
A DISTRIBUTED POOL ARCHITECTURE FOR GENETIC ALGORITHMS

A Thesis

by

GAUTAM SAMARENDRA N ROY

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2009

Major Subject: Computer Engineering

A DISTRIBUTED POOL ARCHITECTURE FOR GENETIC ALGORITHMS

A Thesis

by

GAUTAM SAMARENDRA N ROY

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Co-Chairs of Committee, Jennifer Welch
Nancy Amato

Committee Members, Takis Zourntos
Head of Department, Valerie Taylor

December 2009

Major Subject: Computer Engineering

iii

ABSTRACT

A Distributed Pool Architecture for Genetic Algorithms. (December 2009)

Gautam Samarendra N Roy, B. Tech., Indian Institute of Technology Guwahati

Co–Chairs of Advisory Committee: Dr. Jennifer Welch
Dr. Nancy Amato

The genetic algorithm paradigm is a well-known heuristic for solving many problems

in science and engineering in which candidate solutions, or“individuals”, are manipulated

in ways analogous to biological evolution, to produce new solutions until one with the

desired quality is found. As problem sizes increase, a natural question is how to exploit

advances in distributed and parallel computing to speed up the execution of genetic algo-

rithms. This thesis proposes a new distributed architecture for genetic algorithms, based

on distributed storage of the individuals in a persistent pool. Processors extract individuals

from the pool in order to perform the computations and then insert the resulting individuals

back into the pool. Unlike previously proposed approaches,the new approach is tailored

for distributed systems in which processors are loosely coupled, failure-prone and can run

at different speeds. Proof-of-concept simulation resultsare presented for four benchmark

functions and for a real-world Product Lifecycle Design problem. We have experimented

with both the crash failure model and the Byzantine failure model. The results indicate that

the approach can deliver improved performance due to the distribution and tolerates a large

fraction of processor failures subject to both models.

iv

To my parents

v

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION* . 1

II RELATED WORK* . 4

III THE POOL GA ARCHITECTURE* 8

IV IMPLEMENTATION* . 11

V RESULTS* . 15

A. Effect of Constant Pool Size 15
B. Synchronous Operation . 16
C. Performance on Benchmark Functions for Asynchronous

Operation . 19
D. Performance on Product Lifecycle Design Problem for Asyn-

chronous Operation . 24
E. Fault-Tolerance to Crash Failures 26
F. Fault-Tolerance to Byzantine Failures 27
G. Distribution of Fitness of Individuals in the Pool 29

VI CONCLUSIONS AND FUTURE WORK 38

REFERENCES . 39

APPENDIX A . 43

VITA . 47

vi

LIST OF TABLES

TABLE Page

I Benchmark functions and optimal values. 13

II Benchmark functionf1: Best fitness and first generation when the best
fitness was seen. 23

III Benchmark functionf3: Best fitness and first generation when the best
fitness was seen. 24

vii

LIST OF FIGURES

FIGURE Page

1 Lifecycle Design problem for technophile customer group:Speed of
convergence over 100 generations with constant pool size of640 16

2 Benchmark functionf1: Synchronous operation, average speed of
convergence over 500 generations with population size 16 per thread . . . 17

3 Benchmark functionf2: Synchronous operation, average speed of
convergence over 500 generations with population size 16 per thread . . . 18

4 Benchmark functionf3: Synchronous operation, average speed of
convergence over 900 generations with population size 50 per thread . . . 18

5 Benchmark functionf4: Synchronous operation, average speed of
convergence over 900 generations with population size 50 per thread . . . 19

6 Benchmark functionf1: Average speed of convergence over 500 gen-
erations with population size 16 per thread. 20

7 Benchmark functionf2: Average speed of convergence over 500 gen-
erations with population size 16 per thread. 20

8 Benchmark functionf3: Average speed of convergence over 900 gen-
erations with population size 50 per thread. 21

9 Benchmark functionf4: Average speed of convergence over 900 gen-
erations with population size 50 per thread. 21

10 Benchmark functionf4: Speed of convergence over 900 generations
with population size 50 per thread. 22

11 Lifecycle Design problem for neutral customer group: Speed of con-
vergence over 100 generations with population size 50 per thread 25

12 Lifecycle Design problem for technophile customer group: Speed of
convergence over 100 generations with population size 50 per thread . . . 25

viii

FIGURE Page

13 Benchmark functionf2 with crashes: Average speed of convergence
over 500 generations with population size 16/thread, failure probabil-
ity 1/1000 . 26

14 Benchmark functionf3 with crashes: Average speed of convergence
over 900 generations with population size 50/thread, failure probabil-
ity 1/1800 . 27

15 Benchmark functionf1 with 33% Byzantine faults: Average speed of
convergence over 500 generations with population size 16/thread 28

16 Benchmark functionf1 with 60% Byzantine faults: Average speed of
convergence over 500 generations with population size 16/thread 28

17 Benchmark functionf1 with 80% Byzantine faults: Average speed of
convergence over 500 generations with population size 16/thread 29

18 Benchmark functionf3 with 33% Byzantine faults: Average speed of
convergence over 900 generations with population size 50/thread 30

19 Benchmark functionf3 with 60% Byzantine faults: Average speed of
convergence over 900 generations with population size 50/thread 30

20 Benchmark functionf3 with 80% Byzantine faults: Average speed of
convergence over 900 generations with population size 50/thread 31

21 Benchmark functionf1 with 8 threads and varying percentage of Byzan-
tine faults: Speed of convergence over 500 generations withpopula-
tion size 16/thread. 31

22 Benchmark functionf3 with 8 threads and varying percentage of Byzan-
tine faults: Average speed of convergence over 900 generations with
population size 50/thread. 32

23 Distribution of fitness of individuals in initial pool forfunctionf3 with
8 threads. 33

24 Distribution of fitness of individuals in final pool for functionf3 with
8 threads under no failures. 33

ix

FIGURE Page

25 Distribution of fitness of individuals in final pool for functionf3 with
8 threads under crash failures (1/1800 probability of crashin each generation) 34

26 Distribution of fitness of individuals in final pool for functionf3 with
8 threads under 33% Byzantine failures. 34

27 Distribution of fitness of individuals in final pool for functionf3 with
8 threads under 60% Byzantine failures. 35

28 Distribution of fitness of individuals in final pool for functionf3 with
8 threads under 80% Byzantine failures. 35

1

CHAPTER I

INTRODUCTION*

Genetic algorithms (GAs) are powerful search techniques for solving optimization

problems [1, 2]. They are inspired by the theory of biological evolution and belong to the

class of algorithms known as evolutionary algorithms. These algorithms provide approx-

imate solutions, and are typically applied when classical optimization methods cannot be

used or are too computationally expensive.

In genetic algorithms a population of abstract representations of candidate solutions

(“individuals” or “chromosomes”) evolves towards better solutions over multiple “genera-

tions”. The algorithm begins with a population of (typically random) individuals. At each

iteration, the individuals are evaluated using a fitness function to select a subset. The cho-

sen individuals are given the opportunity to “reproduce” (create new individuals) through

two stochastic operators, mutation and crossover, in such away that the better solutions

have greater chance to reproduce than the inferior solutions. Crossover cuts individuals

into pieces and reassembles them, while mutation makes random changes to an individual.

A genetic algorithm normally terminates when a certain number of iterations has been per-

formed, or a target level of the fitness function is reached byat least one individual. The

candidate solution encoding and fitness function are dependent on the specific problem to

be solved.

This thesis follows the style ofIEEE Transactions on Evolutionary Computation.

* c©2009 IEEE. Reprinted, with permission, from IEEE Congress on Evolutionary
Computation, CEC ’09, “A Distributed Pool Architecture for Genetic Algorithms”, Roy,
G.; Hyunyoung Lee; Welch, J.L.; Yuan Zhao; Pandey, V.; Thurston, D
For more information go to http://thesis.tamu.edu/forms/IEEE%20permission%20note.pdf/view.

