Validation
Operational

Model
ConceptualComputerized

Model
Computer Programming

and Implementation

Model
Computerized

Verification

Fig. 2. Sargent’s model of the simulation development process [17]

The experimentation link between the problem entity and

the computerised model allows iterative trial-and-error sim-

ulation, with the models and results compared to the prob-

lem entity at each step. The model explicitly incorporates

verification (in the software engineering of the computerised

model) and validation – of all models against the problem

entity, and of the data used to test or populate the conceptual

218 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

and computerised models. The lifecycle has much in com-

mon with conventional software engineering lifecycles – it

presents a high-level summary of the necessary attributes of a

development, rather than a comprehensive guide to achieving

a high-quality engineered product.

Elsewhere [18], we consider how complex systems differ

from conventional systems, and use this understanding to

propose an extension to Sargent’s process [15], [19]. Essen-

tially, the components of a complex system can be designed

and verified by a conventional engineering process, but the

complex effects of the components only become apparent

when they are considered in their environmental context. A

small change in the environment can change the nature, and

even the occurrence, of high-level behaviours. In describing

the problem entity and developing the conceptual model,

the extraction of relevant environmental characteristics is as

important as the modelling of the components. As we noted

above, the quality of software engineering, and particularly

the feasibility of verification, is enhanced by continuity and

consistency. Given that we now have to model environment,

components and their interactions, there is an even greater

need to follow principles of continuity.

In relation to validation, Sargent [16] reminds us that a

model should be developed for a specific purpose... and its
validity determined with respect to that purpose. The level

of assurance also depends on the purpose of the simulation,

and should be set independently of the development of the

simulation – good software engineering practice.

Work on validation of non-complex system simulations

does not transfer easily to complex systems. Zeigler [20]

presents a theory for modelling and validation of simulations

predicated on a homomorphism between conceptual models

and simulations; he does not show how the homomorphism

is established. Sargent [16], focusing on the validation of the

computational model against the problem entity, proposes a

range of approaches to validation, summarised in Table I.

Many of Sargent’s validation techniques are inappropriate

for complex systems work. For instance, if we knew the

workings of the complex system well enough to understand

event validity and traces, we would not need a computer

simulation to help us understand it. The the most useful of

Sargent’s suggestions is the analysis of assumptions – which

he disguises under the historical theories of rationalism and

empiricism. It is rare for a research simulation to document

its assumptions and design decisions.

II. DESIGN FOR CONCURRENT SIMULATION

APPLICATIONS

We wish to engineer simulations of complex systems in

a process-oriented concurrent programming paradigm. We

need design notations that we can use to validate our models

with domain experts. The design notations need to admit

continuity in development, and be verifiable. We also need

to view the development process as part of the construction of

an argument of validity, which requires us to systematically

identify and record assumptions. In this section, we first

consider issues and possible solutions to the design problem.

TABLE I

WAYS TO VALIDATE SIMULATIONS (BASED ON [16])

Technique Comments on Sargent’s suggestions
Animation Graphical visualisation, of system be-

haviour or of operational parameters

Comparison Comparison to valid analytical models
or other simulation models

Degenerate and extreme
tests, parameter variability,
sensitivity analysis

Typical domain-style testing of be-
haviour under normal and extreme input
and operations

Event validity Compare the events in real and simu-
lated systems

Face validity Appeal to logic or domain experts to
validate model components or data

Historical data validation,
predictive validation

Either drive a simulation with historical
data and compare results to reality; or
drive a simulation on current data and
compare to independent predictions

Combination of traditional
methods:

Combine approaches using sound the-
ory, assumptions and empirical validity
checks

Rationalism Assumptions are rationally justifiable;
valid models arise from valid assump-
tions

Empiricism Assumptions and outcomes are empir-
ically validated

Positive economics The model can predict the future, so
causal relationships and mechanisms are
of no concern

Internal validity Used on stochastic models: comparison
of consistency of results across runs

Turing tests Can experts distinguish it from reality?

We then review the sorts and sources of assumptions in our

models.

