
Self-Modifying Cartesian Genetic Programming

Simon Harding
Dept. of Computer Science

Memorial University
St John’s, Canada

simonh@cs.mun.ca

Julian F. Miller
Dept. of Electronics
University of York

York, UK
jfm7@ohm.york.ac.uk

Wolfgang Banzhaf
Dept. of Computer Science

Memorial University
St John’s, Canada

banzhaf@cs.mun.ca

ABSTRACT
In nature, systems with enormous numbers of components
(i.e. cells) are evolved from a relatively small genotype. It
has not yet been demonstrated that artificial evolution is
sufficient to make such a system evolvable. Consequently
researchers have been investigating forms of computational
development that may allow more evolvable systems. The
approaches taken have largely used re-writing, multi- cell-
ularity, or genetic regulation. In many cases it has been
difficult to produce general purpose computation from such
systems. In this paper we introduce computational dev-
elopment using a form of Cartesian Genetic Programming
that includes self-modification operations. One advantage
of this approach is that ab initio the system can be used
to solve computational problems. We present results on a
number of problems and demonstrate the characteristics and
advantages that self-modification brings.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: [Miscellaneous]

General Terms
Algorithms

1. INTRODUCTION
In evolutionary computation there has been increasing in-

terest in the notion of the genotype-phenotype mapping.
The term mapping is really a synonym for the concept of
a mathematical function, i.e. an algorithm that calculates
an output from a set of inputs. A genotype-phenotype map-
ping therefore implies an algorithm that transforms an input
string of numbers encoding a genotype into another string
of numbers that comprises the phenotype of an individual.
However, the inputs in the transformation of natural geno-
types into their phenotypes are not merely the string of bases
in the DNA. Such a view would be akin to the once domi-
nant, but now obsolete view in molecular biology known as
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’the central dogma of biology’. Nowadays, the process of
transformation from genotype to phenotype is more prop-
erly regarded as a complex interaction in which a genotype,
together with the cellular machinery and the environment
gives rise to a stage of the phenotype, which itself influences
the decoding of the genotype for the next stage [1]. One can
regard this process as one of self-modification which could
take place both at the genotype or cellular level. Implicit in
this notion is the concept of time or iteration. In this paper
we take the view that development can be equated to the
time-dependent process whereby genotype and phenotype,
in interaction with each other and an external environment,
produce a phenotype that can be selected for. Kampis [9]
has conducted an impressive philosophical analysis of the
notion and importance of self-modification in biology and
its relevance to ’emergent computation’. In our approach
the modifications that can be made (within the scope of the
self-modification functions defined) are entirely under the
control of evolution. Indeed, it is possible for the genome to
destroy itself or create copies of itself.

In section 2 we review work that has investigated the ben-
efits of evolving developmental representations when com-
pared with direct representations. To this day, however, it
is still not clear how and whether developmental represen-
tations have advantages in a more general computational
sense. This is the case because, firstly, investigations have
concentrated on particular systems such as neural networks,
structural design, digital circuits or sorting networks. Sec-
ondly, often by their own admission, authors have chosen
rather naive direct representations in comparison with dev-
elopmental representations. It is our aim in this paper to
describe a developmental system that is capable of general
computation in the sense of genetic programming. How-
ever in doing this we did not want to dictate in advance,
whether the representation should be developmental or not.
We wanted to leave that to be decided by evolution itself.

The approach we have taken is to introduce into a genetic
programming technique, namely Cartesian Genetic Prog-
ramming (CGP), operators that modify the computational
genotype itself. In this way evolution is free to use self-
modifying operators or not. In the latter case the dev-
elopmental system would reduce to non-developmental CGP.
In evolutionary computation, the idea of self-modification
has its origins in the ontogenetic programming system of
Spector and Stoffel [18], the graph re-writing system of Gruau
[5] and the developmental method of evolving graphs and
circuits of Miller [15].
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2. RELATED WORK
Recently there has been increasing interest in the benefits

of computational development [12] and its potential benefits
for evolutionary computation. Many argue that some form
of development will be necessary in order to make evolu-
tionary techniques scale up to larger problems (see, e.g. [2])
and there have been a number of investigations that show
that for particular applications developmental or generative
techniques scale better.