2

As problem sizes increase, a natural question is how to exploit advances in distributed

and parallel computing to speed up the execution of genetic algorithms. This thesis pro-

poses a new distributed architecture for genetic algorithms, based on distributed storage

of candidate solutions (“individuals”) in a persistent pool, called Pool GA. After initializ-

ing the pool with randomly generated individuals, processors extract individuals from the

pool in order to perform the genetic algorithm computationsand then insert the resulting

individuals into the pool.

Unlike previously proposed approaches, the new approach istailored for loosely cou-

pled, heterogeneous, distributed systems and works well even in the presence of failures

of components. Since individuals can be stored separately from GA processors, the failure

of a processor does not cause good individuals to be lost. Also, the individuals can be

replicated for additional fault tolerance.

We have simulated the Pool GA approach on a variety of applications using simple

selection, crossover and mutation operators, in order to obtain some proof-of-concept re-

sults. Four of the application problems are continuous functions drawn from the literature

[3] and are considered good benchmark problems for testing GAs. The results show that

there is a clear advantage using concurrent processing in that the same level of fitness is

achieved faster with more processors.

We also apply our approach to a real-world Product LifecycleDesign problem. Prod-

uct Lifecycle Design involves planning ahead to reuse or remanufacture certain compo-

nents to recover some of their economic value. A recently developed decision model [4]

indicates that component reuse and remanufacture can simultaneously decrease cost and in-

crease customer satisfaction; however, computational issues have prevented the scaling of

the analysis to larger, more realistically sized problems.New computational methods, such

as distributed approaches, therefore need to be consideredthat can quickly and reliably

determine the optimal solution, thus allowing explorationof more of the design space.

3

Having the capability to quickly and efficiently solve the optimization problems allows

re-running the code under varying input conditions. It allows for evaluating scenarios be-

fore they occur and formulating strategies for different design conditions. As new insights

are gained, products can be redesigned and enhanced quicklywith minimal deviations from

optimality under changing conditions. We have applied our Pool GA to a simple version of

this problem. The results look promising and we expect that more realistic versions of the

problem will benefit even more from our distributed approach.

We have simulated two types of processor failures in testingour Pool GA. In the crash

failure model, the failing processors simply stop at an arbitrary instant. In the Byzantine

failure model, introduced by Lamport et al. [5], the faulty processors can exhibit arbitrary

deviation from their expected behavior. This failure modelis thus more malignant than

the crash failure model. The Byzantine processors can, for instance, independently write

back poor fitness individuals into the pool, or several Byzantine processors could try to

cooperate and try to delay the progress of the GA. In general the Byzantine failure model

captures the faulty behavior that is the worst for the algorithm.

There are thus many ways in which Byzantine processors may be simulated. We sim-

ulate Byzantine behavior by what we call Anti-Elitism in which the Byzantine processors

continue to run the GA algorithm as before; however, they write back a new individual to

the pool only if it is worse than the existing individual in the pool. We call it Anti-Elitism,

because this behavior is the exact opposite of the GA conceptof elitism, wherein new in-

dividuals are considered for further reproduction only if they are better than the individual

from the previous generation. The simulation results indicate that the algorithm is tolerant

to a high percentage of processor failures of both crash and Byzantine type.

A preliminary version of the results in this thesis appearedin [6].

4

CHAPTER II

RELATED WORK*

Whitley [2] provides a good starting resource for the study ofgenetic algorithms. He

also summarizes some theoretical foundations for genetic algorithms based on the argu-

ments of Hyperplane Sampling and the Schema Theorem and gives some insight as to why

genetic algorithms work. Many theoretical advances have also been made in recent times

to further the understanding of genetic algorithms as enumerated by Rowe in [7].

Advances in computing technology have increased interest in exploring the possibil-

ity of parallelizing genetic algorithms. Prior proposals for distributed or parallel genetic

algorithms can be classified into three broad models, the Master-Slave model, the (coarse

grained) Island model, and the (fine grained) Cellular model [2].

In the Master-Slave model, a master processor stores the population and the slave pro-

cessors evaluate the fitness. The evaluation of fitness is parallelized by assigning a fraction

of the individuals to each of the processors available. The algorithm runs synchronously in

that the master process waits to receive the fitness values ofall individuals before proceed-

ing to the next generation. Communication costs are incurredwhenever the slaves receive

individuals to evaluate and when they return back the fitnessvalues. Apart from evaluating

the fitness, another part of the GA that can be parallelized isthe application of mutation and

crossover operators; however these operators are usually very simple and the communica-

tion cost of sending and receiving individuals will normally offset the performance gain by

* c©2009 IEEE. Reprinted, with permission, from IEEE Congress on Evolutionary
Computation, CEC ’09, “A Distributed Pool Architecture for Genetic Algorithms”, Roy,
G.; Hyunyoung Lee; Welch, J.L.; Yuan Zhao; Pandey, V.; Thurston, D
For more information go to http://thesis.tamu.edu/forms/IEEE%20permission%20note.pdf/view.

5

parallelization. In summary, the Master-Slave model has advantages when evaluating the

fitness of the individuals is time-consuming. If a slave fails in the Master-Slave model, then

the master may become blocked. In our Pool GA approach, the algorithm is not stalled due

to the failure of a participating processor.

In the Island model, the overall population is divided into subpopulations of equal

size, the subpopulations are distributed to different processors, and separate copies of a

sequential genetic algorithm are run on each processor using its own subpopulation. Every

few generations the best individuals from each processor “migrate” to some other proces-

sors [8]. The migration process is critical to the performance of the Island model. Of great

interest is to understand the role of migration on the performance of this parallel GA, such

as the effect of frequency of migration, the number of individuals exchanged each time, the

effect of communication topology, etc. Cantú-Paz [8] discusses some of the past work on

this subject and also states that most of these problems are still under investigation. Another

open question is to find the optimal number of subpopulationsto get the best performance

in terms of quality of solutions and speed of convergence. The interaction between proces-

sors is mostly asynchronous; the processors do not wait for other processors to take any

steps. The failure of a processor in the Island model can cause the loss of good individuals.

In our Pool GA approach, all individuals computed are available to the other processors

even after the generating processor fails.

In the Cellular GA model, also known as fine-grained GA or massively parallel GA,

there is one overall population, and the individuals are arranged in a grid, ideally one

per processor. Communication is restricted to adjacent individuals and takes place syn-

chronously.

Recently, there has been interest in developing parallel GAsfor multi-objective op-

timization problems. Deb et al. [9] provide a parallel GA algorithm designed to find the

Pareto-Optimal solution set in multi-objective problems.Their algorithm is based on the

6

Island model.

The idea of keeping the candidate solutions for the genetic algorithm in a “pool” was

inspired by the Linda programming model [10, 11], and has also been used by others (e.g.,

[12, 13]). Sutcliffe and Pinakis [12] embedded the Linda programming paradigm into the

programming language Prolog and mentioned, as one application of the resulting system,

a genetic algorithm in which candidate solutions are storedas tuples in the Linda pool

and multiple clients access the candidate solutions in parallel. In contrast to our thesis,

no results are given in [12] regarding the behavior of the parallel GA. Davis et al. [13]

describe a parallel implementation of a genetic algorithm for finding analog VLSI circuits.

The algorithm was implemented on 20 SPARC workstations running a commercial Linda

package. Two versions of the algorithm are presented: the first one follows the Master-

Slave model and the second one is a coarse-grained Island model in which each of the

four islands runs the Master-Slave algorithm. In contrast,our algorithm is fine grained,

and we evaluate the behavior of the algorithm through simulation with varying numbers of

processors.