A. Modelling for POP

Design processes targeting OO or procedural implemen-

tations are too elaborate for the POP paradigm. This can be

seen by considering POP and the way it is used in practice.

Here we consider design of occam-π programs, but many of

the principles apply more generally.

The occam-π programming language [21] is a practical

implementation of the concepts from Hoare’s CSP [22] and

Milner’s π-calculus [23]. As in CSP, an occam-π program

is a composition of parallel processes that communicate

using channels (two-way events) and barriers (multiway

events). Channels carry messages (structured data) between

processes; allowable messages on a channel are specified

using a protocol (see [24]). Each channel has a writing end

and a reading end; they may be used in a point-to-point

manner, or a channel end may be explicitly shared between

processes to allow any-to-one communication.

From the π-calculus, occam-π takes the concept of mo-

bility. Channels and barriers can be created dynamically;

channel and barrier ends are first-class objects that can be

transferred between processes at any time. Mobility allows a

process’s alphabet of events to vary during its execution, and

the network of processes to be dynamically reconfigured as

appropriate. New processes can be started dynamically, and

may themselves be first-class objects – mobile processes that

can be suspended and transferred over channels.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 219

In terms of verification, occam-π’s formal basis allows

the programmer to reason about the behaviour of concurrent

programs, and simple rules, expressed as design patterns,

make it possible to construct programs that are guaranteed

to have properties such as freedom from deadlock [25].

In addition, the occam-π compiler applies extensive static

checks that detect common concurrency errors. occam-π
is particularly appropriate for complex system simulation,

as a specialised language for process-oriented programming

with an efficient run-time scheduler, that allows real-time

simulation of millions of processes.

Process-oriented programs are often described using infor-

mal process diagrams of connections in a process network

at a particular instant (see [26]). Processes are drawn as

labelled boxes, triangles, circles, and so on. Different shapes

can be used to distinguish different uses of process in a

system. Channels are drawn as arrows in the direction of

communication, and shared channels as thick arrows to

which multiple processes may be connected. Figure 3 shows

a representation of part of our CII case study (below) with

agent processes drawn as circles.

HEV
Lumen

Lymph
Node

Rolling

L

LL
LL

Blood
Circulation

Fig. 3. The design of an occam-π program. Four processes, Blood
Circulation, HEV Lumen, Rolling and Lymph Node, are connected to each
other via each process’s shared channel (thick arrow). A lymphocyte process
(L) can also connect to a shared channel (based on [15])

Processes are used to represent the lymphocytes, and

the different states of lymphocytes. At a higher level of

abstraction, this is neatly expressed by a state chart – Figure

4 is a basic example.

In the design described in Figure 3, (at least in process-

oriented languages, using the client-server design pattern

which has been proved to be free from deadlock), the

simple state chart is sufficient to define the interaction of

this system. Each state machine transition is associated with

a biologically-derived probability; a lymphocyte has this

probability of engaging in a transition in any time step. In

the implementation, the channel connecting a lymphocyte

processes to a state process is passed to the next state

processes upon a transition. This is a common occam-π
pattern of channel mobility, used in many other simulations.

In a non-POP context, a method such as Prometheus has to

include separate interaction models to define object message

passing protocols. This is also the case in perhaps the

most impressive simulation of the immune system, Reactive

Animation [27], [28], [29], where the conceptual model

uses object diagrams, state charts, and live sequence charts

D
ra
in

Death
Enter HEV

Exit HEV

Migrate

C
apture

C
reation

D
is
as
so

ci
at

e

Lymph
Node

Rolling

Lumen
HEVBlood

Circulation

Fig. 4. A state chart abstraction of Figure 3. The four states (boxes) map
to the state processes. The linking lines are the permitted transitions, and
give rise to the directional channels (based on [15])

(for protocol description). The Harel state charts used by

Reactive Animation have transitions labelled with guards

(necessary firing context), and details of events generated by

the transition, to model cascading events; these alone would

be sufficient for the conceptual design of POP simulations.