Early on, Kitano developed a method for evolving the
architecture of an artificial neural network using a matrix
re-writing system that manipulated adjacency matrices [11].
Kitano found that his method produced superior results to
direct methods, i.e., a fixed architecture, directly encoded
and evolved. It was later claimed by another study that the
two approaches would be really of equal quality [17].

Gruau devised a graph re-writing method called cellu-
lar encoding [5] for local graph transformations that con-
trol the division of cells growing into a artificial neural net-
work. Connection strengths (weights), threshold value and
the grammar tree that defines the graph re-writing rules
were evolved using an evolutionary algorithm. This method
was shown to be effective at optimizing both the architecture
and weights at the same time, and scaled better, according
to [6] than a direct encoding.

Bentley and Kumar examined a number of genotype to
phenotype mappings on a problem of creating a tessellating
tile pattern [3]. They found that the indirect developmental
mapping could evolve tiling patterns much quicker than a
variety of other representations (including direct) and fur-
ther, that they could be subsequently grown to (iterated)
much larger sized patterns.

Hornby and Pollack evolved context free L-systems to
define three dimensional objects (table designs) [7]. They
found that their generative system could produce fitter de-
signs faster than direct methods.

Eggenberger investigated the relative merits of a direct
versus a developmental genetic representation for the dif-
ficult problem of optical lens design [8]. He found that
the direct method in which the location of optical elements
was evolved scaled very badly when compared with the dev-
elopmental approach.

Roggen and Federici compared evolving direct and dev-
elopmental mappings for the task of producing specific two
dimensional patterns of various sizes (the Norwegian Flag
and a pattern produced by Wolfram 1D CA rule 90) [16].
They showed in both cases that as the pixel dimensions of
the patterns increased the developmental methods outper-
formed the direct.

Gordon showed that evolved developmental representa-
tions were more scalable than direct representations for dig-
ital adders and parity functions [4].

Sekanina and Bidlo showed how a developmental approach
could be evolved to design arbitrarily large sorting networks
[13]. Kicinger investigated the problem of design in steel
structures for tall buildings and found CA-based generative
models produced better results quicker than direct represen-
tations and that the solutions were more compact [10].

So a variety of systems have demonstrated the strength of
indirect encodings, although none of the systems mentioned
performed general purpose computation.

3. SELF-MODIFYING CARTESIAN
GENETIC PROGRAMMING (SMCGP)

3.1 Cartesian Genetic Programming (CGP)
Cartesian Genetic Programming was originally developed

by Miller and Thomson [14] for the purpose of evolving dig-
ital circuits and represents a program as a directed graph.
One of the benefits of this type of representation is the im-
plicit re-use of nodes in the directed graph. Originally CGP
used a program topology defined by a rectangular grid of
nodes with a user defined number of rows and columns.
However, later work on CGP always chose the number of
rows to be one, thus giving a one-dimensional topology, as
used in this paper. In CGP, the genotype is a fixed-length
representation and consists of a list of integers which encode
the function and connections of each node in the directed
graph.

Figure 1: The genotype maps directly to the ini-
tial graph of the phenotype. The genes control the
number, type and connectivity of each of the nodes.
The phenotype graph is then iterated to perform
computation and produce subsequent graphs.

3.2 SMCGP
In this paper, we use a slightly different genotype rep-

resentation to previously published work using CGP. Each
node in the directed graph represents a particular function
and is encoded by a number of genes. The first gene encodes
the function the node is representing, and the remaining
genes encode the location where the node takes its inputs
from, plus three parameters required for the function. Hence
each node is specified by 6 genes.

An example genotype is shown in Figure 1. The nodes
take their inputs in a feed-forward manner from either the
output of a previous node or from a program input (ter-
minal). The actual number of inputs of a node is dictated
by the arity of its function. However, unlike previous imple-
mentations of CGP, nodes are addressed relatively and spec-
ify how many nodes back in the graph they are connected
to. Hence, if the connection gene specifies a distance of 1 it
will connect to the previous node in the list, if the gene has
value 2 then the node connects 2 nodes back and so on. All
the relative distances are generated to be greater than 0, to
avoid nodes referring directly or indirectly to themselves. If
a gene specifies a connection pointing outside of the graph,
i.e. with a larger relative address than there are nodes to
connect to, then this is treated as connecting to an input.
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Figure 2: Example program execution. Showing the
DUP(licate) operator being activated, and inserting
a copy of a section of the graph (itself and a neigh-
boring functions on either side) into the beginning of
the graph in the next iteration. Each node is labeled
with a function, the relative address of the nodes to
connect to and the parameters for the function (see
Section 3.3. The circled numbers of the left are the
numerical values taken by the two program inputs.