In [14], a distributed GA is proposed that uses the Island model and a peer-to-peer

service to exchange individuals in a message-passing paradigm. In contrast we use a more

fine-grained approach than the Island model and use a shared object paradigm for exchang-

ing individuals between processors, and we provide more extensive simulation results.

The candidate solutions in our approach are examples of distributed shared objects

(e.g., [15]). They can be implemented using replication (e.g., [16]). Previous work has

suggested such approaches for other aspects of the Product Lifecycle Design problem [17].

Hidalgo et al. [18] studied the fault tolerance of the Islandmodel in a specific imple-

mentation with 8 processors subject to crash failures. Their results suggest that, at least for

multi-modal functions, there is enough redundancy among the various processors for there

to be implicit fault tolerance in the Island model. One of their conclusions is that it is better

7

to exchange individuals more frequently than to have a largenumber of islands. Lombrana

et al. [19] came to similar conclusions about the inherent fault-tolerance of parallel GAs

based on simulations of a Master-Slave method. Our results can be considered an extension

to the case of fine-grained parallelism, in which individuals are exchanged all the time and

each processor is an island. Furthermore, in our approach, since individuals are stored sep-

arately from GA processing elements, they can be replicatedfor additional fault tolerance

so that the failure of a processing element does not cause good individuals to be lost.

Merelo et al. [20] proposed a framework using Ruby on Rails to exploit spare CPU

cycles in an application-level network (e.g., SETI@Home) using a web browser interface.

Experiments were done with a genetic algorithm applicationin which the server was the

master and volunteer “slave” nodes could request individuals to evaluate.

The work reported in this thesis was originally motivated byattempts to find compu-

tationally efficient solutions to large instances of the Product Lifecycle Design problem.

Modeling of the entire lifecycle of a product is widely advocated for environmentally be-

nign design and manufacturing. Product Lifecycle Design aims to reduce the environmental

impact over the entire lifecycle. For example, Kimura [21] proposed a framework for com-

puter support of total lifecycle design to help designers performing rational and effective

engineering design. Pandey and Thurston [22] applied the Non-dominated Sorting Genetic

Algorithm (NSGA-II) to identify non-dominated solutions for component reuse in one life-

cycle. A service selling (leasing) approach can also be envisioned where the manufacturer

retains the ownership of the product and upgrades the product when considered necessary

or if desired by the customer. Mangun and Thurston [4] developed such a decision model

indicating that a leasing program allows manufacturers to control the take-back time, so

components can be used for multiple lifecycles more cost-effectively. Sakai et al. [23]

proposed a method and a simulation system for Product Lifecycle Design based on product

life control.

8

CHAPTER III

THE POOL GA ARCHITECTURE*

In the proposed Pool GA Architecture, there are multiple processors, each running a

copy of the GA. Unlike the Island model, each processor is notconfined to a set of individ-

uals: there is a common pool of individuals from which each processor picks individuals

for computing the next generation. The pool size is larger than the population of the in-

dividual GA working on each processor. Thus, our Pool GA model can be viewed as an

Island model with migration frequency of one per generationand the number of individuals

allowed to migrate is equal to the population size of the GA.

We now describe the working of the Pool GA Architecture in detail.

There arep ≥ 1 participating processors. Each participating processor runs a sequen-

tial GA with a population of sizeu. There is a common poolP of individuals of size

n > u. Each individual in the pool is stored in a shared data structure, which can be ac-

cessed concurrently by multiple processors. There is a richliterature on specifying and

implementing shared data structures (e.g., [24]). For the current study, we have chosen to

store each individual as a multi-reader single-writer register. In more detail,P is partitioned

into P1, . . . ,Pp. Each partitionPk(1 ≤ k ≤ p) is a collection of single-writer (written by

processork), multi-reader (read by any of thep processors) shared variables where each

shared variable holds an individual of the GA. Initially theindividuals inP are randomly

generated.

* c©2009 IEEE. Reprinted, with permission, from IEEE Congress on Evolutionary
Computation, CEC ’09, “A Distributed Pool Architecture for Genetic Algorithms”, Roy,
G.; Hyunyoung Lee; Welch, J.L.; Yuan Zhao; Pandey, V.; Thurston, D
For more information go to http://thesis.tamu.edu/forms/IEEE%20permission%20note.pdf/view.

9

There are two basic operations performed onP by any participating processor:ReadIn

and WriteOut. The ReadIn operation performed onP by processork picks u individu-

als uniformly at random fromP and copies them intok’s local data structurePk. The

WriteOut operation performed onP by processork writes back the individuals inPk to

the portion ofP that is allotted tok. Here, in order to ensure convergence of the GA, an

element of elitism is applied, i.e. the individuali in Pk replaces an individualj in Pk only

if i is fitter thanj. (Other schemes are possible; this one was chosen for concreteness.)

Between theReadIn and WriteOut operations, each processork performs a local

procedureGenerate to generate a new generation of individuals from the individuals in

Pk. The Generate procedure consists ofSelection, Crossover and Mutation operations.

The choice of these operators is up to the implementer and based on the problem. The

operators in our simulation are described in the next chapter.

One of the design goals of the Pool GA Architecture was to enable processors with

different speeds to participate together in the GA and improve tolerance to failures of some

of the participating processors. The Pool GA achieves both these goals by decoupling the

operation of processors from each other: i.e., the processors interact with only the pool and

are unaware of each other’s existence. Processors do not explicitly synchronize with each

other and can be working on different generations at the sametime.

An important part of any GA is the method of termination. There are various termina-

tion criteria that may be used in conjunction with our Pool GA. For the scenario where the

desired fitness level is known, once any processor discoversan individual with that fitness

it can terminate. It can also inform the other processors before terminating, so that they can

also terminate. The above method takes advantage of differences in processor speeds. In

the case where the desired fitness level is unknown a couple ofstrategies can be used. One

is to let the GA run for a sufficient predecided number of generations and then terminate.

Another is to let a processor terminate once it sees very small change in the best fitness

10

value generated for few continuous generations.

The Pool GA Architecture could support a dynamically changing set of participating

processors, as it provides persistent storage for individuals independent of the processors

that created them. A possible advantage of such a loosely coupled asynchronous model is

that large problems can be solved in a distributed fashion: users worldwide can volunteer

the free time on their computers for processing the problem.The Berkeley Open Infras-

tructure for Network Computing [25] gives a list of many such projects using distributed

computing over the Internet.

It is important to note that the Pool GA Architecture is termed as an “architecture” and

not an algorithm because it is not tied to specific selection,crossover or mutation operators.

It gives a paradigm for maintaining a large set of potential solutions and defines a procedure

by which multiple processors can cooperatively solve the GAproblem by accessing a pool

of individuals.

We believe the Pool GA Architecture can provide more fault tolerance than the exist-

ing models. In the Island model if a processor fails, the individuals it holds are lost with

it. In the unfortunate case where the fittest individual was located at that failed proces-

sor, that individual could be lost and convergence would be delayed. If a slave fails in the

Master-Slave model, then the master may become blocked; moreover, the master is a single

point of failure for the entire algorithm. In the Pool Architecture, failures of the processors

cannot lead to loss of individuals, since individuals are stored separately from processors,

and they do not cause the algorithm to block since the correctprocessors continue to op-

erate. In contrast in our case as the pool is decoupled, even if a processor which found a

good individual fails, other processors will have access tothat individual. The pool is not

a single point of failure (like the master is) because fault-tolerance for the individuals can

be achieved using standard distributed computing techniques with replication and quorum

systems (e.g., [16]).