In [19], we discuss other limitations of diagrammatic

models for simulation design. Diagrams represent static

structures – of data, of interaction. Spatial and temporal

characteristics of systems, that determine how components

can be laid out and evolve over time, cannot be captured in

static views. Furthermore, current diagramming approaches

focus on single components, and have difficulty expressing

the idea that there are many components. Even in OO

modelling approaches – where a class represents a set of

objects, each of which behaves as an individual in the

system – there are only limited ways of describing the

number of components that take part in the overall system

behaviour. Whilst we might use simulation to overcome the

temporal and spatial limitations of static modelling, we need

to be aware that we are always making assumptions about

the temporal, spatial, and collective aspects of the problem

entity to be simulated. However, within these limitations,

the state chart approach used here supports concurrent POP

implementation naturally. Our designs have led to very fast

simulations (of tens of millions of processes). The design

models and the implemented programs are easy to reuse and

adapt, and have been used in a range of applications from

robotics to biological simulation by researchers and student

projects.

B. Assumptions at each stage of development

In our work with CII, the collection and analysis of

assumptions has improved our understanding of the envi-

ronmental context. Furthermore, our biological collaborators

can see exactly the extent to which our simulations capture

their knowledge, and how gaps in their knowledge (as well

as ours) affect the understanding of the simulated biology.

220 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

The CII case study focuses on the behaviour of the

mammalian immune system, and in particular on rates of

transfer of lymphocytes (specialised white blood cells) be-

tween bodily blood circulation and lymph nodes. An account

of the biological background for a non-specialist audience

and a fuller account of the assumptions and issues can be

found in [15]. Here, we summarise the biology very briefly,

then consider the sorts of assumption made.

Lymphocytes migrate from the blood to the lymph node

through high-endothelial venules (HEV – small blood vessel

with a specialised endothelial cell lining). The biological de-

scription, after [30], has lymphocytes in a HEV encountering

the cell wall and being captured with a certain biochemically-

determined probability. A captured lymphocyte can initially

disassociate back into the HEV lumen (the inside, or content,

of the HEV), or it may become bound. Binding starts a

rolling effect, during which biochemical activation results in

slowing and finally adhesion to the endothelial cells. Finally,

the lymphocyte passes through the HEV membrane into the

lymph node. In the presence of infection, experimentalists

observe hypertrophy (swelling) of the lymph node. The case

study with CII aims to produce simulations that can be

used to explore hypotheses about why and how hypertrophy

occurs. For example, ultimately we should be able to test

hypotheses such as the increase in lymphocytes in the lymph
node during infection is due to HEV dilation.

In constructing suitable simulations, we follow a develop-

ment cycle similar to that in the Sargent model; we use that

structure here to summarise our assumptions.

1) Problem entity: Our starting point is the biological

literature, interpreted for us by expert collaborators at CII.

Thus, our problem entity is not the lymphocyte migration

and its context, but a particular biological understanding of

that reality (note that immunologists are unclear about some

aspects of the biological process).

We focus on a level of abstraction above the biochemistry

of attraction (an adhesion cascade of various cell-surface

receptors and molecules), and we ignore the wider context

of the lymphatic and blood circulations. This accords with a

proposition that we are exploring in CoSMoS, that complex

simulations can be layered – if we had a simulation of the

biochemistry, and a simulation of the circulation system, then

these could be used in the environment of the simulation of

the migration process, in place of some of the probabilities

that we use at the higher level.

Even in arriving at a mutually-acceptable understanding

of the problem entity, we have made a number of significant

assumptions. The main one is to reduce the multi-stage adhe-

sion cascade, with its biochemical receptors and activators,

to (a) the capture of a lymphocyte on the endothelial wall;

(b) rolling, to encompasses all processes from initial binding

to receipt of the chemokine signal for migration; and (c)

migration. Other stages in the cascade are assumed to be

deterministic.

Some more of the assumptions about the migration pro-

cess and about the environmental context, are given in the

following two lists, summarised from [15].

C1: The biological background, including CII experts’

advice on quantities and probabilities, is a sufficient,

correct and consistent basis for the simulation.