The distance is converted to an input index (by taking the
modulus of the value and the number of inputs). Hence, the
graph automatically can use an arbitrary number of inputs.
This encoding is demonstrated visually in Figures 2 and 3

The relative addressing used here attempts to allow for
sub-graphs to be placed or duplicated in the graph whilst
retaining their semantic validitity. This means that sub-
graphs could represent the same sub-function, but acting
on different inputs. This can be done without recalculating
any node addresses thus maintaining validity of the whole
graph. So sub-graphs can be used as functions in the sense of
ADFs in standard GP. A node can be replaced, at run time,
by a subgraph which takes the two inputs of the calling node
(remember that this form of CGP handles arbitrary numbers
of inputs without modification to the graph) as inputs. The
subgraph is then executed with these inputs and the output
of the final node in the subgraph becomes the output of the
calling node.

Each node in the SMCGP graph is defined by a function
that is represented internally as an integer. Associated with
each function are genes denoting connected nodes and also
a set of parameters that influence the function’s behavior.
These parameters are primarily used by functions that per-
form modification to the phenotype’s graph. In some cases
they are represented as real numbers but certain functions
require that they be cast to integers.Table 8, at the end of
this paper, details the available functions and any associated
parameters.

3.3 Evaluation of the SMCGP graph
From a high level perspective, when a genotype is evalu-

ated the process is as follows. The initial phenotype is a copy
of the genotype. This graph is then executed, and if there
are any modifications to be made, they alter the phenotype
graph. This is illustrated in Figure 1.

Technically, we consider the genotype invariant during the
entire evaluation of the individual and perform all modifi-
cations on the phenotype which started out as a copy of
the genotype. In subsequent iterations, the phenotype will
usually gradually diverge from the genotype. The encoded
graph is executed in the same manner as standard CGP, but
with changes to allow for self-modification.

Figure 3: Example program execution. Showing
the DEL(eltion) operator being activated and caus-
ing itself to be deleted. On the next iteration, the
CHF(change function) node is now connected, and
is executed. It modifies it own function to become
a MOV(e) operator, which changes the order of the
graph. At each iteration, the program is different
and outputs a different value - despite the fact the
inputs remain constant. Each node is labeled with
a function, the relative address of the nodes to con-
nect to and the parameters for the function.

The graph is executed by recursion, starting from the out-
put nodes down through the functions, to the input nodes.
In this way, nodes that are unconnected are not processed
and do not effect the behavior of the graph at that stage.

For function nodes, such as +,− and ∗, the output value
is the result of the mathematical operation on input values.

For graph manipulation function, the input values to the
node are found and the behavior of that node is based on
these input values. If the first input is greater or equal in
value to the second, then the graph manipulation function
is added to a “To Do” list of pending modifications. After
each iteration, the “To Do” list is parsed, and all manipu-
lations are performed. The parsing is done in order of the
instructions being appended to the list, i.e. first in first out.

The length of the list can be limited as manipulations are
relatively computationally expensive to perform. Here we
limit the length to 100 instructions. There is a single “To
Do” list for evaluation of each individual, and hence sub-
procedures also share the same list. All graph manipulation
functions require a number of parameters, as shown in table
9. These parameters are encoded in the genotype, and the
necessary casts are made when the “To Do” list is parsed.

For efficiency, nodes are only evaluated once with the re-
sult cached, even if they are connected to multiple times.
This is necessary to reduce computation especially when
multiple outputs are used, as it is quite likely that there will
be a large number of shared nodes. It has the side effect
that nodes performing graph manipulation will only make
one modification - despite repeated calls. Nodes reused by
the PRC (procedure) function will be revaluated each time,
and hence can repeatedly affect the manipulations.
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Two examples of rewriting functions in use are shown in
Figures 2 and 3. In the first example the use of DUP(licate)
is shown which inserts a copy of a section of the graph (itself
and its neighboring function on either side) into the begin-
ning of the graph in the next iteration. Figure 3 shows the
effect of the DEL(eltion) operator. On the second itera-
tion, the CHF(change function) node is now connected to
the other functions in the graph - as the connections of the
graph are relative to the calling node. It modifies it own
function to become a MOV(e) operator, which changes the
order of the graph. Again, the effect of the relative connec-
tions can be seen.

