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Abstract— We present a computational model of creative

design based on collaborative interactive genetic algorithms.
We test our model on floorplanning. We guide the evolution
of floorplans based on subjective and objective criteria. The
subjective criteria consists of designers picking the floorplan
they like the best from a population of floorplans, and the
objective criteria consists of coded architectural guidelines. We
support collaboration by allowing individual designers to view
each others’ designs during the evolutionary process and the
sharing of designs via case injection. This methodology supports
team design, and reflects the view of creativity that collaboration
accounts for much of our intelligence and creativity. We present
a description of the model and a comparative study of floor-
plans created individually versus collaboratively. Our results
show that floorplans created collaboratively were considered
to be more “revolutionary” and “original” than those created
individually.

I. INTRODUCTION

Design is a fundamental, purposeful, pervasive and ubiq-

uitous activity and can be defined as the process of creating

new structures characterized by new parameters, aimed at

satisfying predefined technical requirements. It consists of

several phases, which differ in details such as the depth

of design, kind of input data, design strategy, procedures,

methodology and results [19]. Usually the first stage of any

design process is the preliminary or the conceptual design

phase, followed by detailed design, evaluation and iterative

redesign [3]. Computers have been used extensively for all

these stages of design except the creative conceptual design

phase. We are interested in supporting the creative conceptual

design phase by not only saving and disseminating the initial

ideas of designers, but also by providing the support for

initial design ideas to serve as the seeds on which new

designs are founded. Interactive genetic algorithms (IGAs)

have been proposed as user guided innovation pumps [13].

We propose a computational model of creative design based

on collaborative interactive genetic algorithms to support

creativity in design. Our model allows designers to guide

evolutionary computation to breed new design ideas quickly,

while supporting a team collaborative aspect, consisting of

the sharing of ideas among designers.

Interactive genetic algorithms (IGAs) differ from GAs in

that the objective fitness evaluation is replaced with user
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evaluation, thus allowing for the user to guide an explorative

evolutionary process when there is no better fitness measure

than the one in the human mind [22]. With subjective

evaluation IGAs can allow a designer to explore the space of

possible designs, even if the requirements include aesthetic

and subjective criteria. Furthermore, it has been argued that

much of our creativity and intelligence comes from our

interaction with peers [5], [8]. We follow along this line

of thought by supporting collaboration amongst a team of

designers by allowing them to view each others’ designs

during individual evolutionary sessions with an IGA. Sharing

among the designers is supported via case injection.

In this paper we present an extension of the work by

Banerjee et al. in [2], where the collaborative IGA compu-

tational model of creativity was first introduced. Banerjee et

al. only describe pretests in their work, and do not conduct a

thorough evaluation of the model. The authors of the model

described create and choose a representative set of floorplan

designs that were then evaluated by 10 computer science

graduate students. The students were asked to evaluate the

floorplans in terms of “practicality” and “originality”. The

pretest results showed that floorplans designed collabora-

tively were ranked higher in “originality” than those created

individually. In this paper we conduct further evaluation of

the computational model of creative design. A group of 20

participants, broken into five groups of four, took part in a

user study. Participants in the groups created floorplans indi-

vidually and collaboratively, and then evaluated the created

floorplans using a criteria subset from the Creative Product

Semantic Scale [4], [1]. Our hypothesis is that the support

of collaboration through the exchange of design solutions

between participating peers will result in designs that are

more creative than designs created individually.

We use Gero’s definition of creative designing, which

states that the addition of variables during the design pro-

cess has the potential, but does not guarantee, to produce

creative content [10]. The work presented by Banerjee et

al. in [2], and in this paper, does not expand the search

space by adding variables. Instead, assuming that a large

design solution space is being explored, we ask whether

collaboration amongst peers is sufficient to allow for the

potential to produce creative content in designing. Our results

show that floorplans created collaboratively were considered

to be more “revolutionary” and more “original” than those

created individually.

The rest of the paper is organized as follows. First we

present related work on computational models of creative

design, IGAs, and computer supported collaborative work.



Second, we describe the computational model of creative de-

sign in detail, along with the framework we implemented to

test the model. Third, we discuss details on the floorplanning

case study, including representation and specialized genetic

operators used. Next we describe the experimental user study

and discuss the results obtained. We conclude with directions

for future work.

II. RELATED WORK

The work presented in this paper encompasses the use

of several technologies and various active areas of research,

including computational models of creative design, inter-

active evolutionary computation, and computer supported

collaborative work.