C2: There is no interaction between lymphocytes.

C3: A captured lymphocyte that reaches the rolling stage

will always migrate.

C4: All lymphocytes eventually exit to re-enter blood

circulation – they do not die during migration.

C5: All lymphocytes in a given state are equivalent: there

is no difference between a lymphocyte that enters the

HEV for the first time, a lymphocyte that has gone

through capture-and-disassociation, and a lymphocyte

that has already migrated and re-entered the HEV.

C6: There is no proliferation of lymphocytes during

migration.

C7: The probabilities of each change of state do not

change on the time scale of the simulation.

The environment of the system represents the parts of

the body with which lymphocytes interact in the migration

process. In our work so far, the environment model is

significantly simplified.

E1: All necessary environmental information is encoded

in biologically derived quantities and probabilities.

E2: The details of the structure of the HEV and its

biochemistry are not relevant to the simulation.

E3: No detail of the lymph node (that lymphocytes enter

if they migrate) is needed in the simulation.

E4: The different environmental conditions that the lym-

phocytes pass through can be represented as simple lym-

phocyte states, and the lymphocyte’s moving through

different environmental conditions can be represented

as transitions of lymphocyte state.

E5: There are no relevant effects from blood circulation

– blood flow is constant.

In our research, a crucial activity is recording how and

why we arrived at each assumption, and to what extent

it is accepted by the CII experts. (A similar approach is

taken in Reactive Animation [27], where the data that drives

the simulation is selected from explicit research reports, so

different researchers’ theories and findings can be compared).

2) Conceptual model: A conceptual model is a model that

has enough detail to understand and analyse the problem, but

does not commit the developer to a specific implementation.

Our conceptual model, Figure 4, can be implemented in many

different ways.

The conceptual model was derived from the problem entity

with several reviews by the CII experts. The validation of the

conceptual model is expressed in the process of acquiring

knowledge, extracting what is relevant to the chosen level of

abstraction, and checking that the understanding and assump-

tions were consistent with expert opinion. Note that, like any

validation of a non-deterministic system, the conclusion of

the validation is not that the conceptual model is correct, but

that within the abilities and understandings of all concerned,

it is a sufficient starting point. As in dependable systems

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 221

engineering, a validation conclusion can change in the light

of new evidence.

The assumptions about the problem entity translate into

assumptions about the conceptual model. Perhaps the key

assumption is that the transitions in the model represent

all the allowable transitions that are consistent with the

biological information and the assumptions.

3) Computational model: design: In moving from a con-

ceptual model to a simulation, we produce an occam-π
program design in which states map to processes and the

potential transitions map to appropriate channels. In the

design, a lymphocyte is created in the Blood circulation
state. At each time step in the simulation, a random variable

is used to determine whether each lymphocyte remains in

its current state or makes one of the possible transitions to

another state. On a transition, the communication channel for

the lymphocyte is transferred among state processes, using a

well-known and verified pattern in occam-π. The necessary

synchronisations are handled using the client-server design

pattern, which is proven deadlock free for this usage. Appeal

to well-defined and formally proven programming patterns

contributes to the verification of the simulation construction.

The conceptual model is a static representation of the

process structure, that maps cleanly on to the process ar-

chitecture of the occam-π program (Figure 3, above). A

simulation is an execution of a model over time. We assume

that it is realistic to implement time as atomic steps, and that

a lymphocyte process may change the state process to which

it is attached at each time step.

The update time step can be finer grained than the time

steps at which data is collected or a visualisation rendered.

The granularity of the different time steps can be adjusted so

that the simulation shows the fine detail evolving, or so that

the rendering (data collection) is more fluid (for instance, for

visual realism and to focus on observation of any emergent

behaviours).

In general, a complex system simulation is also sensitive

to the quantities of interacting components. We have not yet

addressed issues of quantity in any detail here2. From other

work we know that we can produce an efficient occam-

π implementation with enough lymphocyte processes to

approximate the biological scale (millions). Suffice to say

that the population of components in a model must also be

subject to validation activities – Sargent’s data validity.