4. EVOLUTIONARY ALGORITHM
We used a basic evolutionary system with a population of

50 individuals, elitism and with mutation only. The best 5
individuals in each generation were automatically promoted
to the next. Other individuals were produced using selec-
tion and mutation. For selection, we used a tournament of
size 5, with the best individual being selected. SMCGP, like
normal CGP, allows for different mutation rates to effect dif-
ferent parts of the genotype. In these experiments, we chose
to make all the rates the same. The parameters used SM-
CGP which are common to all of the experiments are shown
in table 1, however we found that some experiments required
slightly different parameters. These changes are described
in the experiment details for each experiment. The param-
eter values have not been optimized, and we would expect
performance increases if more suitable values were used.

Parameter Value
Population size 50

Initial genotype size 500
Tournament size 5

Elitism 5
Probability mutating a function 0.001

Probability mutating a connection 0.001
Probability mutating a parameter 0.001

Table 1: The common parameters used

5. EXPERIMENTS

5.1 Squares
In this task, we ask that evolution find a program that

generates a sequences of squares 0,1,2,4,9,16,25,... without
using multiplication or division operations. As Spector (who
first devised this problem) points out this task can only be
successfully performed if the program can modify itself - as
it needs to add new functionality in the form of additions to
produce the next integer in the sequence [18] . Hence, nor-
mal genetic programming, including CGP, will be unable
to find a general solution to this problem. In these experi-
ments, we find that SMCGP is able to evolve this sequence.

The input to the graph is the index number in the se-
quence which is essentially the number that it needs to
square. Initial genotype graphs were limited to 50 nodes,
with a maximum limit of 1000 nodes in the phenotype graphs.
The function set contains the mathematical operators + and
−, in addition the rewriting functions (excluding procedure
calls). A maximum of 10,000,000 evaluations were permit-
ted.

Type SMCGP

Mean 19.53
Mode 20
Std dev 1.58
Successes 89%
Generalised 66%
Mean evaluations to success 1261422
Std dev of evaluates to successs 2040392

Table 2: Statistical results for the squares sequence
problem, based on 2600 independent runs.

Figure 4: Graphical view of graph at each stage of
iteration. Each node is displayed as a bar, with the
colour dependent on function. The black marks be-
tween strips indicate the genotype has changed at
this point.

The fitness was determined as the number of correct inte-
gers produced before a mistake was made, hence the greater
the fitness the better the individual. Individuals were ini-
tially evaluated for 10 iterations, leading to a maximum fit-
ness of 10. Individuals that achieved this fitness were then
executed for 50 iterations to see if the evolved programs
generalised. In many instances this was found to occur.

Iteration (i) Function Result
0 0 + i 0
1 0 + i 1
2 0 + i + i 4
3 0 + i + i + i 9
4 0 + i + i + i + i 16
etc.

Table 3: Program that generates sequence of
squares

The results are summarised in table 2. We can see that
the successful solutions able to generalise were found in 66%
of the runs. Figure 4 shows the graph at each iteration of
a successful individual. Each node is displayed as a bar,
with the colour dependent on function. The black marks
between stripes indicate that the phenotype has changed at
this point. The evolved solution in this instance generalises,
and will continue to output the next integer in the squares
sequence at each iteration.
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By examining the generated graph, we found that the
developing program appends several new nodes, using the
duplicate operator, at each iteration. Each duplicated sec-
tion contains an addition appended to the end of the output
function, as demonstrated in table 3. The duplication of
the sections of the graph can be seen clearly in the Figure 4.
Notice how the function for iteration 0 and 1 are the same
function, and that the graph length does not change in these
early iterations. After the 4th iteration, the graph increases
at a constant rate. Analysis of several of the evolved pro-
grams shows the same behaviour, although implemented in
slightly different ways.

Further analysis shows that these programs all fail to op-
erate if the graph is run with modification requests dis-
abled, which is to be expected as it is unclear how the
programs could produce an approximation to the square se-
quence without self-modification.

