
Birds on the Wall: Distributing a Process-Oriented Simulation

Adam T. Sampson, John Markus Bjørndalen and Paul S. Andrews

Abstract— The CoSMoS project aims to develop reusable
tools and techniques for complex systems modelling and simula-
tion. Using process-oriented software design techniques, we have
built a concurrent model of continuous space, usable in a variety
of complex systems simulations. In this paper, we describe how
we refactored our space model to allow our simulations to run
in an efficient and highly-scalable manner across clusters of
commodity machines—and, in particular, to support distributed
simulation and visualisation on the Tromsø Display Wall.

I. INTRODUCTION

The CoSMoS project1 aims to develop a common frame-

work for the modelling and simulation of complex sys-

tems using process-oriented software design, including a

modelling process, a set of design patterns and refactoring

procedures, and a toolkit of reusable software components.

CoSMoS takes a case-study-based approach to the devel-

opment of modelling techniques. We have implemented a

variety of textbook and real-world complex systems using

process-oriented approaches, including ant colonies, bird

flocking, chemical diffusion, small-world networks, symbol

rewriting systems and a variety of immunological models.

In addition, the TUNA project (a pilot for CoSMoS) imple-

mented simulations of cellular automata [1] and haemosta-

sis [2]. From these case studies, we extract design patterns

that can be applied to solve common problems in complex

systems modelling and simulation.

One well-known complex system is Reynolds’ boids [3],

a simulation of emergent flocking behaviour in birds. Boids

are independent agents moving around in continuous N-

dimensional space; we use two-dimensional space here for

simplicity. They have a limited field of view (an arc with a

fixed radius immediately in front of them; see Figure 1), and

follow a set of simple rules to decide their behaviour based

upon the other agents they see:

• move toward the centroid of the visible flock;

• match the mean velocity of the visible flock;

• move away from other agents if they are very close.

These rules cause flocks to form as an emergent behaviour.

Boids is typically implemented by having each rule compute

a force acting upon the boid; the forces are summed to

produce the boid’s velocity at each timestep.

Boids is of particular interest to CoSMoS as a case study

because it includes a number of common elements in com-

plex system models: boids must move in continuous space,

they must be aware of other agents in their neighbourhood;

Adam Sampson is with the Computing Laboratory, University of Kent,
UK (email: ats@offog.org). John Markus Bjørndalen is with the Department
of Computer Science, University of Tromsø, Norway. Paul Andrews is with
the Department of Computer Science, University of York, UK.

1http://www.cosmos-research.org/

and they may react differently to different types of agents.

In addition, the boids model can be easily modified by the

addition of new rules (for example, to follow a particular

path, or to react to predators or food); it operates well at a

variety of levels of scale (from a handful of boids up to tens

of thousands), and it has a straightforward visualisation in

which anomalous behaviour can be easily spotted.

A display wall is a large, high-resolution display system

for scientific applications, built by tiling a number of smaller

displays [4]. The Tromsø Display Wall [5] consists of 28

projectors arranged in a 7x4 matrix, back-projecting onto

the wall of a meeting room. The resulting display has a

total resolution of 7168x3072 pixels (22 megapixels), and a

diagonal size of 230”. Each projector is driven by a dedicated

PC, with the resulting 28-node cluster is connected by gigabit

Ethernet. As the Display Wall was constructed entirely from

commodity components, its overall cost was relatively low.

The Display Wall [5] is an ideal system for visualising

large-scale simulations such as those built by CoSMoS.

While many existing Display Wall applications Wall have

a simulation running elsewhere and use the cluster hosts

only for distributed visualisation (or even as relatively-

dumb displays), we would like to take advantage of the

computational power available in the cluster to perform a

distributed simulation with local visualisation. In this paper,

we will describe the process-oriented model of space that

we have developed for simulations of systems such as boids,

and how we have modified it to run efficiently on clusters of

machines such as the Display Wall.

Section II gives a brief introduction to process-oriented

programming, and the facilities we have used in our sim-

ulation. In section III, we describe our existing model of

space upon a single host. Section IV describes the refactoring

process that we applied to distribute our simulation across

field of view

boid

Fig. 1. Boids in two-dimensional space.

225978-1-4244-2959-2/09/$25.00 c© 2009 IEEE

multiple hosts. In section V, we discuss the problems arising

from distributed visualisation upon the Display Wall. Finally,

section VI gives our conclusions and plans for future work.

