

University of Birmingham

Evolutionary Market Agents and Heterogeneous
Service Providers: Achieving Desired Resource
Allocations
Lewis, Peter; Marrow, Paul; Yao, Xin

DOI:
10.1109/CEC.2009.4983041

Citation for published version (Harvard):
Lewis, P, Marrow, P & Yao, X 2009, 'Evolutionary Market Agents and Heterogeneous Service Providers:
Achieving Desired Resource Allocations', Paper presented at Proceedings of the 2009 IEEE Congress on
Evolutionary Computation 2009 (CEC 2009), 18/05/09 pp. 904-910. https://doi.org/10.1109/CEC.2009.4983041

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 28. Mar. 2024

https://doi.org/10.1109/CEC.2009.4983041
https://doi.org/10.1109/CEC.2009.4983041
https://birmingham.elsevierpure.com/en/publications/cbe7073b-164f-484c-aa72-6cd613ff047f

Evolutionary Market Agents and Heterogeneous Service Providers:
Achieving Desired Resource Allocations

Peter R. Lewis, Paul Marrow and Xin Yao

Abstract—In future massively distributed service-based com-
putational systems, resources will span many locations, organ-
isations and platforms. In such systems, the ability to allocate
resources in a desired configuration, in a scalable and robust
manner, will be essential. We build upon a previous evolutionary
market-based approach to achieving resource allocation in
decentralised systems, by considering heterogeneous providers.
In such scenarios, providers may be said to value their resources
differently.

We demonstrate how, given such valuations, the outcome
allocation may be predicted. Furthermore, we describe how the
approach may be used to achieve a stable, uneven load-balance
of our choosing. We analyse the system’s expected behaviour,
and validate our predictions in simulation.

Our approach is fully decentralised; no part of the system
is weaker than any other. No cooperation between nodes is
assumed; only self-interest is relied upon. A particular desired
allocation is achieved transparently to users, as no modification
to the buyers is required.

I. INTRODUCTION

Future massively distributed service-based computational
systems will allow computational resources to span many
locations, organisations and platforms, connected through the
Internet [1]. There is a need to find novel ways to understand
and autonomically allocate, manage and control resources in
these large, decentralised and dynamic systems [2]. Building
on the simple idea of bilateral exchange in human society,
markets may be used as a mechanism with which to control
and allocate resources [3] in such complex computational
systems.

From an engineering perspective, any resource allocation
problem will have an objective; a desired allocation or
outcome. A common example of this is load-balancing,
where it is desired that the task of providing a resource be
shared evenly between a group of providing nodes. More
complex objectives involve stable, uneven load-balances,
where the resource allocation takes account of other factors.
Such factors might include users’ preferences over quality
of service issues, underlying costs to the service provider, or
differences in the ability of nodes to provide an equivalent
resource. This paper proposes an approach to deal with the
latter of these cases.

Classically, resource allocation objectives are achieved in a
centralised manner, often relying on a single node responsible
for load-balancing [4], [5]. Scalability, however, is a critical
factor in load-balancing systems, and though decentralised

Peter R. Lewis and Xin Yao are with the School of Computer Science
at the University of Birmingham, UK (email: p.r.lewis@cs.bham.ac.uk,
x.yao@cs.bham.ac.uk). Paul Marrow is with BT Innovate, Adastral Park,
Ipswich, UK (email: paul.marrow@bt.com).

load-balancing mechanisms have been proposed (e.g. [6]),
these rely upon cooperation between nodes within the sys-
tem; something which we may not be able to assume.

In previous work [7], we proposed an evolutionary,
market-based approach to achieve even load-balancing be-
tween service providing nodes in a fully decentralised system
without the presence of cooperation. Our approach, which
makes use of an artificially created market for the resource,
relies purely upon self-interest, and no individual node has
any desire in favour of a load-balanced outcome. In our
approach, service providing nodes quote prices for equivalent
resources and service users select from whom to purchase
the desired resource. Evolutionary market agents, acting on
behalf of service providing nodes, evolve the price quoted
by their respective seller over time. The payoff from the
live market is used as the fitness function for each seller’s
evolutionary algorithm.