Type CGP SMCGP

Mean 79.5 93.5
Mode 81 100
Std dev 8.24 11.95
Successes 0/100 72/100

Table 4: Statistical results for the French Flag se-
quence problem. Statistically these results differ,
with p ≤ 1.236X10−16

5.2 Producing the French Flag as a sequence
The task in this experiment is to produce a sequence of 100

integers of a desired pattern, here one that superficially re-
sembles a French Flag. Generating the French Flag pattern
has become a standard demonstrator in developmental sys-
tems, and in cellular developmental systems a French Flag
image is often used as the target sequence. Here, we will
use sequence of integers as the output, although they could
also be interpreted as an image. The sequence consists of
a pattern of 20 0s, 20 1s, 20 2s, 20 3s and 20 0s, the sec-
ond consists of 5 of each type, and repeated 4 times. In the
visual interpretation of this, the 0s would represent ’dead
cells’ and the others particular flag colours.

We use two different approaches to construct the French
Flag. In the first, we treat the sequence generation as a
form of regression, where the task is to find a function (of
an input) that produces the specified sequence. There is no
necessity for graph rewriting in this instance, however it is
an indicator of general evolvabiltiy. The inputs to the graph
are the previous output state of the graph, and the index.
Initial genotype graphs were limited to 50 nodes, with a
maximum limit of 1000 nodes in the phenotype graphs.

n % success Avg. evals Std Dev
2 100 210 259
3 100 1740 1972
4 100 28811 45774
5 100 58194 60052
6 96 191493 169527
7 84 352901 270877
8 15 583712 285074

Table 5: Results for n-input parity

The function set contains the mathematical operators +, −
, /, ×, in addition to the rewriting functions (excluding pro-
cedure calls). A maximum of 10,000,000 evaluations were
permitted.

We found that SMCGP is superior to normal CGP for
this problem, despite there being no necessity for the abil-
ity to rewrite. This suggest that self-modification can assist
evolution in problem solving. Results are based on 100 eval-
uations of each approach. Higher fitness is better, with 100
being the highest score. Results are summarised in table 4.

Analysis of a sample of the SMCGP programs shows that
the rewriting functionality is important to their behaviour,
as disabling it causes the programs to fail.

The second French Flag problem we investigated requires
the use of self-modification and growth. This task is de-
signed as a demonstrator for our system. The challenge is
to find an SMCGP graph that, after execution, contains a
French Flag sequence encoded as the output values on active
nodes.

The initial graph size is 20 nodes, and we allow the in-
dividual to develop. Given an input of 0, we evaluate the
graph once. After evaluation we iterate through the nodes,
and if they are active, we record the absolute integer value.
The values of each of the nodes are then compared to a list
of target values, and the number of correct items in the list
determines the fitness. We tested the system on various se-
quence lengths, ranging from 10 nodes to 100 nodes. Where
the target length is less than the initial length, the program
has to decrease its length.

The function of the evolved program is ignored, only the
values of the nodes are of concern.

The results in table 6 show that we are unable to precisely
evolve this complicated pattern, however we are able to get
good approximations to the solutions. If we consider a solu-
tion with 95% correct nodes as a solution, we find that the
number of found solutions remains quite high over all target
lengths. We expect that changing the parameters used in
the evolutionary algorithm could lead to improved results.

5.3 Digital Circuit: Parity
In this experiment we investigate the behaviour and per-

formance of SMCGP in building even parity circuit. The
output circuit was produced by iterating the graph by the
number of times specified in the genotype. This mature
graph was then tested with every combination of inputs,
with the fitness being the number of correct output bits.
The function set includes self-modification operators and the
binary functions AND,OR,NAND and NOR.

We compare this approach to CGP and to Embedded-
CGP[19](see table 7), and find that SMCGP is consistently
better than standard CGP. For larger number of inputs,
SMCGP performed worse than ECGP. However, for a small
number of inputs SMCGP performed significantly better.
The reason can be seen in table 5, where the success rate
decreases at 6 inputs which increases the expected number
of evaluations required to find a solution.
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Target Avg. Fitness P(Success) Std Dev Avg Evals
Fitness= =1
10 1 1 25295 18559
20 0.98 0.77 227685 233625
30 0.93 0.34 278680 339898
40 0.89 0.12 289284 369045
50 0.87 0.05 352544 669035
60 0.89 0.1 334116 434746
70 0.87 0.09 279193 418810
80 0.86 0.03 250057 386763
90 0.85 0.03 89325 210250
100 0.85 0.06 95019 235976

Fitness≥0.95
10 1 1 25295 18559
20 0.98 0.91 241226 258042
30 0.93 0.52 286800 370543
40 0.89 0.31 300943 434336
50 0.87 0.2 254881 616181
60 0.89 0.41 297623 543669
70 0.87 0.18 239390 388756
80 0.86 0.18 281672 516349
90 0.85 0.14 278381 490767
100 0.85 0.22 306666 477681

Table 6: Statistical results for French Flag expression problem.