11

CHAPTER IV

IMPLEMENTATION*

We simulated our Pool GA with a C++ program written in the POSIXmulti-threaded

environment. In the simulation each POSIX thread represents a processor participating

in the Pool GA. The simulation can be easily modified to use OpenMP or other parallel

programming paradigms for multiprocessors when the hardware is available. The simple

GA code in C provided at the KANGAL website [26] was adapted toa multi-threaded

version. We used the operators available in the KANGAL code.A tournament-based

selection operator is used for selection. For discrete-valued problems (“binary GAs”), a

single point crossover operator was used, and the mutation operator flipped each bit of the

individual with the probability of mutation. For real-valued problems (“real GAs”), the

Simulated Binary Crossover (SBX) operator and the polynomial mutation operator were

used. These operators are not tied in any way to the Pool Architecture and can easily be

changed according to the problem.

The common pool ofn individuals which are possible solutions to our distributed GA

is represented in the code by a shared global array of lengthn. Let u be the per-thread

population size. The threads (each representing one processor in the real scenario) run

their own GA algorithm on a subset of the pool. In each generation, a thread usesReadIn

to pick u random indices from the array, which act as its current population. The thread

performs Selection, Crossover and Mutation on these individuals and generates the next

* c©2009 IEEE. Reprinted, with permission, from IEEE Congress on Evolutionary
Computation, CEC ’09, “A Distributed Pool Architecture for Genetic Algorithms”, Roy,
G.; Hyunyoung Lee; Welch, J.L.; Yuan Zhao; Pandey, V.; Thurston, D
For more information go to http://thesis.tamu.edu/forms/IEEE%20permission%20note.pdf/view.

12

generation. This new generation is written back to the pool at specific indices based on

the thread id using theWriteOut operator. ForWriteOut, the array representing the pool

is considered to be partitioned intop segments, wherep is the number of threads, each of

sizeu. Each thread can read from any element of the array, but can only write to its own

partition. More specifically, after computingu new individuals,c1, c2, . . . , cu, the WriteOut

operator on the pool is implemented by having the thread write back each new individual

ci into the i-th entry of the thread’s partition if the fitness ofci is better than that of the

currenti-th entry. (Alternative ways of implementingReadIn and WriteOut are of course

possible but we did not yet experiment with them.)

Each thread terminates after a certain number of generations. Each thread maintains

the best solution it has generated thus far. The overall bestsolution is picked from among

the best solutions of all the threads.

The threads used in the simulation in general behave asynchronously i.e. each pro-

gresses independently of others based on the scheduling by the operating system. However

in section B of chapter V we present results for synchronous operation of threads, in which

each participating thread finishes generationN before any thread begins generationN +1.

This lock step behavior is achieved using barrier synchronization in pthreads.

The Pool GA was tested on the following real-valued benchmark minimization func-

tions [3] whose optimal values are given in Table I:

13

f1(~x) =
7
∑

i=1

10i−1x2

i ,

−10.0 ≤ xi ≤ 10.0

f2(x1, x2) = 100(x2 − x2

1
)2 + (1 − x1)

2,

−15 ≤ xi ≤ 15

f3(~x) = 20 +
20
∑

i=1

(x2

i − cos(2πxi)),

−5.12 ≤ xi ≤ 5.12

f4(~x) =
10
∑

i=1

−xi sin(
√

|xi|),

−500 ≤ xi ≤ 500

Table I. Benchmark functions and optimal values

Function Optimum Value

f1 0

f2 0

f3 0

f4 −4189

We also tested our Pool GA on a Product Lifecycle Design problem, which is a com-

bination of a binary-valued and real-valued problem. This problem is a maximization prob-

lem. Background information on the problem and the general mathematical expression of

the problem are given in the Appendix. Roughly speaking, the goal is to determine the

optimal number of lifecycles for the product (up to a maximumof 8), and within each

lifecycle to decide on the optimal choices (of which there are 4) regarding manufacturing

14

each of the 12 components of the product. Each candidate solution is represented by a

(3 + 8 · 2 · 12) = 195 bit string.

We have studied the performance of the Pool GA under two faultmodels: crash and

Byzantine. We simulate crash failure of a processor by the exiting of the thread at an

arbitrary instant during the execution of the Pool GA. A failure probability is given as a

parameter to the simulation. At the start of each generation, a thread tosses a coin with the

given probability to decide whether to exit. In case it exits, the thread no longer participates

in the GA in any manner.

We simulate Byzantine failures using the Anti-Elitism characteristic. A failure fraction

is provided as a parameter to the simulation. For failure fraction f in a simulation withn

threads,⌊100f/n⌋ threads are Byzantine from the outset. Note the difference from our

simulation of the crash failures, where the processors crash at varied points during the

simulation, while for the Byzantine failure simulations we consider the faulty processors

to be Byzantine from the outset. We believe this is more in keeping with the “worst case”

notion of the Byzantine failure model.

15

CHAPTER V

RESULTS*

In this chapter we presents results studying various aspects of the Pool GA using the

benchmark problems as well as the Product Lifecycle Design problem. The results relate

to

1. The effect of pool size on performance.

2. Speed of convergence as a function of number of threads used.

3. Fault-tolerance to crash and Byzantine failures.

4. Distribution of the fitness values of individuals in the pool at the beginning and end

of the Pool GA.

All plots are the average of 10 runs.

A. Effect of Constant Pool Size

Our first simulation experiment compares the performance ofa single threaded GA to

the performance of our Pool GA with multiple threads while keeping the pool size (i.e.,

the number of candidate solutions being manipulated) constant. The purpose is to check

that the overhead of the parallelism does not cause behaviorthat is worse than the single-

threaded case. Using the lifecycle design problem with the technophile customer group, we

* c©2009 IEEE. Part of the work reported in this chapter is reprinted, with permission,
from IEEE Congress on Evolutionary Computation, CEC ’09, “A Distributed Pool
Architecture for Genetic Algorithms”, Roy, G.; Hyunyoung Lee; Welch, J.L.; Yuan Zhao;
Pandey, V.; Thurston, D
For more information go to http://thesis.tamu.edu/forms/IEEE%20permission%20note.pdf/view.

16

compared the performance of the Pool GA for different numbers of threads with a single

threaded GA (SGA). In all cases, we used the same algorithm parameters and a fixed pool

size of 640. The per-thread population size witht threads was640/t.

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0 10 20 30 40 50 60 70 80 90 100

fit
ne

ss

generation number

SGA
PGA 2 threads
PGA 4 threads
PGA 8 threads

PGA 32 threads

Fig. 1. Lifecycle Design problem for technophile customer group: Speed of convergence

over 100 generations with constant pool size of 640

The results are in Fig. 1. All versions of the GA converge to a similar fitness value,

indicating that the distribution has not introduced any severe overhead. We also observe

that the GA converges faster as the number of threads increases.

However, keeping the pool size constant does not exploit theincreased available pro-

cessing power provided by a distributed GA. Thus in the rest of our simulations, for each

problem we keep the population sizeper threadconstant, resulting in an overall pool size

that increases linearly with the number of threads.

B. Synchronous Operation

We have stated throughout the thesis that the Pool GA architecture is better suited for asyn-

chronous, loosely coupled distributed systems. Before presenting the results corresponding

17

to asynchronous executions we take a detour and first presentresults when the processors

participating in the Pool GA behave synchronously or in lockstep. By synchronous opera-

tion we mean that all the processors participating in the GA finish generationN before any

processor starts generationN + 1. The purposes for showing these results are manifold.

Firstly it shows that the Pool GA can work very well even if used in a synchronous man-

ner. Secondly these results clearly show the advantage gained by distributed processing.

With more processors the algorithm converges faster and thefinal fitness values obtained

are better. Third, as many existing parallel genetic algorithms are synchronous, this could

give us a basis in the future to compare the Pool GA with other existing parallel genetic

algorithms.