A. Computational Models of Creative Design

Computational models of creative design have been re-

searched since the early 90s due to the popularity and

capabilities that artificial intelligence (AI) brought on. The

potential for a computational model of design to produce

creative content relies on expanding the solution search

space by adding one or more variables [10]. A creative

design process does not guarantee the production of creative

solutions; rather it provides the potential for created solutions

to be creative. It is the role of the designer to initially

determine the creative value of the produced designs.

The design literature presents various types of design ac-

tivities [9], [10]. Routine design occurs when all variables as-

sociated with a design are known a priori before exploration

of design solutions. Non-routine design breaks down into two

types of design: innovative and creative design. In innovative

design the boundaries to design variables are allowed to

go beyond practical and known “good practice” bounds.

In creative design we allow the addition of one or more

variables, thus expanding the design search space, allowing

for potential creative solutions to be discovered. Models of

creative design which have been presented by the research

design community manipulate the search space through the

use of various techniques, including combination, analogies,

transformation, emergence, and first principles [10]. Our

collaborative IGA computational model of design is the first

to use IGAs to guide the exploration of subjective search

spaces, along with collaboration to allow designers to expand

their search spaces through case injection.

B. Interactive Genetic Algorithms

The design process consists of an exploration through the

design solution space. Evolutionary computation techniques,

specifically genetic algorithms (GAs) have been used and

proven in various problem domains to be effective search

techniques [12]. We are trying to provide computer support

for the conceptual design phase, which tends to be one of the

most creative phases in the design process. Thus, we face the

challenge of providing support for subjective evaluation of

alternative conceptual designs. When there is no better fitness

measure to a solution other than the one in the human mind,

then we use interactive genetic algorithms (IGAs) [22]. IGAs

replace the fitness evaluation of individuals in the population

with user evaluation. Due to the nature of IGAs, they have

been used for a variety of applications which incorporate

creative human input, including editorial design, industrial

design, image processing, database retrieval, graphic art and

computer graphics animation, control and robotics, among

others [22]. In our work, the use of IGAs during concep-

tual design allows designers to evaluate subjective criteria

and to incorporate aesthetic preference into the explorative

evolutionary process.

C. Computer Supported Collaborative Work

Computer supported collaborative work (CSCW) ad-

dresses the support and enhancement of collaboration of a

group of people mediated through computers. Some exam-

ples of current research on CSCW are wikis, chatting, instant

messaging, e-mail, VOIP, videoconferencing, shared desktop

applications, and control version systems [7], [20]. CSCW re-

search also has concentrated on blocks to communication and

creativity that arise from conflicts between individuals [18].

The computational model of creative design based on

collaborative interactive genetic algorithms supports collabo-

ration at two levels: (1) designers can view each others’ solu-

tions; and (2) designers can choose to inject design solutions

from their peers into their IGAs. The interaction between the

designer and the IGA, while allowing for exploration, results

in a convergence from a random sample of the solution

search space to design solutions which reflect the designer’s

preference. Collaboration has the benefit of allowing each of

the designers to be exposed to the diverse paths taken by each

of the designer’s peers. Even if the designer chooses not to

inject any solutions from peers, the designer can still view the

solutions belonging to peers, thus allowing the designer to

compare and contrast his/her respective solutions and reflect

on design alternatives and on the reasoning behind the design

solutions created by peers. With injection, designers can

bias their evolutionary exploration, by allowing combination

to take place between the designer’s own and the injected

solutions. More importantly, whenever a designer chooses to

inject a solution into his/her population, the resulting bias

will eventually be viewed by the designer’s peers, resulting

in a chain reaction.

Our work most closely resembles Picbreeder, a sys-

tem used to evolve pictures collaboratively online [21].

Picbreeder supports collaboration by allowing users to branch

from images created by other users. Users can start evo-

lution from randomly generated images, or from an image

generated by someone else in the Picbreeder community. Our

work differs from Picbreeder in that we support collaboration

in real time. Users of our system participate in individual

evolutionary sessions concurrently, with users able to see

each others’ designs as evolution progresses. Picbreeder is

a special type of case injection, where users select the

individual from which to start evolution, referred to in their

research as “branching” [16]. In our model users work in

a group setting, with users able to inject at any time any

individual they find interesting from any of their peers.



III. COMPUTATIONAL MODEL OF CREATIVE DESIGN

The computational model of creative design based on

collaborative IGAs is shown in figure 1. The figure illustrates

three users collaborating with each other, with each of the

peers denoted by the dotted boxes. Each user interacts with

a GA by acting as the subjective evaluation. As shown, the

evaluation is not purely subjective, instead the evaluation of

design solutions consists of the multi-objective optimization

of the subjective and objective criteria. We use Pareto op-

timality to maximize these criteria [6]. The arrows between

the GAs of each of the peers represent the communication

that takes place between the peers. If a user likes a design

solution from one of his/her peers, then the user has the

option to inject that solution into his/her population, thus

introducing a search bias.