II. PROCESS-ORIENTED PROGRAMMING

The CoSMoS approach to software engineering is based

upon process-oriented programming, which emphasises the

construction of isolated, concurrent, lightweight processes
that only interact using clearly-defined interfaces. The core

ideas of process-oriented programming derive from the

CSP [6] and π-calculus [7] process algebras, making it

possible to reason formally about the behaviour of individual

processes and the system as a whole.

A number of software libraries and specialised program-

ming languages are available to support process-oriented

programming in a safe, efficient way; in particular, the

CoSMoS project makes use of occam-π [8] and JCSP [9].

occam-π is a concurrent procedural language with support for

extremely lightweight communication and synchronisation

between processes; the occam-π compiler performs a variety

of static checks to detect common concurrency errors at

compile time. JCSP is a library for Java that provides

process-oriented programming facilities on top of Java’s

native threading model; it allows process-oriented systems

to be constructed that can make use of and integrate with

existing Java code.

We believe that process-oriented programming is an effec-

tive approach for complex systems simulation because many

complex systems are themselves inherently highly concur-

rent. Using a process-oriented approach, concurrent entities

such as agents can be modelled directly as processes. The

resulting simulation expresses a high degree of parallelism,

with agents able to execute their behaviours concurrently.

With appropriate runtime load-balancing support—such as

that provided in the KRoC occam-π implementation [10]—a

process-oriented system can take direct advantage of multi-

core CPUs and other parallel hardware.

Many process-oriented programs make use of the client-
server pattern [11], in which server processes respond to

requests from client processes. Servers and clients are joined

using client-server connections, typically implemented using

pairs of communication channels. While a server may only

deal with one client at a time, server interfaces can be

shared, allowing multiple clients to compete for access to

the same server. Clients and servers may have arbitrarily long

conversations over a connection with several messages sent

in either direction. A server may itself act as a client to other

servers while fulfilling the client’s request; the structure of a

client-server system is typically a tree.

The set of messages that may be exchanged on a particular

client-server connection is described by a protocol [12].

Compile-time checks ensure that processes follow their

protocols. The client-server design rules describe how to

construct client-server relationships between processes so as

to ensure that the resulting system will be free from deadlock

and livelock. Server processes are often used in process-

oriented programming as a safer alternative to objects located

client

client/server

server

connection
private

connection
shared

Fig. 2. Client-server relationships between processes.

in shared memory. We design client-server systems (and

process networks in general) using an informal graphical

language; see Figure 2 for an example.

Barriers are often used to provide all the agents in a

simulation with a shared sense of time. A barrier is a

synchronisation object visible to a number of processes.

When a process tries to synchronise upon the barrier, it will

be blocked until all the processes that can see the barrier

are also trying to synchronise upon it; once all processes

are engaged, the barrier completes and the processes can

continue. (A barrier is therefore equivalent to a CSP event.)

The simplest way to regulate simulation time using barriers

is to have each process synchronise on a shared barrier at

the end of each timestep; that way, no process can enter the

next timestep until all the others have finished the previous

one. While this is sufficient for the boids simulation, it is

somewhat inefficient in that every process must take part

in every timestep. More elaborate schemes can be used

to provide for multiple timescales or more flexible timing

requirements within a more complex simulation.

It is often useful to subdivide each timestep into several

phases [13], with a barrier synchronisation by all interested

processes at the end of each phase. A model with agents

viewing an environment could use two phases: in the first

phase, all the agents would obtain a view of their surround-

ings, and in the second phase, they would perform their

movement actions for the current timestep. This approach

ensures the consistency of the simulation—the view will not

change before all the agents have obtained it—while still

allowing the agents’ computations to proceed in parallel.

III. MODELLING SPACE

Occoids, our implementation of the boids model, is written

in occam-π. It features two types of agents: boids, which

follow the boids rules, and trees, which have no behaviour

and simply act as obstacles for the boid flocks to navigate

around.

A. Modelling Position

While discrete positioning is sufficient for systems such

as cellular automata, in order to simulate a system like boids

it is preferable to allow coordinates to be real numbers. We

226 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

model space as a regular grid of location server processes,

each of which represents a region of continuous space which

may contain any number of agents [14]. Each agent is a client

to the location it occupies. Dividing our space model into

multiple processes allows agents to find out about nearby

agents while avoiding contention on a centralised store of

agent positions.