However, the approach described in [7] considers that all
service providing nodes have an equivalent ability to provide
the resource. In many real-world scenarios this will not be
the case. For example, one node may be able to perform
twice as much work as another.

In this kind of scenario, with heterogeneous service
provider abilities, the approach in [7] is not able to take
account of these factors. Its use will result in an even
resource allocation between the service providing nodes,
regardless of their abilities. This is therefore likely to be
an inefficient outcome. In this paper we extend the approach
in order to take advantage of this information in providing
an appropriate, desired outcome allocation.

Our approach falls into the broad category of market-based
control, a methodology which has been applied to the alloca-
tion of resources in various real-world scenarios. Clearwater
provides a useful introduction to the use of computational
markets in scenarios such as bandwidth allocation and air-
conditioning control [3], and a useful review may be found
in [8].

Cliff and Bruten [8] note that a large proportion of market-
based control systems, however, either rely on a central
auctioneer, or require human intervention. Therefore, though
much of the computation is done by individual agents and is
distributed, these systems are often not decentralised. They
argue that this leads to a brittleness of the system.

A number of distributed auction mechanisms have also
been proposed [9], [10], [11], [12], which reduce the fragility
associated with reliance upon a single node, provide more
scalability and allow for dynamic composition of auctions.
However, similarly to the vulnerabilities of the Internet’s

904978-1-4244-2959-2/09/$25.00 c© 2009 IEEE

domain name system [13], failure at certain points in the
network may well cripple wider functionality, at best.

Kuwabara et al. [14] propose what we believe to be the
most decentralised market-based approach to the allocation
of resources. Here, no auctioneer, specialist or market-maker
is used; prices are set solely by the sellers and advertised
via a broadcast mechanism. Rational buyers then decide the
quantity to purchase from each seller, in order to maximise
their payoff. However, unlike our sellers’ strategies, those
used used by Kuwabara et al. are not driven by self-interest.

Non-market-based approaches to the problem of decen-
tralised resource allocation in the presence of heterogeneous
service providing nodes also exist in the specific domain
of downloading replicated files. Dynamic parallel access
schemes [15], [16] make use of client self-interest in a
similarly decentralised way to increase the speed of file
downloads. Our approach has some similarities with this
mechanism, though is more generic and hence applicable to
services other than the downloading of files.

A. Problem Formulation

We consider a scenario consisting of a set of service
providing nodes, S, each member of which provides an
equivalent, quantitatively divisible service, the resource π,
which may vary only in price. We assume that the members
of S cannot be relied upon to cooperate. We then imagine a
large population of service users or buyers, B, each member
of which aims to consume some of the resource π, at regular
intervals.

In previous work [7], our objective was to balance the load
evenly, such that all the service providers in S provide an
equal amount of π across the population of service users.
In this paper however, we wish to predict what outcome
resource allocations will be reached, given heterogeneous
seller valuations. Furthermore, we wish to understand how
the approach may be extended in order to achieve a stable,
uneven load-balance of our choosing. This is indeed a trivial
problem when cooperation may be assumed, however we
wish to achieve this using self-interest, in a fully decen-
tralised system. Additionally, the possibility of complex
buyer decision functions means that there may not be a
straightforward mapping between valuations and outcome
allocation.

At a given instant, a service provider, si ∈ S, advertises
π at the price pπ

si
per unit. Each service user, a buyer in

this case, then purchases some of the resource π, should it
be in their interest to do so at the price offered. The system
iterates, with service providers able to adapt their prices to
the market conditions over time. The actual provision of
π may be regarded as instantaneous, such that it does not
interfere with this mechanism.