In engineering terms, we construct an occam-π simulation

according to simple mapping assumptions – that states map

to processes and that a lymphocyte maps to a process

connected to a state process, and so on. Although continuity

of concepts makes validation straightforward here, these

mappings are also recorded in the catalogue of assumptions.

If (when) the simulation is found to be unrealistic, the

engineering assumptions must be examined as well as the

component and environmental assumptions.

2The TUNA project case study, which simulated artificial blood platelets,
introduced considerable variation in quantities of components and rates of
movement, with some interesting results.

4) Computational model: simulation: From the occam-π
design in Figure 3, we have so far constructed two simula-

tions. The first simply measures and reports the number of

lymphocytes in each state (the original biological objective).

In this version, the transition probabilities are closely related

to biological observation supplied by the biologists – from a

validation point of view, it is the biologists who are making

the assumptions, not the simulators.

The first simulation allows simple comparisons between

biological data and the simulation-derived data, which is an

important validation of the simulation against the problem

entity, but gives little insight into what might be happening

– just as monitoring vital signs has little to say about how a

mammal works.

A second simulation has been constructed from the same

occam-π design (Figure 3), in which the environment is

enriched to include a spatial dimension. Lymphocytes are

visualised moving through the HEV, with colour-coding of

different states. The visualisation is programmed to refresh at

each simulation time-step. Again, we use relatively simple,

well-understood, and efficient, occam-π patterns to create

this extension.

The inclusion of space in the simulation requires more

design decisions, which are added to the catalogue of as-

sumptions. Rather than detail these extensive assumptions,

here we summarise one set of issues, relating to simulation

of lymphocytes in the HEV. In consultation with CII experts,

we simulated the HEV as a homogeneous tube, the diameter

of which can be changed in a biologically-realistic manner.

However, we know that the simulation is not realistic – that

the inner surface of a HEV is not smooth and its texture

changes with its diameter; that, in general, fluid flow through

a tube is not even. Thus, our spatial assumptions are seen to

be more tenuous than the earlier assumptions. Essentially, we

need information from other branches of biology to complete

the spatial model and to use the simulation to address

hypotheses that relate hypertrophy to rates of migration. The

CII experts are consulting other experts, and designing new

experiments to explore the new questions that the spatial

simulation has raised.

When we add a spatial dimension to the simulation, we

raise new issues relating to the biologically-derived proba-

bilities. The data from biological experiments is for points in

time, and does not reflect any three-dimensional or dynamic

aspects of the real HEV context. However, when we simulate

in three dimensions, we program lymphocytes to be captured

(with a certain probability) only when in contact with the

HEV lining. This is biologically accurate, but the point-

in-time data cannot provide the probabilities needed to run

the new simulation. It is ongoing, non-trivial, work to find

good probabilities, but because of the way assumptions and

decisions are documented, we can easily determine where

and how the new inconsistencies affect the validity of the

simulation. Ultimately, we would hope to engineer in more of

the environmental context, to reduce reliance on probabilities

and increase the scope for – hopefully realistic – emergent

222 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

lymphocyte behaviours, that can be analysed in simulation

to gain insight into the real process of lymphocyte capture.

Two final observations are worth recording. First, the

creation of the computational model raised so many issues

that, even before the model was complete, validation against

the problem entity and experimental trial-and-error iteration

had started – but the experimentation is as much about

improving the understanding of the problem entity as it is

about improving the simulation. Second, as it happens, the

CII experts do find even the “invalid” spatial simulation

useful, so we could claim that we have met at least part

of the engineering goal!

III. DISCUSSION

This brief summary of our simulations of lymphocyte

migration using POP is the first phase of our research into

engineering complex systems simulation. The development

that we have done so far uses intuition, ad hoc analysis,

and unstructured recording. Validation is based on recording

all the assumptions and decisions that we noticed, and

discussing each stage and the results with the CII experts.

We are looking to dependable and high-integrity systems

engineering for guidance as to how to systematise our

development process. Two areas are particularly relevant:

argumentation and systematic analysis.