A location keeps a record of the agents it currently

contains, along with their positions relative to the centre of

its region. Each location is provided with references to the

server interfaces of its eight neighbouring locations (although

it does not communicate with them directly itself). Agent

positioning is therefore entirely relative, with no inherent

need for a global coordinate system; this allows space to

be dynamically extended, and unusual spatial topologies to

be constructed.

The interface provided by location processes supports

three requests:

• enter, sent by an agent when it first enters a location

along with an initial position;

• move, sent by an agent when it wants to move, along

with a velocity vector that will be added to its current

position;

• look, which responds with a list of the agents in the

location.

The server will respond to enter and move requests with

one of two responses:

• stay-here, if the agent can stay in the current location;

• go-there, if the agent has moved across a location

boundary, along with a reference to the new location’s

server interface and a position relative to that location’s

centre.

In order to move, an agent sends a move message to its

location giving its velocity. If the server replies stay-here,

no more needs to be done. If it replies go-there, the agent

must send an enter message to its new location. The new

location may in turn reply either stay-here or go-there; the

agent simply repeats this process until it receives a stay-
here response. This allows an agent to move across several

locations in one step, without the locations needing to know

about anything other than their immediate neighbours.

B. Modelling Vision

At the start of each timestep, each boid must look around

to find the other agents within its field of view. One way to

achieve this would be for each boid to directly interrogate

all the locations that intersect its field of view—but this is

inefficient, because each boid must perform several commu-

nications, and awkward because it requires each boid to be

a client to all the locations it can see into as well as the

location it is in.

Instead, each location has a corresponding viewer process,

which at the start of each timestep interrogates the surround-

ing location processes and builds a view list containing all

the agents that may be visible to an agent inside its location,

and their positions relative to the centre of its location. (At

present, we restrict the maximum radius of a boid’s field of

view to be the width of a location, so the viewer process

only needs to interrogate its location and its immediate

neighbours.) We split each timestep into two phases to ensure

that the viewer processes have all obtained a consistent view

of the world before the agents start moving around.

The viewer provides a server interface that responds to

a look message with its current view list—which the agent

must filter to extract only the other agents that are actually

within its field of view, and to exclude itself. We extended the

location protocol so that when an agent enters a location, it is

given a connection to the corresponding viewer. The viewer

is therefore shared between all the agents in a location, and

the view needs only to be assembled once per timestep.

C. Modelling Agents

Many simulations need to include multiple types of agents

with different behaviours. To make this easier, we divide the

responsibilities of the agent as described above into a pair of

processes: an agent process and a behaviour process, joined

by a private client-server connection.

The agent process implements the movement and viewing

algorithms as described above, and provides a simple server

interface that understands the following requests:

• move, with a velocity vector, producing no response;

• look, which causes the agent to respond with the current

view.

The behaviour process implements the behaviour appro-

priate for the agent’s type. A boid’s behaviour process

repeatedly retrieves the view with a look request, applies the

boids rules to the result, and sends a move request with the

computed velocity. A tree’s behaviour process does nothing.

Using this approach, the details of the space model are

entirely hidden from the behaviour process. This makes it

straightforward to add new types of agents to the simula-

tion, since the programmer only needs to implement a new

behaviour process and can reuse the existing agent process.

Furthermore, we can change the implementation of the space

model by changing only the agent process.

Process creation is cheap in process-oriented systems, so

the overheads of abstracting common behaviour out into a

separate process in this way are minimal—comparable to

abstracting shared behaviour out into a superclass in an

object-oriented system.

D. A Complete Simulation?

Figure 3 shows a sample process network for the single-

host simulation. An overview of the protocols and phases

used in the simulation are shown in Figures 4 and 5 respec-

tively.

The simulation we have described is highly concurrent—

agents compute their movement vectors in parallel—and

owing to the occam-π runtime’s load-balancing support, it

can already take advantage of multiple CPU cores on a single

host. However, in order to run bigger simulations, or to make

use of distributed visualisation, we need to able to distribute

the simulation across a cluster of hosts.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 227

agent

behaviour

location location location

viewer

Fig. 3. An agent in one-dimensional space, in the single-host simulation.

IV. DISTRIBUTING THE SIMULATION

A. An Initial Approach

Our first approach was to distribute our existing the space

model by splitting up our existing process network across

multiple hosts in the cluster: each host therefore simulates

a region of space by running the location processes corre-

sponding to that region.