For simplicity at this stage, we assume that the system
proceeds in discrete time-steps, that each buyer bj ∈ B

desires exactly one unit of π per time-step, and that each
and every si ∈ S has sufficient quantity of π available to
satisfy all the buyers in B should it be so requested. This final

assumption is commonplace in the provision of information-
based services and is present in other related work such as
[14]. We do not believe that it alters the underlying behaviour
being demonstrated.

Each time-step, each buyer, if it chooses to buy, may
purchase any amount of π from any number of service
providers in S, subject to the constraint that the total amount
purchased per time-step is equal to exactly one unit. If no
offer from any si ∈ S is in its interest, the buyer will instead
opt to purchase nothing. We therefore define qij to be the
instantaneous quantity bought by buyer bj from seller si.
The constraints mean therefore that

∑|S|
i=1

qij ∈ {0, 1} for
all bj ∈ B.

The quantity of π sold by a given seller si at a given
time-step, its load, lsi

, is therefore:

lsi
=

|B|∑

j=1

qij . (1)

We may therefore describe outcome resource allocations
in terms of lsi

for si ∈ S.

B. Evolutionary Market Agents

Competition between sellers is driven by the co-evolution
of their respective evolutionary market agents; their evolu-
tionary fitness being analogous to their payoff from interac-
tions in the market, Psi

for seller si ∈ S. An evolutionary
market agent, operating on behalf of a particular service pro-
viding node, has the self-interested objective of maximising
its fitness and hence payoff. Using evolutionary computation
techniques, the agent evolves the market position of its host
over time. As in our previous work [7], in this model a market
position consists simply of price. Therefore each individual
represents a real-valued price. For each interaction in the
market, the price encoded by an individual is adopted, and
the resulting payoff provides its fitness.

The evolutionary algorithm for seller si’s agent proceeds
as follows:

1) Decide upon the design parameters to be used: initial
price range [pmin, pmax], population size and mutation
factor, α. In the simulations described, pmin = 0, and
pmax = 500. A population size of 10 was used, with
a mutation factor, α = 0.1.

2) Generate an initial population, Pop, and set k = 1.
Each individual in Pop is a real value, drawn from the
uniform random distribution [pmin, pmax].

3) Initial fitness testing

a) Set the seller’s offer to the value of the first
individual in Pop, and enter the market for one
market time-step. Record the seller’s payoff, Psi

as that individual’s fitness.
b) Repeat for the next individual in Pop, until all

initial individuals have been evaluated in the
market.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 905

4) Probabilistic tournament selection

a) Select four individuals, x1, x2, x3 and x4 from
Pop, at random, such that x1 �= x2 �= x3 �= x4.

b) Let champion c1 be either x1 or x2, the fitness
of whichever is greater with probability 0.9, the
fitness of whichever is less otherwise.

c) Let champion c2 be either x3 or x4, the fitness
of whichever is greater with probability 0.9, the
fitness of whichever is less otherwise.

5) Let the offspring, o, be a new individual with its price
equal to the mid-point of c1 and c2.

6) Mutate o, by perturbing its value by a random number
drawn from a normal distribution with mean zero and
standard deviation α.

7) Select the individual in {x1, x2, x3, x4} with the lowest
fitness value, remove it from Pop, and insert o into
Pop.

8) Set the seller’s offer to the value encoded in o, and
enter the market for one market time-step. Record the
seller’s payoff, Psi

as o’s fitness.
9) Repeat from step 4.

II. HETEROGENEOUS SERVICE PROVIDING NODES

In the original model, the assumptions were that all service
providing nodes have an equal ability to provide the service,
and that we wish to load-balance the usage equally across
them [7]. In realistic deployments however, it is unlikely
that this will be the case. Leaving aside any consideration of
differences in the overall capacity of service providing nodes
- that is to say the total amount of π which a single node may
provide at a given time - here we consider a heterogeneity of
the ability of nodes in the population to provide the resource.
One node, for example, may be able to perform twice as
much work as another, perhaps delivering the resource faster.