 0.0001

 0.01

 1

 100

 10000

 1e+06

 0 100 200 300 400 500

fit
ne

ss

generation number

2 threads
4 threads
8 threads

16 threads
32 threads

Fig. 2. Benchmark functionf1: Synchronous operation, average speed of convergence over

500 generations with population size 16 per thread

We have used the benchmark functions for these simulations.Figs. 2, 3, 4, and 5 show

the results for functionf1, f2, f3 andf4 respectively. The plots show the average of the

best fitness value seen in each generation by each thread under varying number of threads.

In all the remaining sections of this chapter, the results provided are for asynchronous

18

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500

fit
ne

ss

generation number

2 threads
4 threads
8 threads

16 threads
32 threads

Fig. 3. Benchmark functionf2: Synchronous operation, average speed of convergence over

500 generations with population size 16 per thread

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600 700 800 900

fit
ne

ss

generation number

2 threads
4 threads
8 threads

16 threads
32 threads

Fig. 4. Benchmark functionf3: Synchronous operation, average speed of convergence over

900 generations with population size 50 per thread

19

-4000

-3500

-3000

-2500

-2000

-1500

 0 100 200 300 400 500 600 700 800 900

fit
ne

ss

generation number

2 threads
4 threads
8 threads

16 threads
32 threads

Fig. 5. Benchmark functionf4: Synchronous operation, average speed of convergence over

900 generations with population size 50 per thread

operation.

C. Performance on Benchmark Functions for Asynchronous Operation

We now provide simulation results for the Pool GA applied to the benchmark functions

studied in [3] when the participating threads behave asynchronously. The plots show the

average of the best fitness value seen in each generation by each thread under varying

number of threads. Figs. 6, 7, 8, and 9 show the results.

On all four functions, the common behavior observed is that the more threads, the

faster the convergence to a solution with better fitness. Forf1, f2 andf3 which have op-

timum value zero, the Pool GA reaches quite close to the optimum value. The function

f4 has optimal value−4189 and it is considered quite hard to reach [3]. We see in Fig. 9

that with greater number of threads a better value for average of the best fitness seen by

each thread per generation is reached. For a different perspective on the computation of

f4, in Fig. 10 we plot the best value seen among all the threads ata particular generation

instead of the average of the best value seen by all the threads. This gives a different look

20

 0.0001

 0.01

 1

 100

 10000

 1e+06

 0 100 200 300 400 500

fit
ne

ss

generation number

2 threads
4 threads
8 threads

16 threads
32 threads

Fig. 6. Benchmark functionf1: Average speed of convergence over 500 generations with

population size 16 per thread

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500

fit
ne

ss

generation number

2 threads
4 threads
8 threads

16 threads
32 threads

Fig. 7. Benchmark functionf2: Average speed of convergence over 500 generations with

population size 16 per thread

21

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600 700 800 900

fit
ne

ss

generation number

2 threads
4 threads
8 threads

16 threads
32 threads

Fig. 8. Benchmark functionf3: Average speed of convergence over 900 generations with

population size 50 per thread

-4000

-3500

-3000

-2500

-2000

-1500

 0 100 200 300 400 500 600 700 800 900

fit
ne

ss

generation number

2 threads
4 threads
8 threads

16 threads
32 threads

Fig. 9. Benchmark functionf4: Average speed of convergence over 900 generations with

population size 50 per thread

22

on the progress of the GA. It appears finding a good solution for f4 is easy, but finding an

excellent one is hard.

-4000

-3800

-3600

-3400

-3200

-3000

-2800

 0 100 200 300 400 500 600 700 800 900

fit
ne

ss

generation number

2 threads
4 threads
8 threads

16 threads
32 threads

Fig. 10. Benchmark functionf4: Speed of convergence over 900 generations with popula-

tion size 50 per thread

On close observation of the results of Figs. 6 and 8, we see that for the functionsf1

andf3 the 32 thread case is an out-lier to the general trend observed. This is because the

metric we use to show the progress of the GA is the average of the best fitness value seen in

each generation by each thread. Thus each point on the graph corresponding to a particular

generation number, sayn, is the average of the best value seen by each of the participating

threads in generationn. Two aspects of such a plot must be made clear. Firstly because the

execution is asynchronous, the time when one thread executes generationx may be much

earlier or later than when another thread executes generation x. For instance for the case

of 8 threads, thread 1 may execute generation 5 at timet, thread 2 may execute generation

5 at timet + 10 while thread 3 may execute generation 5 at timet − 5. Thus when we

average the best values for generation 5 we are not averagingvalues that were obtained

at the same real-times. Secondly, in spite of the above real-time anomaly, these plots are

23

still good indicators of the progress of the GA. To illustrate this, continuing the above

example, say thread 1 executes generation 6 at timet + 3, thread 2 executes generation

6 at timet + 15 while thread 3 executes generation 6 at timet − 1. Thus the data we

use to find the average of generation 6 are generated at later times than the values used

for the average of generation 5. Getting back to our 32 threadout-lier case, we note that

for a large number of threads like 32 in any generation, some threads have access to an

excellent individual while some do not, thus making the average value of fitness seem bad.

If we look at only the best individual found, which would be the actual result of the GA,

the 32 threads simulation actually obtains the optimum value of zero. Moreover due to

the asynchrony some thread in the simulation may see an individual with the best fitness

as early as generation 1. Tables II and III reflects this fact;they provide the best value of

fitness seen for each number of threads and the generation number when any thread in the

simulation first saw an individual with that fitness.

Table II. Benchmark functionf1: Best fitness and first generation when the best fitness was

seen

Number of Threads Best Fitness First Generation

2 0.009116 486

4 0.004045 303

8 0.004701 120

16 0.0 1

32 0.0 1

In Figs. 9 and 10 we observe that the simulation never achieves the optimal value

of fitness, i.e., -4189. We believe that part of the difficultythat our Pool GA had with

24

Table III. Benchmark functionf3: Best fitness and first generation when the best fitness was

seen

Number of Threads Best Fitness First Generation

2 0.000041 868

4 0.000001 798

8 0.0 387

16 0.0 1

32 0.0 1

finding optimal solutions tof4 is due to the simplistic nature of theSelection, Mutation

and Crossover operators used in our simulation. We conjecture with betteroperators tuned

to the specific function the results will improve.

D. Performance on Product Lifecycle Design Problem for Asynchronous Operation

We now provide results for our Pool GA applied to the Product Lifecycle Design problem.

Figs. 11 and 12 show the results for two different target customer groups. Plots show

the best fitness value seen by the simulation in each generation for varying number of

processors. As can be seen, using fewer threads it takes moregenerations to converge

to the optimal fitness values of 0.83 and 0.63 respectively, as compared to using 8 or 32

threads. We anticipate this difference will be more and morepronounced as the problem

being solved becomes larger and more complex.

Currently the Lifecycle Design problem does not appear particularly difficult to solve.

Note that simply choosing around 3000 candidate solutions at random and finding the one

with the best fitness appears to work quite well, without the need to do any additional

25

 0.8

 0.805

 0.81

 0.815

 0.82

 0.825

 0.83

 0.835

 0 10 20 30 40 50 60 70 80 90 100

fit
ne

ss

generation number

2 threads
4 threads
8 threads

32 threads

Fig. 11. Lifecycle Design problem for neutral customer group: Speed of convergence over

100 generations with population size 50 per thread

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 10 20 30 40 50 60 70 80 90 100

fit
ne

ss

generation number

2 threads
4 threads
8 threads

32 threads

Fig. 12. Lifecycle Design problem for technophile customergroup: Speed of convergence

over 100 generations with population size 50 per thread

26

computation.

However for our simulations we have used a simple version of the problem which

focuses on one customer group and optimizes only a single objective instead of multiple

objectives. The development of this problem is still a work in progress and we anticipate

in the future that the problem will become essentially so large and complex that using a

distributed genetic algorithm will pay dividends.