This can be achieved with relatively little effort using

pony [15], a transparent networking system for occam-π.

pony provides network channels that have the same semantics

as local channels, but operate between hosts over a network.

Network channels therefore have much higher latency than

local channels. In addition, where local channels can simply

move references to memory between processes upon commu-

nication, network channels must copy data. A local channel

is automatically upgraded to a network channel if one end

of it is sent over the network. In addition, pony provides

a nameserver that lets a distributed occam-π application

discover and assemble its components.

Network channels can be used to construct client-server

connections over a network in the same way as local

channels. Converting a local application to a distributed

location
= (enter | move(VECTOR))

-> (stay-here | go-there(LOCATION))
| look -> VIEW-LIST

viewer
= look -> VIEW-LIST

agent
= move(VECTOR)
| look -> VIEW-LIST

Fig. 4. Protocols in the single-host simulation.

1. Viewer processes update

2. Agent processes retrieve views and perform actions

Fig. 5. Phases in each timestep of the single-host simulation.

application using pony is usually very straightforward, since

only the initial setup of the application’s channels needs to

be changed.

We modified our simulation so that it allocated network

channels rather than local channels for the client-server

connections between locations that are on opposite sides of

a host boundary. The resulting simulation ran correctly—but

very slowly. In addition, the performance became steadily

worse as time progressed. This was the result of two prob-

lems:

• Firstly, on each timestep, all the viewer processes re-

quest the contents of the locations they are viewing.

For viewer processes on the “edge” of a host, this means

transferring the view over the network from one or more

locations, rather than simply moving a reference locally.

Furthermore, since each location is seen by multiple

viewers, the view is transferred multiple times.

• Secondly, while boids move around in virtual space,

their agent and behaviour processes remain on the host

they started on—and are thus communicating with their

locations and viewers over a high-latency, data-copying

network connection. This is by far the more significant

effect, and is the cause of the simulation slowing down

as more boids migrate between hosts.

B. Refactoring the Model

In order to get good performance from our simulation, we

needed to refactor our model of space so that it presented

the same behaviour to agents, while significantly reducing

the number of network communications.

To fix the first problem, we introduced ghost processes.

A ghost process acts as a local proxy for a location on the

other side of a network connection, providing the same server

interface as the location. (Ghost processes are therefore an

instance of the remote proxy pattern [16] that is common in

distributed applications.) In a new phase added at the start of

each timestep, each ghost requests a view from its location

and caches the result; when it receives a view request, it can

respond immediately with the cached view without needing

to consult the real location. Ghosts handle other requests by

forwarding them to the underlying location.

In order to solve the second problem, we needed to move

processes around between hosts: when a process attempts to

cross a host boundary by moving to a location on a different

host, it should be checkpointed, terminated on the current

host, and restarted on the destination host. The occam-π
language provides limited facilities for first-class suspendable

processes in the form of mobile processes [17], but pony

does not yet support sending mobile processes between hosts;

fortunately, the same idea is relatively straightforward to

implement by hand.

We extended the location protocol so that the enter
message may elicit a suspend response. When the agent

receives suspend, it generates a representation of its internal

state, sends it back to the location in a suspended message,

and then terminates. The location is then responsible for

228 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

agent

location

ghost

location

behaviour

location

viewer

host 2host 1

Fig. 6. One-dimensional distributed space, showing a ghost process.

restarting the agent using the saved state on the destination

host—which will be the host that the location is running on.

Similarly, we extended the agent protocol so that suspen-

sion could happen upon a move. Unfortunately, the behaviour

processes must be modified to support suspension; this is

straightforward enough for simple agents such as boids

that loop performing the same action, but would be more

awkward for agents with complex internal control flow; better

language support for explicit process suspension would make

this more straightforward.

To detect when an agent is crossing a host boundary, we

used the ghost processes. If an agent is trying to enter a

ghost process, it must be crossing a host boundary, so the

ghost can always respond to enter with suspend. The location

protocol was extended with a start-new request that causes

a new agent to be spawned with a provided initial state; this

is used by ghost processes to restart suspended agents, and

is also useful for dynamically injecting new agents into a

running simulation.

Figure 6 shows a sample process diagram for the refac-

tored distributed simulation; Figure 7 shows the extended

protocols, and Figure 8 shows the phases.