Validation is the process of arguing the validity of some-

thing from the evidence available. This applies equally

in scientific research and in engineering systems such as

simulations. Support for argumentation is well developed

in safety-critical systems engineering, and has been applied

to other dependability areas. A safety case (for example as

part of the certification of a new aircraft) is made via a

safety case argument; the argument structure is summarised

diagrammatically, to assist evaluation of the case. Note that

just as a safety argumentation never establishes that a system

is absolutely safe (no system is safe unless it is totally

closed and inert), an argument of validity merely states

the case for validity, exposing it to critical consideration –

exactly what is needed when working with domain experts

to construct simulations for scientific research. In any natural

complex system, we cannot expect to provide a gold-plated

guarantee of equivalence between our conceptual model and

the problem entity – indeed, if the model contained all the

complexity needed to exactly mimic the natural system, it

would be intractably large, and too complex to provide any

new research insight.

An argument is expressed as a proposition, and is reasoned

on the basis of some premises, to reach a conclusion. A

variety of textual and diagrammatic techniques allow an

argument to be presented with a degree of formality –

exposing the premises to analysis and scrutiny [31]. A

common approach is to represent the case using the Goal

Structuring Notation [32] – this is used commercially for

safety cases, and has also been applied to aspects of system

dependability [33], including two “thought experiments” on

a hypothetical blood platelet system [34], [35]. Some work

already exists on the role of argumentation in design [36].

In [15], we present initial work on a validation argument for

the Capture transition in the CII case study.

Systematic analysis is also a feature of any form of

critical systems engineering. In constructing a dependability

argument, it is necessary to identify as many issues (hazards,

threats) as possible. Systematic deviational techniques are

used to challenge assumptions, decisions, and model com-

ponents (see [37], [38]). A typical example is Hazard and
Operability (HAZOP). Developed initially for analysing the

designs for chemical plants, the HAZOP approach comprises

systematic application of guidewords to components of a

model. The guidewords vary with application – for example

the UK Defence Standard 00-58 provides guidewords for use

on systems containing programmable electronics.

A systematic deviational approach would systematically

challenge each of our assumptions and model components.

For example, we make assumptions, based on the biological

advice, about the size of a lymphocyte relative to the HEV.

A deviational analysis might ask us to consider at least the

following:

• All lymphocytes are larger/smaller relative to the HEV;

• Some lymphocytes are larger/smaller than others;

• Some HEV sections are larger/smaller than others;

• Even though the relative sizes are correct, lymphocytes

differ in some other way, such as their attraction to the

HEV lining.

Having checked each deviation, we can then construct this

part of the validation argument, using as evidence the support

from (cited) literature and (named) experts that our sizes are

valid.

Because we are working in a developing area of biology,

we know that subsequent research may show that our as-

sumptions and evidence are inappropriate. The validation

argument, and the records of assumptions, decisions and

evidence, provide a basis for revising the models, and then

revising the simulation – rebuilding all the necessary valida-

tion arguments accordingly.

Similarly, if we ultimately produce a layered simulation,

in which, for example, capture and rolling is an emergent

effect from a lower-level simulation (suitably validated)

of the biochemistry, then we would have to modify the

validity argument to refer to evidence of the validity of the

biochemical model and of the validity of assumptions about

the lymphocyte and HEV biochemical interaction.

Note that we have already encountered situations where

the interplay with the CII experts has produced revised

understanding of the problem entity – either because the

experts have spotted places where we have misinterpreted

their advice, or because the experts have improved their

knowledge of the migration environment. Tables of assump-

tions and biological details support traceability through the

modelling and simulation process, and experts can inspect

them to highlight inconsistencies.

There is much work still be to done on validation of

complex system models and simulations. As well as reflect-

ing state-of-the-art dependable and high-integrity systems

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 223

engineering analysis and argumentation techniques, we need

to investigate structured ways to lay out our assumptions,

design decisions and biological evidence. We also need to

establish schemes for mapping between our biological details

and simulator parameters. We intend ultimately to establish

patterns of development and patterns of validation that are

applicable to the validation of many different complex sys-

tems.