E. Fault-Tolerance to Crash Failures

We performed simulations to test the fault-tolerance of ourPool GA. We simulated crash

failures of processors by ending each thread at the beginning of each of its generations

with probability 1

2g
, whereg is the number of generations in the run. Thus, over the course

of the run, we expect at most half the threads to crash. The simulations of Figs. 7 and 8

were repeated under this fault model and the results are shown in Figs. 13 and 14. We see

that the convergence rate is not greatly affected, even though, on an average, half of the

participating processors crash.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500

fit
ne

ss

generation number

2 threads
4 threads
8 threads

16 threads
32 threads

Fig. 13. Benchmark functionf2 with crashes: Average speed of convergence over 500 gen-

erations with population size 16/thread, failure probability 1/1000

27

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600 700 800 900

fit
ne

ss

generation number

2 threads
4 threads
8 threads

16 threads
32 threads

Fig. 14. Benchmark functionf3 with crashes: Average speed of convergence over 900 gen-

erations with population size 50/thread, failure probability 1/1800

F. Fault-Tolerance to Byzantine Failures

Recall that we model Byzantine behavior of processors by the Anti-Elitism characteristic

where a Byzantine faulty processor writes back newly generated individuals into the pool

only if the individual it is trying to replace from the pool isbetter. In our simulations,

when we sayf% of processors are Byzantine in a total ofN threads, then⌊f ∗ N/100⌋

processors are Byzantine. For instance when we say, for a simulation with 2 threads,80%

of the processors are Byzantine,⌊80 ∗ 2/100⌋ = 1 processor is Byzantine. The results

plotted are from data generated by only the correct processors in the simulation; the output

of the Byzantine faulty processors are ignored.

Our first set of plots show how the Pool GA performs as the percentage of Byzantine

processors in the system increases. We provide the results when33%, 60% and80% of

the processors are Byzantine. Figs. 15, 16 and 17 show the results for functionf1, while

Figs. 18, 19 and 20 show the results for functionf3. We observe the fault-tolerance of

the Pool GA even when faced with this malignant kind of failure. The final fitness values

28

 0.0001

 0.01

 1

 100

 10000

 1e+06

 0 100 200 300 400 500

fit
ne

ss

generation number

2 threads
4 threads
8 threads

16 threads
32 threads

Fig. 15. Benchmark functionf1 with 33% Byzantine faults: Average speed of convergence

over 500 generations with population size 16/thread

 0.0001

 0.01

 1

 100

 10000

 1e+06

 0 100 200 300 400 500

fit
ne

ss

generation number

2 threads
4 threads
8 threads

16 threads
32 threads

Fig. 16. Benchmark functionf1 with 60% Byzantine faults: Average speed of convergence

over 500 generations with population size 16/thread

29

 0.0001

 0.01

 1

 100

 10000

 1e+06

 0 100 200 300 400 500

fit
ne

ss

generation number

2 threads
4 threads
8 threads

16 threads
32 threads

Fig. 17. Benchmark functionf1 with 80% Byzantine faults: Average speed of convergence

over 500 generations with population size 16/thread

achieved in the 33% and 60% cases are not very different from those achieved in the non-

faulty cases. The performance is worse for the 80% case, yet the GA still makes significant

progress in the right direction. We observe a similar trend for bothf1 andf3: the larger the

number of correct threads, the better the convergence. Thismakes a strong case for using

increased levels of distribution in solving GA problems.

The percentage of faulty processors has a pronounced effecton the convergence of the

fitness values. This can be seen in Figs. 21 and 22 which compare the performance for 8

threads with varying Byzantine failure percentages for functionsf1 andf3 respectively.

G. Distribution of Fitness of Individuals in the Pool

In previous sections we have mostly looked at the average of the best values seen by the

processors involved in the Pool GA in each generation. We have seen that the Pool GA

has good fault-tolerance. For crash failures, the average best values (Figs. 13 and 14)

obtained are almost as good as the values obtained for the corresponding cases with no

failure (Figs. 7 and 8). For the Byzantine failure case, when 33% of the processors in the

30

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600 700 800 900

fit
ne

ss

generation number

2 threads
4 threads
8 threads

16 threads
32 threads

Fig. 18. Benchmark functionf3 with 33% Byzantine faults: Average speed of convergence

over 900 generations with population size 50/thread

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600 700 800 900

fit
ne

ss

generation number

2 threads
4 threads
8 threads

16 threads
32 threads

Fig. 19. Benchmark functionf3 with 60% Byzantine faults: Average speed of convergence

over 900 generations with population size 50/thread

31

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600 700 800 900

fit
ne

ss

generation number

2 threads
4 threads
8 threads

16 threads
32 threads

Fig. 20. Benchmark functionf3 with 80% Byzantine faults: Average speed of convergence

over 900 generations with population size 50/thread

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500

fit
ne

ss

generation number

f=0.33
f=0.40
f=0.50
f=0.60
f=0.70
f=0.80

Fig. 21. Benchmark functionf1 with 8 threads and varying percentage of Byzantine faults:

Speed of convergence over 500 generations with population size 16/thread

32

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600 700 800 900

fit
ne

ss

generation number

f=0.0
f=0.33
f=0.40
f=0.50
f=0.60
f=0.70
f=0.80

Fig. 22. Benchmark functionf3 with 8 threads and varying percentage of Byzantine faults:

Average speed of convergence over 900 generations with population size 50/thread

system are Byzantine (Figs. 15 and 18) the average of the best values is still comparable

to the no-failure case (Figs. 6 and 8). For the the 60% Byzantine processors case (Figs. 16

and 19) the results are still good but the average fitness values worsen about 10 times. For

the 80% Byzantine processors case, the results deteriorate (Figs. 17 and 20) and there is

an order-of-magnitude difference in the average of the bestvalues as compared to previous

plots.

Looking at the average of the best values seen by all the threads is a good indicator of

the performance of the GA; however, there are some interesting aspects that are missed out.

Firstly, the result of the GA is the absolute best value seen and that value could be much

less than the average of the best values seen by each thread. Secondly, it is interesting to

see what the fitness values of the various individuals in the pool are: are all individuals in

the pool mere replicas of the best individual, are most individuals in the pool similar to the

best individual or are most individuals of poor fitness? How does this vary with crash and

Byzantine failures? To answer these questions we look at the distribution of the fitness of

the individuals in the pool.

33

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

1e3

F
re

qu
en

cy

Interval

Fig. 23. Distribution of fitness of individuals in initial pool for functionf3 with 8 threads

 0

 500

 1000

 1500

 2000

 2500

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

1e3

F
re

qu
en

cy

Interval

Fig. 24. Distribution of fitness of individuals in final pool for functionf3 with 8 threads

under no failures

34

 0

 500

 1000

 1500

 2000

 2500

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

1e3

F
re

qu
en

cy

Interval

Fig. 25. Distribution of fitness of individuals in final pool for functionf3 with 8 threads

under crash failures (1/1800 probability of crash in each generation)

 0

 500

 1000

 1500

 2000

 2500

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

1e3

F
re

qu
en

cy

Interval

Fig. 26. Distribution of fitness of individuals in final pool for functionf3 with 8 threads

under 33% Byzantine failures

35

 0

 500

 1000

 1500

 2000

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

1e3

F
re

qu
en

cy

Interval

Fig. 27. Distribution of fitness of individuals in final pool for functionf3 with 8 threads

under 60% Byzantine failures

 0

 500

 1000

 1500

 2000

 2500

 3000

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

1e3

F
re

qu
en

cy

Interval

Fig. 28. Distribution of fitness of individuals in final pool for functionf3 with 8 threads

under 80% Byzantine failures

36

In this section we look at the distribution of the fitness of the individuals in the pool.