We measured the performance of the resulting simulation

on a 31-node cluster at Kent with the same network archi-

tecture as the Display Wall. We found that the simulation

speed was (within a margin of error) independent of the

number of hosts in the simulation—as expected, since all

the hosts perform their communications in parallel, and

only communicate with their immediate neighbours—which

demonstrates excellent scalability: the simulation size can be

increased by adding more nodes to the simulation. However,

the time taken per simulation timestep was significantly

larger when running on the cluster than when running on

a single host—owing to the latency involved in network

communication.

C. Asynchronous Messaging

Since the clusters available to us are built from commodity

PC hardware with conventional network interfaces and off-

the-shelf operating systems, there is nothing we can reason-

ably do about the latency inherent in network communica-

tion, interrupt handling or operating system processing. On

the other hand, we can speed up the simulation by avoiding

round trips across the network—cases where we send a

packet and have to wait for a reply until we can continue,

incurring two lots of network transmission latency.

Both occam-π’s local channels and pony’s network chan-

nels implement the full CSP synchronisation semantics: a

write will block until there is a corresponding read, and vice

versa. This requires a network round trip to acknowledge

that the communication has completed at both ends. How-

ever, client-server communication usually does not require

this synchronisation behaviour, because a request message

can be explicitly acknowledged with a response message;

asynchronous, buffered messaging suffices for implementing

client-server connections. (Similar techniques are common

in languages such as Erlang [18] that use asynchronous

messaging as a communication mechanism.)

We built Trap, an efficient asynchronous messaging system

for occam-π and Python, as part of an investigation into

process-oriented implementations of MPI-style collective op-

erations [19]. Trap provides order-preserving asynchronous

network channels, implemented using a lightweight TCP-

based protocol. In addition, Trap includes an IO scheduling

system that allows the occam-π system to efficiently per-

form a set of communications with the minimal number of

operating system calls, further reducing overheads.

As a result of the previous refactoring, the only channels

that now need to span the network are the connections

between ghosts and their corresponding real locations. This

location
= (enter | move(VECTOR))

-> (stay-here | go-there(LOCATION)
| (suspend -> suspended(STATE)))

| look -> VIEW-LIST
| start-new(STATE)

viewer
= look -> VIEW-LIST

agent
= move(VECTOR)

-> (stay-here
| (suspend -> suspended(STATE)))

| look -> VIEW-LIST

Fig. 7. Protocols in the distributed simulation.

1. Ghost processes update

2. Viewer processes update

3. Agent processes retrieve views and perform actions

Fig. 8. Phases in each timestep of the distributed simulation.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 229

Fig. 9. Occoids running on the Tromsø Display Wall.

made it very straightforward to replace these channels with

Trap connections. The resulting simulation has the same

excellent scalability as the pony-based simulation, but runs

significantly faster, since it only requires half the number

of network round trips for each view request from a ghost

process to its underlying location, all of which occur in

parallel in phase 1.

In the case of start-new messages sent during agent

migration in phase 3, no round trip is necessary at all, as

the message requires no response. This works particularly

well when a flock of boids migrate together across a host

boundary, since their messages will be batched together by

Trap for transport across the network.

V. THE DISPLAY WALL

We have successfully run our distributed version of Oc-

coids on the Tromsø Display Wall, dividing space up among

hosts in a way that corresponds to the display tiles on the

wall (Figure 9). Each host also runs a visualisation process

that is responsible for drawing the contents of its locations.

Since the visualisation is performed locally, it involves no

network traffic beyond that already necessary to distribute

the simulation; unlike other Display Wall applications, no

graphics need be sent around.

Visualising our simulation on the Display Wall has a

number of advantages. The Display Wall is large enough

to completely fill a user’s field of vision, making it possible

to get an “immersive” overview of the behaviour of a large

simulation as a whole, while at the same time having high

enough resolution that the details of individual interactions

can be easily seen. We believe that an effective visualisation

of a complex system can be a powerful tool for helping to

understand the behaviours of the system. We found high-

resolution visualisation to be very useful when debugging

Occoids: the boids should move in a “natural” way when the

simulation is running correctly, so many kinds of anomalous

behaviours – such as discontinuities at the edges of locations,

or errors in the boid movement computations – can be made

obvious by the filtering abilities of the human eye.

Synchronisation of display updates is generally a concern

when doing distributed visualisation. Our visualisation pro-

cesses draw one screen update per simulation cycle, during

phase 2 of the simulation. While the phases of the whole sim-

ulation are implicitly locked together by the communications

performed between hosts in each phase, it is still possible

for the display updates to occur at slightly different times on

different hosts – for example, a host containing many agents

will take longer to draw its visualisation than an empty host.