Such heterogeneities of service providing nodes’ abilities
may be represented by selling agent firstly taking account
of a notion of the cost of provision of the resource, π, and
hence different relative valuations of π when compared with
the notion of money.

This valuation may be built in to our existing model by
modifying the payoff function of the selling agents to take
account of the cost of provision, and a preference weight on
the price.

In the original model, seller si’s utility gain, or payoff,
Psi

, was equivalent to its revenue, Rsi
, given by

Psi
= Rsi

=

|B|∑

j=1

pπ
si

qij . (2)

Introducing a node’s cost of providing π, cπ
si

, and taking
account of a utility preference weight, wsi

, we may instead
propose that si’s payoff,

Psi
=

|B|∑

j=1

qij(wsi
pπ

si
− cπ

si
) . (3)

Let us explore this by means of the above two-node
example. For the spread buyers used in [7], the quantity of
π purchased by buyer bj from seller si,

qij =
(vπ

bj
− pπ

s1
)

(vπ
bj
− pπ

s1
) + (vπ

bj
− ps2

π)
, (4)

where vπ
bj

is the valuation, and hence maximum price
payable by each buyer.

For a population of spread buyers, the payoff functions
(equation 3) for s1 and s2 are therefore

Ps1
=

|B|∑

j=1

vπ
bj
− pπ

s1

(vπ
bj
− pπ

s1
) + (vπ

bj
− pπ

s2
)
(ws1

pπ
s1

− cπ
s1

) , (5)

and

Ps2
=

|B|∑

j=1

vπ
bj
− pπ

s2

(vπ
bj
− pπ

s2
) + (vπ

bj
− pπ

s1
)
(ws2

pπ
s2

− cπ
s2

) , (6)

Sellers s1 and s2 will then attempt to maximise their
respective payoff function as before. The outcome resource
allocation occurs when the system is at equilibrium.

In our example, if s1 represents a node able to perform
twice as much work as s2, then we might say that ws1

= 1.0
and ws2

= 0.5, since s2 values its work twice as much,
when compared to money. For the purposes of the example,
we initially assume that both sellers bear a fixed cost; cπ

s1
=

cπ
s2

= 100, and that vπ
bj

= 300, to give us a reasonable range
of prices.

Using an iterative procedure, we calculate that the sys-
tem described is at equilibrium when pπ

s1
= 243.1 and

pπ
s2

= 262.4. At this point, neither s1 nor s2 may increase its
respective payoff by unilaterally choosing a different price.

The allocation at these prices, therefore, is our expected
outcome allocation. This may be calculated for each service
provider by substituting equation 4 into equation 1:

lsi
=

|B|∑

j=1

(vπ
bj
− pπ

s1
)

(vπ
bj
− pπ

s1
) + (vπ

bj
− pπ

s2
)

. (7)

Solving this using the sellers’ weights, our determined
equilibrium price values, and assumed costs in the example,

ls1
= 0.6 × |B| ,

and
ls2

= 0.4 × |B| .

In other words, we can expect s1 to take 60% of the load,
and s2 to take 40%, given the above valuations and costs.

This result may be validated in simulation. Figure 1 shows
the normalised outcome loads for the two-node scenario with
parameters as described above. The predicted allocation is
quickly achieved, and remains stable.

The above approach may be generalised to other buyer be-
haviours, such as those found in [17], by replacing equation
4 with one which captures the appropriate buyer behaviour.

906 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

N
or

m
al

is
ed

 L
oa

d

Iteration

s1
s2

Fig. 1. Evolution of the loads on s1 and s2, where ws1
= 1.0 and ws2

=

0.5. The service providers converge to loads of 0.6 and 0.4 respectively.
Mean and standard deviation over 30 independent runs.

We have, therefore, a method for predicting the expected
outcome resource allocation, given the service providers’
costs and valuations, and known buyer behaviour. Further-
more, we are able to validate these predictions in simulation.