We use the functionf3 and run the Pool GA with 8 threads. Simulation parameters are

kept the same as those for previous simulations off3, i.e., a population of 50/thread, total

900 generations, same probability of mutation, selection,crossover. For the crash failure

simulation we use the same probability of failure,1/1800, as before. The initial pool is kept

the same for each of the simulations and the distribution of the initial pool is provided in

Fig. 23. We look at the distribution of the pool at the end of the simulation of the no-failure

case (Fig. 24), crash failure case (Fig. 25) and Byzantine failures with 33%, 60% and 80%

of the processors being Byzantine (Figs. 26, 27 and 28). Each of the distributions is plotted

with a logarithmic x-axis starting from10−7 and ending with103. The bar corresponding

to 10−7 gives the number of individuals whose fitnessf lies in 10−8 < f ≤ 10−7. The bar

corresponding to10−6 gives the number of individuals whose fitnessf lies in10−7 < f ≤

10−6 and so on. We did not see any individuals with fitness less than10−8 for the above

simulations so the range of our axes is appropriate. Each plot contains data of10 runs.

Thus the sum of the y-values of the bars is the sum of the pool sizes of all the runs. In our

case the population is 50/thread and hence the pool size for one run is50 ∗ 8 = 400. For

the10 runs we observe a total of4000 individuals and that is the number of individuals in

each distribution.

Fig. 23 shows that initial fitness values of the individuals in the pool is quite poor. For

the simulation with no failures (Fig. 24) we observe that in the final pool most individuals

have close to optimum fitness; the quality of the individualsin the pool is thus overall very

good. For the crash failure simulation (Fig. 25), we see a greater spread in the distribution;

however, a majority segment of the pool still has very good fitness values. For the Byzan-

tine failure simulations (Figs. 26, 27 and 28) we observe that the pool appears to have two

partitions. One partition has individuals of good (low) fitness values while the other par-

tition has bad (high) fitness values. As the percentage of Byzantine failures increases, the

37

number of individuals in the bad fitness partition keeps increasing. This general trend is to

be expected because with our Anti-Elitism approximation ofByzantine behavior, the cor-

rect processors try to reduce the fitness value of individuals in the pool while the Byzantine

processors try to increase the fitness value of the individuals in the pool. It is an interesting

open problem, however, to study why our Anti-Elitism approximation of Byzantine failure

leads to the bimodal distribution observed.

38

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this thesis we proposed a new architecture for distributed genetic algorithms in which

the participating processors interact in an asynchronous,loosely coupled manner through

shared objects. This architecture is tailored to take advantage of the state of the art in

distributed computing by allowing processors with different speeds to cooperatively solve

a problem. The architecture also provides fault-toleranceto processor failures by allowing

the data to be decoupled from the processors. Fault-tolerance is a crucial property in today’s

world where the availability of large numbers of processorsincreases the chance that some

of the processors will fail.

In the future, we would like to explore the pool model furtherto study optimum pa-

rameters for convergence such as the relation between choices of pool size, processor pop-

ulation size, and the effect of the strategy for writing backto the pool. Currently the pool

of individuals is a passive store of data; we would like to explore the possibility of making

the pool more intelligent; for instance, can the pool automatically replicate individuals of

greater fitness? We would also like to provide an implementation of the Pool GA on a

parallel programming framework like OpenMP or MPI and test with the full version of the

Lifecycle Design problem. In terms of parallel implementations it will be interesting to see

whether the pool architecture fits in well with Google’s Mapreduce paradigm [27], which

would make the parallel programming easier. From a distributed shared memory perspec-

tive, we would like to define the semantics of the pool as a linearizable shared memory data

structure [24]. Finally we would also like to explore different ways of modelling Byzantine

failure of processors for our Pool GA.

39

REFERENCES

[1] J. H. Holland,Adaptation in Natural and Artificial Systems. Cambridge, MA: MIT

Press, 1992. [Online]. Available: http://portal.acm.org/citation.cfm?id=129194

[2] D. Whitley, “A genetic algorithm tutorial,”Stat. and Comp., vol. 4, no. 2, pp. 65–85,

June 1994. [Online]. Available: http://dx.doi.org/10.1007/BF00175354

[3] R. Salomon, “Reevaluating genetic algorithm performanceunder coordinate rotation

of benchmark functions; a survey of some theoretical and practical aspects of genetic

algorithms,”BioSystems, vol. 39, pp. 263–278, 1995.

[4] D. Mangun and D. Thurston, “Incorporating component reuse, remanufacture, and

recycle into product portfolio design,”IEEE Trans. Eng. Manag., vol. 49, no. 4, pp.

479–490, Nov 2002.

[5] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,” ACM

Trans. Program. Lang. Syst., vol. 4, pp. 382–401, 1982.

[6] G. Roy, H. Lee, J. L. Welch, Y. Zhao, V. Pandey, and D. Thurston, “A distributed pool

architecture for genetic algorithms,” inIEEE Congress on Evolutionary Computation,

May 2009, pp. 1177–1184.

[7] J. E. Rowe, “Genetic algorithm theory,” inProc. of the GECCO Conf. Companion

on Genetic and Evolutionary Computation. New York, NY: ACM, 2008, pp. 2535–

2558.

[8] E. Cant́u-Paz, “A survey of parallel genetic algorithms,” IllinoisGenetic Algorithms

Laboratory, University of Illinois, Tech. Rep. 97003, 1997.

40

[9] K. Deb, P. Zope, and A. Jain, “Distributed computing of Pareto-optimal solutions

with evolutionary algorithms,” inEvolutionary Multi-Criterion Optimization, ser.

Lecture Notes in Computer Science, vol. 2632. Springer, 2003. [Online]. Available:

http://www.springerlink.com/content/xm2qxu4hbrkm6jk5/

[10] N. Carriero and D. Gelernter, “Linda in context,”Commun. ACM, vol. 32, no. 4, pp.

444–458, 1989.

[11] N. Carriero, D. Gelernter, and J. Leichter, “Distributed data structures in Linda,” in

Proc. of the 13th ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, POPL ’86. New York, NY: ACM, 1986, pp. 236–242.

[12] G. Sutcliffe and J. Pinakis, “Prolog-D-Linda: An embedding of Linda in SICStus

Prolog,” in Proc. of the Joint Workshop on Distributed and Parallel Implementation

of Logic Programming Systems, 1992, pp. 70–79.

[13] M. Davis, L. Liu, and J. Elias, “VLSI circuit synthesis using a parallel genetic al-

gorithm,” in Proc. of the 1st IEEE Conf. on Evolutionary Computation, IEEE World

Congress on Computational Intelligence, vol. 1, June 1994, pp. 104–109.

[14] J. C. C. Litŕan, X. Defago, and K. Satou, “Asynchronous peer-to-peer communication

for failure resilient distributed genetic algorithms,” inProc. of the 15th IASTED Int.

Conf. on Parallel and Distributed Computing and Systems (PDCS), 2003, pp. 769–

773.

[15] K. Li and P. Hudak, “Memory coherence in shared virtual memory systems,”ACM

Trans. Comput. Syst., vol. 7, no. 4, pp. 321–359, 1989.

[16] D. K. Gifford, “Weighted voting for replicated data,” in Proc. of the Seventh ACM

Symposium on Operating Systems Principles, SOSP ’79. New York, NY: ACM,

41

1979, pp. 150–162.

[17] V. Pandey, D. Thurston, K. Kanjani, and J. Welch, “Distributed data sources for life-

cycle design,” inProc. of the 16th Int. Conf. on Engineering Design (ICED), 2007.