IV. ACKNOWLEDGEMENTS

This work is part of the CoSMoS project, funded by

EPSRC grants EP/E053505/1 and EP/E049419/1. The orig-

inal immunological model is based on collaborative work

with Lisa Scott and Mark Coles from the York Centre for

Immunology and Infection, University of York, UK, and

extensive discussion with Jon Timmis of the Departments

of Computer Science and of Electronics, University of York,

UK. Work on continuity in modelling draws on discussion

with Tim Hoverd, Susan Stepney, and other CoSMoS re-

searchers.

REFERENCES

[1] R. Alexander, “Using simulation for systems of systems hazard analy-
sis,” Ph.D. dissertation, Department of Computer Science, University
of York, 2007.

[2] G. F. Miller, “Artificial life as theoretical biology: How to do real sci-
ence with computer simulation,” School of Cognitive and Computing
Sciences, University of Sussex, Tech. Rep. Cognitive Science Research
Paper 378, 1995.

[3] E. D. Paolo, J. Noble, and S. Bullock, “Simulation models as opaque
thought experiments,” in Articial Life VII. MIT Press, 2000, pp.
497–506.

[4] M. Wheeler, S. Bullock, E. D. Paolo, J. Noble, M. Bedau, P. Husbands,
S. Kirby, and A. Seth, “The view from elsewhere: Perspectives on alife
modelling,” Artificial Life, vol. 8, no. 1, pp. 87–100, 2002.

[5] J. Bryden and J. Noble, “Computational modelling, explicit mathemat-
ical treatments, and scientific explanation,” in Artificial Life X. MIT
Press, 2006, pp. 520–526.

[6] J. M. Epstein, “Agent-based computational models and generative
social science,” Complexity, vol. 4, no. 5, pp. 41–60, 1999.

[7] P. S. Andrews, A. T. Sampson, J. M. Bjorndalen, S. Stepney, J. Timmis,
D. N. Warren, and P. H. Welch, “Investigating patterns for the process-
oriented modelling and simulation of space in complex systems,” in
Artificial Life XI. MIT Press, 2008.

[8] C. G. Ritson and P. H. Welch, “A process-oriented architecture for
complex system modelling,” in Communicating Process Architectures
2007, vol. 65. IOS Press, 2007, pp. 249–266.

[9] J. Sudeikat, L. Braubach, A. Pokahr, and W. Lamersdorf, “Evaluation
of agent-oriented software methodologies – examination of the gap
between modeling and platform,” in AOSE 2004, ser. LNCS, vol. 3382.
Sringer, 2004, pp. 126–141.

[10] L. Padgham and M. Winikoff, “Prometheus: A methodology for
developing intelligent agents,” in AOSE III, ser. LNCS, vol. 2585.
Springer, 2003, pp. 174–185.

[11] CCTA, SSADM Version 4 Reference Manual. NCC Blackwell Ltd,
1990.

[12] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
Object-Oriented Modelling and Design. Prentice Hall, 1991.

[13] P. Stevens and R. Pooley, Using UML, 2nd ed. Pearson, 2006.
[14] O. Paunovski, G. Eleftherakis, and T. Cowling, “Framework for

empirical exploration of emergence using multi-agent simulation,” in
Workshop on Complex Systems Modelling and Simulation. Luniver
Press, 2008, pp. 1–31.

[15] P. S. Andrews, F. Polack, A. T. Sampson, J. Timmis, L. Scott,
and M. Coles, “Simulating biology: towards understanding what the
simulation shows,” in Workshop on Complex Systems Modelling and
Simulation. Luniver Press, 2008, pp. 93–123.

[16] R. G. Sargent, “Verification and validation of simulation models,” in
37th Winter Simulation Conference. ACM, 2005, pp. 130–143.

[17] ——, “The use of graphical models in model validation,” in 18th
Winter Simulation Conference. ACM, 1986, pp. 237–241.