III. ACHIEVING DESIRED OUTCOME ALLOCATIONS

The ability to predict an outcome allocation, the allocation
at equilibrium, is in itself useful. However, in resource
allocation tasks, we often have a particular objective in mind.
Can we determine, therefore, what seller valuation and cost
values should be used in order for the system to evolve to a
particular desired outcome?

Let us explore this also by means of some examples; firstly
a trivial one, and then a more complex objective.

A. A Trivial Example

Suppose initially that we wish in fact to achieve an
even load-balance between two providers, equivalent to the
original model in [7]. In this instance, we wish for the
following outcome:

ls1
= ls2

= 0.5 × |B| .

Since the population of buyers is homogeneous, for each
seller, si ∈ S it must be that

∑B

j=1
qij

|B|
= qik ,∀bk ∈ B ,

where qik is the quantity of π bought by buyer bk from seller
si.

Clearly therefore, lsi
= 0.5× |B| if and only if qij = 0.5,

for any and all bj ∈ B. Hence we now know that the payoff
functions for s1 and s2 will be as follows:

Ps1
=

|B| × (ws1
pπ

s1
− cπ

s1
)

2

Ps2
=

|B| × (ws2
pπ

s2
− cπ

s2
)

2

Now, given the buyer decision function for spread buyers
(from equation 4 above), we also know that we want

(vπ
bj
− pπ

s1
)

(vπ
bj
− pπ

s1
) + (vπ

bj
− pπ

s2
)

= 0.5 ,

which when solved for a given vπ
bj

, 300 in the example
above, gives

pπ
s1

= pπ
s2

.

In other words, an even load-balance will be the outcome
allocation when both sellers quote the same price for π

at equilibrium, as we already know. We also know from
previous work [7] that this equilibrium may be achieved with
zero cost values, cπ

si
and when ws1

= ws2
= 1.

B. A More Complex Example

Now let us consider a more complex desired outcome
allocation; ls1

= 2

3
× |B|, ls2

= 1

3
× |B|. We wish for s1 to

provide twice the load as s2.
Following the method above, for a given homogeneous

buyer valuation, vπ
bj

, we may calculate the required rela-
tionship between pπ

s1
and pπ

s2
at equilibrium to achieve our

desired outcome:

(vπ
bj
− pπ

s1
)

(vπ
bj
− pπ

s1
) + (vπ

bj
− pπ

s2
)

=
2

3
,

which simplifies to

pπ
s2

=
vπ

bj
+ pπ

s1

2
. (8)

In order to achieve our desired outcome allocation, the
prices pπ

s1
and pπ

s2
at equilibrium, must conform to this

relationship.
The question then arises of what valuation and cost values,

cπ
s1

, cπ
s2

, ws1
and ws2

, can be chosen in order to satisfy this
constraint. In order to begin to answer this, we firstly take a
look at how the equilibrium prices vary with respect to the
differences in seller valuations.

Figure 2 shows two distinct regions within the space
of heterogeneous seller valuations. Firstly, we note the
region when ws2

< 1

3
, where s2 has no equilibrium

price. This may be explained as follows. Since Psi
=∑|B|

j=1
qij(wsi

pπ
si
− cπ

si
), and lsi

=
∑|B|

j=1
qij , in order to

achieve any positive load lsi
, with a non-negative payoff Psi

,
it follows that we must have

wsi
≥

cπ
si

pπ
si

. (9)

Now, the maximum possible price pπ
si

which would lead to
any transaction occurring will be the buyers’ reserve price,
or valuation, vπ

bj
, which given homogeneous buyers is, as

we have already seen, the same for all bj ∈ B. Since,
given a fixed cost cπ

si
, this is the price which places a lower

bound on the constraint on wsi
, it follows that there exists no

price for which the seller si has a non-negative payoff when

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 907

 220

 240

 260

 280

 300

 320

 0 0.2 0.4 0.6 0.8 1

E
qu

ili
br

iu
m

 P
ric

e

ws2

ps1ps2

Fig. 2. Predicted equilibrium prices with respect to seller valuations. ws1
=

1.0, ws2
varies along the x axis.

wsi
<

cπ
si

vπ
bj

. In the example illustrated above, this is indeed
1

3
. Below this weight value, no transactions will take place,

since they would require either buyer or seller to accept a
negative payoff.