[18] J. I. Hidalgo, J. Lanchares, F. Fernández de Vega, and D. Lombrańa, “Is the island

model fault tolerant?” inProc. of the 2007 GECCO Conf. Companion on Genetic and

Evolutionary Computation. New York, NY: ACM, 2007, pp. 2737–2744.

[19] D. L. Gonzalez and F. F. de Vega, “On the intrinsic fault-tolerance nature of parallel

genetic programming,” inProc. of 15th EUROMICRO Int. Conf. on Parallel, Dis-

tributed and Network-Based Processing, PDP ’07, Feb. 2007, pp. 450–458.

[20] J. J. Merelo, A. M. Garćıa, J. L. J. Laredo, J. Lupión, and F. Tricas, “Browser-based

distributed evolutionary computation: Performance and scaling behavior,” inProc.

of the 2007 GECCO Conf. Companion on Genetic and Evolutionary Computation.

New York, NY: ACM, 2007, pp. 2851–2858.

[21] F. Kimura, “A computer-supported approach to life cycle design of eco-products,” in

Proc. of 5th Int. Conference on EcoBalance, 2002, pp. 451–452.

[22] V. Pandey and D. Thurston, “Non-dominated strategies for decision based design for

product reuse,” inProc. of ASME Int. Design Engineering Technical Conferences,

2007.

[23] N. Sakai, G. Tanaka, and Y. Shimomura, “Product life cycle design based on product

life control,” in 3rd Int. Symposium on Environmentally Conscious Design and Inverse

Manufacturing, EcoDesign ’03, Dec. 2003, pp. 102–108.

[24] M. P. Herlihy and J. M. Wing, “Linearizability: a correctness condition for concurrent

objects,”ACM Trans. Program. Lang. Syst., vol. 12, pp. 463–492, 1990.

42

[25] D. P. Anderson, “Boinc: A system for public-resource computing and storage,” in

Proc. of the 5th IEEE/ACM Int. Workshop on Grid Computing GRID ’04, 2004, pp.

4–10.

[26] K. Deb, “Kangal codes.” [Online]. Available: http://www.iitk.ac.in/kangal/codes.

shtml

[27] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on

large clusters,” in OSDI, 2004, pp. 137–150. [Online]. Available: http:

//www.usenix.org/events/osdi04/tech/dean.html

43

APPENDIX A

PRODUCT LIFECYCLE DESIGN APPLICATION

We consider design of a product portfolio to cover differentcustomer market seg-

ments, over multiple lifecycles. Four market segments are defined: technophile, utilitarian,

greens and neutral in terms of their relative preference forperformance, cost, and envi-

ronmental impact. Manufacturers need to make optimal design decisions to maximize the

total product portfolio utility, which is a function of cost, environmental impact and perfor-

mance. In each market segment, customers have their own preferences and willingness to

make tradeoffs, which together define their utility functions.

The decision variables are the discrete design decisions for each component of the

product in each lifecycle. The resulting optimization problem is large; for example, for five

lifecycles of a single product comprising 12 components, about1036 solutions are possible

if each component can be reused, remanufactured, recycled or replaced. Exhaustive enu-

meration of all solutions is not feasible. Consideration of multiple products per lifecycle

(product portfolio) will undoubtedly increase the problemcomplexity even further.

44

Max Up s.t.

Up =
1

Kp

∏

a∈{C,E,R}

(Kpkp,aUp,a + 1) − 1

Up,C =
Cp,max − Cp

Cp,max − Cp,min

Up,E =
Ep,max − Ep

Ep,max − Ep,min

Up,R =
Rp − Rp,min

Rp,max − Rp,min

Cp =

Lp
∑

l=1

(Cp,l + Qp,l)

Cp,l =
s
∑

i=1

[

xp,l,i,1

(

Cp,l,i,8 +
5
∑

n=1

Cp,l,i,n

)

+xp,l,i,2 (Cp,l,i,4) + xp,l,i,3

6
∑

n=3

Cp,l,i,n

+xp,l,i,4

(

Cp,l,i,7 +
5
∑

n=2

Cp,l,i,n

)]

Ep =

Lp
∑

l=1

Ep,l

Ep,l =
s
∑

i=1

[

xp,l,i,1

(

Ep,l,i,8 +
5
∑

n=1

Ep,l,i,n

)

+xp,l,i,2(Ep,l,i,4) + xp,l,i,3

6
∑

n=3

Ep,l,i,n

+xp,l,i,4

(

Ep,l,i,7 +
5
∑

n=2

Ep,l,i,n

)]

Rp = min{Rp,l : l = 1, . . . , Lp}

Rp,l = f(Rp,l,1, . . . , Rp,l,s)

Rp,l,i = exp

(

−

[

tp,l,i

Θi

]bi

)

tp,l,i = g(tp,l−1,i, xp,l,i,1, ..., xp,l,i,4) + ap,l, l > 0

tp,0,i = 0
Lp
∑

l=1

ap,l = 10

45

Cp,min ≤ Cp ≤ Cp,max

Ep,min ≤ Ep ≤ Ep,max

Rp,min ≤ Rp ≤ Rp,max

xp,l,i,1, xp,l,i,2, xp,l,i,3, xp,l,i,4 ∈ {0, 1}

xp,l,i,1 + xp,l,i,2 + xp,l,i,3 + xp,l,i,4 = 1

Notes:

• p = index of specific product in the product portfolio

• Kp = normalizing constant for productp

• a ranges over attributesC (cost),E (environmental impact), andR (reliability)

• kp,a = scaling constant corresponding to attributea for productp

• Up,a = utility of attributea for productp

• Cp = total cost of productp; betweenCp,min andCp,max

• Ep = total environmental impact of productp; betweenEp,min andEp,max

• Rp = the minimum reliability in all lifecycles of productp; betweenRp,min and

Rp,max

• Lp = number of lifecycles of productp

• Cp,l = cost associated with productp in lifecycle l

• Qp,l = profit margin of productp in lifecycle l

• s = number of components in the product (all products in portfolio have same num-

ber of components)

46

• xp,l,i,z = binary design decision for componenti of productp during lifecyclel; z

ranges from 1 to 4 with 1 indicating reuse, 2 remanufacturing, 3 recycling, and 4

new; for a fixedp, l, andi, exactly one of the four variables should be true

• Cp,l,i,n = cost of operationn for componenti of productp in lifecycle l; n ranges

from 1 to 8 with 1 indicating new material acquisition, 2 manufacturing/forming, 3

assembly, 4 take-back, 5 disassembly, 6 remanufacturing, 7recycling, and 8 disposal

• Ep,l = environmental impact associated with productp in lifecycle l

• Ep,l,i,n = environmental impact of operationn for componenti of productp in life-

cyclel

• Rp,l = reliability of productp in lifecycle l; based on component reliabilities and

failure model assumed

• Rp,l,i = reliability of componenti of productp in lifecycle l

• f = function modeling failure mode for the product

• Θi = characteristic life of componenti

• bi = slope of Weibull reliability curve for componenti

• tp,l,i = age of componenti in productp at end of lifecyclel

• g = function modeling how the design decisions (xp,l,i,z, z = 1, . . . , 4) impact com-

ponenti’s end of lifecycle age

• ap,l = productp’s usage time in lifecyclel

47

VITA

Gautam Samarendra N Roy obtained a Bachelor of Technology in electronics and

communication engineering from Indian Institute of Technology Guwahati in 2005. Prior

to joining Texas A&M in 2007, he spent two years working as a software engineer in the

System LSI Division of Samsung, India. At Texas A&M, he worked in the Distributed

Computing Group with Dr. Jennifer Welch and graduated with his master’s in Computer

Engineering in December 2009.

He can be reached at c/o: Dr. Jennifer Welch, Department of Computer Science and

Engineering, Texas A&M University, TAMU 3112, College Station, TX - 77843-3112. His

email is groys@tamu.edu