[18] F. Polack, S. Stepney, H. Turner, P. Welch, and F. Barnes, “An
architecture for modelling emergence in CA-like systems,” in ECAL,
ser. LNAI, vol. 3630. Springer, 2005, pp. 433–442.

[19] F. A. C. Polack, T. Hoverd, A. T. Sampson, S. Stepney, and J. Timmis,
“Complex systems models: Engineering simulations,” in ALife XI.
MIT press, 2008.

[20] B. P. Zeigler, “A theory-based conceptual terminology
for M&S VV&A,” Arizona Center for Integrative Mod-
eling and Simulation, Tech. Rep. 99S-SIW-064, 1999,
www.acims.arizona.edu/PUBLICATIONS/publications.shtml.

[21] P. Welch and F. Barnes, “Communicating mobile processes: introduc-
ing occam-pi,” in 25 Years of CSP, ser. LNCS, vol. 3525. Springer,
2005, pp. 175–210.

[22] C. Hoare, Communicating Sequential Processes. Prentice-Hall, 1985.
[23] R. Milner, The Pi Calculus. Cambridge University Press, 1999.
[24] A. T. Sampson, “Two-Way Protocols for occam-π,” in Communicating

Process Architectures 2008, WoTUG. IOS Press, 2008, pp. 85–97.
[25] J. Martin and P. Welch, “A Design Strategy for Deadlock-Free Con-

current Systems,” Transputer Communications, vol. 3, no. 4, 1997.
[26] P. Welch and F. R. Barnes, “A CSP Model for Mobile Channels,”

in Communicating Process Architectures 2008, WoTUG. IOS Press,
2008, pp. 17–33.

[27] D. Harel, Y. Setty, S. Efroni, N. Swerdlin, and I. R. Cohen, “Concur-
rency in biological modeling: Behavior, execution and visualization,”
in FBTC 2007, ser. ENTCS, vol. 194, no. 3. Elsevier, 2007, pp.
119–131.

[28] S. Efroni, D. Harel, and I. R. Cohen, “Reactive Animation: realistic
modeling of complex dynamic systems,” IEEE Computer, vol. 38,
no. 1, pp. 38–47, 2005.

[29] I. R. Cohen and D. Harel, “Explaining a complex living system:
dynamics, multi-scaling and emergence,” Journal of the Royal Society
Interface, vol. 4, pp. 175–182, 2007.

[30] K. Ley, C. Laudanna, M. I. Cybulsky, and S. Nourshargh, “Getting
to the site of inflammation: the leukocyte adhesion cascade updated,”
Nature Reviews Immunology, vol. 7, no. 9, pp. 678–689, 2007.

[31] T. P. Kelly, “Arguing safety – a systematic approach to managing
safety cases,” Ph.D. dissertation, Department of Computer Science,
University of York, 1999, yCST 99/05.

[32] R. A. Weaver, “The safety of software – constructing and assuring
arguments,” Ph.D. dissertation, Department of Computer Science,
University of York, 2003, yCST-2004-01.

[33] G. Despotou and T. Kelly, “Design and development of dependability
case architecture during system development,” in 25th International
System Safety Conference. System Safety Society, 2007.

[34] R. Alexander, R. Alexander-Bown, and T. Kelly, “Engineering safety-
critical complex systems,” in Workshop on Complex Systems Modelling
and Simulation. Luniver Press, 2008, pp. 33–63.

[35] F. Polack, “Argumentation and the design of emer-
gent systems,” working paper, available at www-
users.cs.york.ac.uk/˜fiona/PUBS/Arguments.pdf.

[36] W. Wu and T. Kelly, “Towards evidence-based architectural design
for safety-critical software applications,” in Architecting Dependable
Systems, ser. LNCS, vol. 4615. Springer, 2007.

[37] D. J. Pumfrey, “The principled design of computer system safety anal-
yses,” Ph.D. dissertation, Department of Computer Science, University
of York, 2000, yCST 2000/05.

[38] T. Srivatanakul, “Security analysis with deviational techniques,” Ph.D.
dissertation, Department of Computer Science, University of York,
UK, 2005, yCST-2005-12.

224 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