In practice, we have found this not to be a problem when

visualising Occoids; since the moving boids are small, the

unsynchronised display updates are not visually distracting.

For visualisation involving moving entities that span multiple

tiles – for example, 3D objects – tighter synchronisation

would be necessary, and could be obtained using a dedicated

display barrier.

One shortcoming of our current implementation is that

agents that span multiple hosts – in particular, the trees in

Occoids – are only drawn on the host that is running the

corresponding agent process. We intend to fix this by making

use of the ghost processes to make agents on other hosts

available to the local visualisation.

VI. CONCLUSIONS

We have shown how process-oriented programming tech-

niques can be used to construct a model of continuous

space for complex systems simulations with a high degree

of internal parallelism. We have described how such a model

can be refactored to run in an efficient and highly-scalable

manner upon a cluster of commodity PCs.

While we built the space model initially for use in Occoids,

we have since reused it in several other complex systems

simulations, including Amos’ ant-based annular sorting [20]

and a model of lymphocyte migration in high endothelial

venules [21], [22]. These new applications required only

slight extensions to the space model described above: for

the ants model, the location protocol was extended to allow

agents to remove other agents from the simulation, and for

the lymphocyte migration model, the coordinate system was

changed from two-dimensional to three-dimensional space.

The techniques described above for distributing Occoids can

be applied directly to these new simulations.

We have also performed experiments with Occoids in

which we introduced new types of agents such as food and

predators, and new behaviours for the boids. These required

no modification to the space model at all.

Through our work with the Display Wall, we have demon-

strated how distributed simulation can be combined with

distributed rendering to provide efficient, high-resolution

visualisation of the behaviour of a complex system. We have

discussed some of the issues that arose while implementing

distributed visualisation, and how we plan to address them.

We plan to experiment further with dynamic load-

balancing between hosts in a cluster; this would be partic-

ularly useful for a flocking model such as boids in which

230 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

the number of boids in a region of space can vary greatly

as time progresses. One way to achieve this would be to

dynamically vary the sizes of locations so as to expand quiet

regions and contract busy regions, migrating agents between

them to balance the load.

In addition, we plan to consider potential enhancements

to process-oriented languages and libraries to ease the con-

struction of distributed simulations such as these, such as

native support for asynchronous network communication and

more flexible mobile process facilities. Over the long term,

we would like to investigate the possibility of a distributed

runtime for process-oriented systems that could perform

some degree of automatic load-balancing for a distributed

simulation.

ACKNOWLEDGEMENTS

This work is part of the CoSMoS project, funded by

EPSRC grants EP/E053505/1 and EP/E049419/1. The work

is also partially supported by Norwegian Research Council

project NFR 155550/420.

REFERENCES

[1] A. T. Sampson, P. H. Welch, and F. R. M. Barnes, “Lazy Cellular
Automata with Communicating Processes,” in Communicating Process
Architectures 2005. IOS Press, 2005, pp. 165–175.

[2] C. G. Ritson and P. H. Welch, “A process-oriented architecture for
complex system modelling,” in Communicating Process Architectures
2007, vol. 65. IOS Press, 2007, pp. 249–266.

[3] C. W. Reynolds, “Flocks, herds, and schools: A distributed behavioral
model,” in 14th Annual Conference on Computer Graphics and
Interactive Technologies (SIGGRAPH87). ACM, 1987, pp. 25–34.

[4] K. Li, H. Chen, Y. Chen, D. W. Clark, P. Cook, S. Damianakis, G. Essl,
A. Finkelstein, T. Funkhouser, T. Housel, A. Klein, Z. Liu, E. Praun,
R. Samanta, B. Shedd, J. P. Singh, G. Tzanetakis, and J. Zheng,
“Building and using a scalable display wall system,” IEEE Computer
Graphics and Applications, vol. 20, no. 4, pp. 29–37, 2000.

[5] D. Stødle, T.-M. S. Hagen, J. M. Bjørndalen, and O. Anshus, “Gesture-
based, touch-free multi-user gaming on wall-sized, high-resolution
tiled displays,” in Proceedings of the 4th International Symposium on
Pervasive Gaming Applications, PerGames 2007. Salzburg, Austria,
June 2007, 2007.

[6] C. A. R. Hoare, Communicating Sequential Processes. Prentice Hall,
1985.