However, given that s2 is unable to trade when wsi
< 1

3
in

the above example, in this region s1 exists in monopoly. As
we would expect, it is therefore able to charge the maximum
acceptable price for the buyers, (i.e. pπ

s1
= vπ

bj
) and be

confident of securing a normalised load of 1.
In the competitive region of the weight-space however, the

equilibrium prices follow a more complex pattern. Recall that
in order to achieve our desired resource allocation, we require
a ratio between the sellers’ prices as described in equation 8.
In our example, when vπ

bj
= 300 ,∀bj ∈ B, we require that

pπ
s2

= 150 +
pπ

s1

2
.

In our example, this occurs when ws1
= 1.0 and ws2

=
0.42105. Therefore, by fixing values for cπ

s1
and cπ

s2
, we have

identified weight values which we predict will achieve our
desired outcome allocation of ls1

= 2

3
× |B|, ls2

= 1

3
× |B|.

We now validate this prediction in simulation. Figure 3
shows the evolution of the load on each service providing
node over time, where ws1

= 1.0 and ws2
= 0.42105

for 30 independent runs; mean and standard deviation are
shown. The system achieves the desired allocation, where
s1 is providing twice the level of load as s2, and clearly,
as with the original results in [7], a rough approximation to
the predicted outcome is achieved quickly, while the final
allocation remains stable.

We are, therefore, able to predict the outcome resource
allocation for given sets of buyers and sellers, or conversely
to parameterise them in order to achieve a desired outcome.
Sellers taking account of the cost of provision, and their
valuation of money when compared with this cost, leads to
a load-balance which reflects the varied ability of service
providers. This is achieved transparently, from the buyers’
perspective.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

N
or

m
al

is
ed

 L
oa

d

Iteration

s1
s2

Fig. 3. Evolution of the loads on s1 and s2, where ws1
= 1.0 and

ws2
= 0.42105. The service providers converge to loads of 2

3
and 1

3

respectively. Mean and standard deviation over 30 independent runs.

IV. FURTHER SIMULATION RESULTS

We have already seen how the equilibrium prices vary
with respect to differences in seller valuations (see figure
2 above). But how does this translate into outcome resource
allocations? Figure 4 illustrates the example scenario’s cor-
responding predicted outcome loads between s1 and s2,
normalised by the size of the buyer population.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

is
ed

 L
oa

d
at

 E
qu

ili
br

iu
m

ws2

ls1ls2

Fig. 4. Predicted outcome loads with respect to seller valuations. ws1
=

1.0, ws2
varies along the x axis.

Here, the monopolistic region is clearly visible, when
ws2

< 1

3
, as ls1

= 1 and ls2
= 0. The relationship between

the valuation differences and the outcome allocation in the
competitive region is, however, more complex. This is due to
the non-linearity of the spread buyer decision function being
employed here, and the shape of the curves in this region are
dependent upon this behaviour.

We now validate this prediction, as before, in simulation.
Figure 5 shows experimental results compared with the
predictions in figure 4. Mean and standard deviation results
are shown, in each case at the allocation reached after 1000
iterations.

908 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

is
ed

 L
oa

d
at

 E
qu

ili
br

iu
m

ws2

ls1
 predicted

ls1
 experimental

ls2
 predicted

ls2
 experimental

Fig. 5. Predicted and experimental outcome loads with respect to seller
valuations. ws1

= 1.0, ws2
varies along the x axis. Experimental results

are mean and standard deviation over 30 independent runs.