N-inputs 4 5 6 7 8
CGP 81728 293572 972420 3499532 10949256
ECGP 65296 181920 287764 311940 540224
SMCGP 28811 58194 191493 352901 583712
SMCGP(Expected) 28811 58194 199256 410128 1080656
Speedup over ECGP 2.27 3.13 1.44 0.76 0.5
Speedup over CGP 2.84 5.04 4.88 8.53 10.13

Table 7: Results for n-input parity , showing the number of evaluations taken for various size parameters. We
also calculate an expected number of evaluations for SMCGP to produce a solution, based on the experimental
success rate.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced a form of Cartesian Ge-

netic Programming that has the property of self-modification.
The advantage of this approach is that it is a general auto-
mated technique for solving computational problems while
at the same time being developmental in nature. This allows
us to evaluate the advantages of self-modification on a wide
range of computational problems and to compare the ap-
proach with traditional GP techniques. We presented first
experimental results on evolving solutions to a number of
problems. We have shown that the use of self-modification
can perform tasks that a non-modifying system could not
achieve, and that self-modification is even advantageous on
problems where self-modification is not necessary.

The results obtained are not always better than a non-
modifying encoding for the same problem. However, the
encoding presented here can solve the same problems - and
others that standard CGP cannot solve - without modifica-
tion to the algorithm. We feel this feature makes the algo-
rithm robust over many different problem domains, includ-
ing those that we do not know a-priory if a self-modifying
encoding is necessary or gives an advantage.

A similar encoding between the standard and the self-
modifying CGP also allows us to compare behavior of the
two systems fairly. We hope that further work will give
insights into self-modifying and developmental encodings.

In future work we intend to investigate whether the evolu-
tionary algorithm itself could be replaced by survival-based
measures for a collection of interacting and self-modifying
genomes. Our aim in this is to allow, to some extent, evolu-
tion to act on itself and the organization of useful genotypes.
We believe that this forms a step in the direction of the com-
putational evolution agenda proposed in [1].
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Function Parameters Description

NOP None Passes the first connection value to the output .
+ None Returns the sum of the input values.
− None Returns the subtraction of the second input value from the

first.
∗ None Returns the product of the input values.
DIV None Returns the first input values, divided by the second.
AND None Performs a logical AND of the input values
OR None Performs a logical OR of the input values
NAND None Performs a logical NAND of the input values
NOR None Performs a logical ANOR of the input values
CONST Value Returns the first parameter.
INP InputIndex Returns the (InputIndex modulo the number of inputs) input

value
READ Address Returns the value stored in memory location (Address modulo

memory size)
WRT Address Stores the first input value in memory location (Address mod-

ulo memory size)
PRC Start, End Executes the subgraph specified by Start and End as a separate

graph with the calling nodes input values used as the graph
inputs

Table 8: SMCGP Function set

Function Parameters Description

MOVE Start, End, Insert Moves each of the nodes between Start and End into the posi-
tion specified by Insert

DUPE Start, End, Insert Inserts copies of the nodes between Start and End into the
position specified by Insert

DELETE Start, End Deletes the nodes between Start and End indexes
ADD Insert, Count Adds Count number of NOP nodes at position Insert
CHF Node, New Function Changes the function of a specified node to the specified func-

tion
CHC Node, Connection1, Connection2 Changes the connections in the specified node
CHP Node, ParameterIndex, New Value Changes the specified parameter and a given node
FLR None Clears any entries in the pending modifications list
OVR Start, End, Insert Moves each of the nodes between Start and End into the posi-

tion specified by Insert, overwriting existing nodes
DU2 Start, End, Insert Similar to DUPE, but connections are considered to absolute,

rather than relative

Table 9: SMCGP overwriting functions set., The following nodes are executed if the first input is greater, or
equal to the second. They output 1 if the they are executed, 0 otherwise
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