[7] R. Milner, Communicating and Mobile Systems: The π-calculus.
Cambridge University Press, 1999.

[8] P. H. Welch and F. R. M. Barnes, “Communicating mobile processes:
introducing occam-pi,” in 25 Years of CSP, ser. Lecture Notes in
Computer Science, A. E. Abdallah, C. B. Jones, and J. W. Sanders,
Eds., vol. 3525. Springer Verlag, April 2005, pp. 175–210.

[9] P. H. Welch, “Process Oriented Design for Java: Concurrency for
All,” in Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA’2000),
H. R. Arabnia, Ed., vol. 1, CSREA. CSREA Press, June 2000, pp.
51–57.

[10] C. G. Ritson, A. T. Sampson, and F. R. M. Barnes, “Multicore
scheduling for lightweight communicating processes,” to appear.

[11] J. M. R. Martin and P. H. Welch, “A Design Strategy for Deadlock-
Free Concurrent Systems,” Transputer Communications, vol. 3, no. 4,
1997.

[12] A. T. Sampson, “Two-Way Protocols for occam-pi,” in Communicating
Process Architectures 2008, ser. Concurrent Systems Engineering,
P. H. Welch, S. Stepney, F. A. C. Polack, F. R. M. Barnes, A. A.
McEwan, G. S. Stiles, J. F. Broenink, and A. T. Sampson, Eds., vol. 66,
WoTUG. Amsterdam, The Netherlands: IOS Press, September 2008,
pp. 85–97.

[13] F. R. M. Barnes, P. H. Welch, and A. T. Sampson, “Barrier synchroni-
sation for occam-pi,” in 2005 International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA).
CSREA Press, 2005, pp. 173–179.

[14] P. S. Andrews, A. T. Sampson, J. M. Bjørndalen, S. Stepney, J. Timmis,
D. N. Warren, and P. H. Welch, “Investigating patterns for the process-
oriented modelling and simulation of space in complex systems,” in
Artificial Life XI: Proceedings of the Eleventh International Confer-
ence on the Simulation and Synthesis of Living Systems, S. Bullock,
J. Noble, R. Watson, and M. A. Bedau, Eds. MIT Press, Cambridge,
MA, 2008, pp. 17–24.

[15] M. Schweigler, “A Unified Model for Inter- and Intra-processor
Concurrency,” Ph.D. dissertation, Computing Laboratory, University
of Kent, Canterbury, UK, Aug. 2006.

[16] M. Grand, Patterns in Java, Volume 1: A Catalog of Reusable Design
Patterns Illustrated with UML. John Wiley and Sons, 1998.

[17] F. R. M. Barnes and P. H. Welch, “Communicating Mobile Processes,”
in Communicating Process Architectures 2004, ser. Concurrent Sys-
tems Engineering Series, I. East, J. Martin, P. H. Welch, D. Duce, and
M. Green, Eds., vol. 62. Amsterdam, The Netherlands: IOS Press,
September 2004, pp. 201–218.

[18] J. Barklund and R. Virding, “Erlang 4.7.3 Reference Manual,” Feb.
1999.

[19] J. M. Bjørndalen and A. T. Sampson, “Process-Oriented Collective
Operations,” in Communicating Process Architectures 2008, ser. Con-
current Systems Engineering, P. H. Welch, S. Stepney, F. A. C. Polack,
F. R. M. Barnes, A. A. McEwan, G. S. Stiles, J. F. Broenink, and A. T.
Sampson, Eds., vol. 66, WoTUG. Amsterdam, The Netherlands: IOS
Press, September 2008, pp. 309–328.

[20] M. Amos and O. Don, “An ant-based algorithm for annular sorting,” in
Proceedings of the 2007 IEEE Congress on Evolutionary Computation
(CEC). IEEE Press, 2007, pp. 142–148.

[21] J. Girard and T. Springer, “High endothelial venules (HEVs): spe-
cialized endothelium for lymphocyte migration,” Immunology Today,
vol. 15, pp. 449–457, 1995.

[22] P. S. Andrews, F. A. C. Polack, A. T. Sampson, J. Timmis, L. Scott,
and M. Coles, “Simulating biology: Towards understanding what
the simulation shows,” in Proceedings of the 2008 Workshop on
Complex Systems Modelling and Simulation, York, UK, September
2008, S. Stepney, F. Polack, and P. Welch, Eds. Luniver Press, 2008,
pp. 93–123.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 231

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