Firstly, we note that in the competitive region of the val-
uation space, our experiments follow the predicted outcome
loads to a high degree of accuracy. The stochastic nature
of the evolutionary market agents’ algorithms ensures that
there remains some variation at equilibrium, due to ongoing
mutation.

During the monopolistic phase however, when ws2
< 1

3
,

we note not only that the experimental result for ls1
only

loosely follows its predicted path, but also that there is a high
standard deviation between the simulation runs. However,
further observation reveals that for the experimental results
in this region, ls1

+ ls2
is often less than 1, meaning that the

users’ desired load is not being met in all cases. This is in
fact also due to ongoing mutation in the s1’s population at
equilibrium.

 299.8

 299.9

 300

 300.1

 300.2

 300.3

 990 991 992 993 994 995 996 997 998 999

0

1

P
ric

e

Lo
ad

Iteration

Buyers’ Valuation
Seller’s Price

Load

Fig. 6. Resource allocation in a monopoly. Mutation of the seller’s price
about the buyers’ valuation leads to instability. Results from a typical run
when ws1

= 1.0 and ws2
= 0.1.

The results in figure 6, from a typical run when ws1
= 1.0

and ws2
= 0.1, illustrate this effect. As the price mutates,

there is a probability that it will increase above the buyers’

maximum acceptable price. When it does so, no transactions
occur, as the seller, s1 in this case, has priced itself out of
the market. The result is temporarily a load - and payoff -
of zero. Of course, this individual will quickly be selected
out, and the price will return to a lower value, however,
the presence of this step function in the fitness landscape
of the evolutionary market agent means that this behaviour
will continue. Nevertheless, this is not of great concern, since
the price’s proximity to the step in the fitness landscape only
occurs in monopoly, and will not affect regular operation of
the algorithm.

V. CONCLUSIONS AND FUTURE WORK

Here we have considered decentralised resource allocation
in the presence of service providing nodes with heteroge-
neous abilities; the amount of work a node is able to perform.
In this scenario, service providing nodes may be said to value
their resources differently, when compared with a common
notion of money.

We described how the market-based approach in [7] may
be extended and generalised in order to take account of
these concepts. We demonstrated how this heterogeneity of
seller valuations leads to a stable and uneven outcome load-
balance. This is achieved despite a lack of any central control
or cooperation between nodes; only self-interest is relied
upon. However, the possibility of complex buyer decision
functions means that there may not be a straightforward
mapping between valuations and outcome allocation. We
therefore provided a method for its prediction and validated
our predictions in simulation.

Further to this, we described how a desired outcome
resource allocation of our choosing may be reached, by
determining suitable valuations for the service providing
nodes, given the buyers’ decision functions. The achievement
of a desired, uneven load-balance is achieved transparently
to service users, as no modification to the buyers’ behaviour
is required.

Our future work will consider the results obtained here
in the presence of larger numbers of service providing
nodes, though our intuition suggests that this will involve
a straightforward scaling up of the method presented in this
paper. We also aim to be able to quantify how quickly the
desired allocation is reached, especially in the presence of
more dynamic environments.

Finally, market-based control has been applied to a variety
of different real-world scenarios [3], many of which are
not concerned with purely computational resources, such
as air-conditioning control and transport logistics [18]. We
believe that our approach will be equally applicable in
such scenarios, where the characteristics of self-interest and
decentralisation apply.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 909

ACKNOWLEDGEMENTS

This work was partially supported by an UK EPSRC/BT
CASE project on ”Autonomic Solutions for Virtualised ICT
Systems” and an EPSRC grant (No. GR/T10671/01) on
”Market-Based Control of Complex Computational Sys-
tems”.

REFERENCES

[1] M. P. Singh and M. N. Huhns, Service-Oriented Computing: Seman-
tics, Processes, Agents. Chichester, West Sussex: John Wiley and
Sons, 2005.

[2] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
oriented computing: Research roadmap,” 2006.

[3] S. H. Clearwater, Ed., Market-Based Control: A Paradigm for Dis-
tributed Resource Allocation. Singapore: World Scientific, 1996.

[4] V. Cardellini, M. Colajanni, and P. S. Yu, “Dynamic load balancing
on web server systems,” IEEE Internet Computing, vol. 3, no. 3, pp.
28–39, 1999.

[5] E. A. Brewer, “Lessons from Giant-Scale Services,” IEEE Internet
Computing, vol. 5, no. 4, pp. 46–55, 2001.

[6] R. Alfano and G. D. Caprio, “Turbo: an autonomous execution envi-
ronment with scalability and load balancing features,” in Proceedings
of the IEEE Workshop on Distributed Intelligent Systems: Collective
Intelligence and its Applications (DIS06), 2006, pp. 377–382.

[7] P. R. Lewis, P. Marrow, and X. Yao, “Evolutionary market agents
for resource allocation in decentralised systems,” in Parallel Problem
Solving From Nature - PPSN X, ser. Lecture Notes in Computer
Science, vol. 5199. Springer, 2008, pp. 1071–1080.

[8] D. Cliff and J. Bruten, “Simple bargaining agents for decentralized
market-based control,” HP Laboratories, Bristol, UK, Tech. Rep. HPL-
98-17, 1998.

[9] M. Esteva and J. Padget, “Auctions without auctioneers: Distributed
auction protocols,” in Lecture Notes in Artificial Intelligence. Berlin,
Germany: Springer-Verlag, 2000, vol. 1788, ch. Agent-mediated Elec-
tronic Commerce II, pp. 20–28.

[10] H. Kikuchi, S. Hotta, K. Abe, and S. Nakanishi, “Distributed auction
servers resolving winner and winning bid without revealing privacy
of bids,” in Proceedings of the Seventh International Conference on
Parallel and Distributed Systems: Workshops. Washington, DC, USA:
IEEE Computer Society, 2000, p. 307.

[11] D. Hausheer and B. Stiller, “Peermart: The technology for a distributed
auction-based market for peer-to-peer services,” in Proceedings of the
IEEE International Conference on Communications, vol. 3, 2005, pp.
1583–1587.

[12] N. Haque, N. R. Jennings, and L. Moreau, “Scalability and robustness
of a network resource allocation system using market-based agents,”
Netnomics, vol. 7, no. 2, pp. 69–96, 2005.

[13] V. Ramasubramanian and E. G. Sirer, “Perils of transitive trust in the
domain name system,” Cornell University, Ithaca, New York, USA,
Tech. Rep. TR2005-1994, 2005.

[14] K. Kuwabara, T. Ishida, Y. Nishibe, and T. Suda, “An equilibratory
market-based approach for distributed resource allocation and its appli-
cations to communication network control,” in Market-Based Control:
A Paradigm for Distributed Resource Allocation, S. H. Clearwater, Ed.
Singapore: World Scientific, 1996, pp. 53–73.

[15] P. Rodriguez and E. W. Biersack, “Dynamic parallel access to repli-
cated content in the Internet,” IEEE/ACM Transactions on Networking,
vol. 10, no. 4, pp. 455–465, 2002.

[16] R. Chang, M. Guo, and H. Lin, “A multiple parallel download scheme
with server throughput and client bandwidth considerations for data
grids,” Future Generation Computer Systems, vol. 24, no. 8, pp. 798–
805, 2008.

[17] A. R. Greenwalt and J. O. Kephart, “Shopbots and pricebots,” Pro-
ceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, vol. 1, pp. 506–511, 1999.

[18] P. Davidsson, L. Henesey, L. Ramstedt, J. Törnquist, and F. Wernstedt,
“An analysis of agent-based approaches to transport logistics,” Trans-
portation Research Part C: Emerging Technologies, vol. 13, no. 4, pp.
255–271, 2005.

910 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