Fig. 1. Computational Model of Creative Design

A. Design Space Exploration

To determine whether the model has the potential to

produce creative content we have to look at design space

exploration. According to Geros definition of creativity, cre-

ativity has the potential to occur when a designer purposely

shifts the focus of the search space [11]. We illustrate this on

the left part of figure 2. Specifically, the ability to “perform

goal-oriented shifts of the focus of the search activity” is

crucial to a design process, done either implicitly by the

designer’s understanding of the problem changing over time,

or explicitly through adding variables to the search space.

The right part of figure 2 shows a similar phenomenon, but

how it occurs in our computational model. The white blobs

show the starting search spaces of the individual designers.

Through collaboration the designers are able to shift focus

of their initial search spaces as a consensus, ending in the

state space SN. The implementation presented in this paper

does not include the explicit addition of variables to expand

the search space.

B. IGAP: Interactive Genetic Algorithm Peer-to-Peer

IGAP is the framework we implemented to test the com-

putational model of creative design. Figure 3 shows the steps

involved in IGAP. Each peer acts as an independent node,

Fig. 2. Design Space Exploration

running as a server which handles incoming requests from

peers. On a request, the peer node sends a subset of its

best genomes to the requesting peer. The requesting peer,

assuming collaboration with more than one peer, constructs

a genome pool from all the genomes received from all of

its peers. From the genome pool the requesting peer node

then selects a random subset to display on the screen of the

designer.

Fig. 3. IGAP Process

C. Multi-objective Optimization

We use the non-dominated sorted multi-objective genetic

algorithm (NSGA-II) to evolve floorplans [6]. The NSGA-II

creates fronts of non-dominated individuals, where within a

front none of the individuals are any worse than any other

individual across all optimization criteria and all individuals

within a front are said to have the same rank. We select

parents by using the crowded distance tournament operator.

We pick two individuals to participate in the tournament, and

we select the individual with the higher rank to be part of the

mating pool. In case the two individuals have the same rank,

and consequently belong to the same front, then the crowded

distance of both individuals is computed, and we select the

individual with the highest crowded distance to be part of

the mating pool. This translates to the individual being in



a less crowded region of the front and hence, the crowded

distance selection favors the most diverse individuals within

a front.

We use NSGA-II with a two-criterion multi-objective

function: objective fitness and subjective fitness. Previously,

we had used a five-criterion multi-objective function, where

two of the five criteria measured objective guidelines, while

the remaining three criteria measured subjective preferences.

However, studies have shown that the performance of the

NSGA-II degrades when using more than three criteria

during multi-objective optimization [23].

D. A Special Case of Case-Injected Genetic Algorithms

A case-injected genetic algorithm (CIGAR) works dif-

ferently than a typical GA. A GA randomly initializes its

starting population so that it can proceed from an unbi-

ased sample of the search space. The methodology behind

CIGARs is that it makes less sense to start a problem

solving search attempt from scratch when previous search

attempts (on similar problems) may have yielded useful

information about the search space [16]. Instead, periodically

injecting a GA’s population with relevant solutions or partial

solutions to similar previously solved problems can provide

information (a search bias) that reduces the time taken to find

a quality solution. This approach borrows ideas from case-

based reasoning (CBR) in which old problem and solution

information, stored as cases in a case-base, helps solve a new

problem [15]. The collaborative IGA computational model

is a special case of CIGARs, where the designer during

the interactive evolutionary session determines when and

how many individuals to inject into the population, instead

of being done in an algorithmic fashion [16]. Furthermore,

in CIGARs the side effect occurs in one direction, with

the individuals injected from the case base affecting the

performance of the running GA. In our model, when a

designer chooses to inject a solution from one of his/her

peers, the introduced bias will not only become apparent in

the designer’s own population, but the other peers will also be

able to view this change as well, since designers can always

see a subset of each others’ designs.

E. Collaborative Methodology

Collaborative evolution is implemented with a peer to peer

network. We treat each user participating in evolution as a

node, handling incoming requests from other nodes (peers)

and requesting information from peers. By using a peer to

peer network, control is decentralized and each node is free

to choose who to connect to and if necessary who to exclude

from its set of peers.

The interface during an individual evolutionary session is

shown in figure 4. During collaborative evolution (figure 5), a

subset of peer-evolved designs is displayed to the right of the

user’s population. We limit the number of peer individuals

to nine, organized in a 3x3 grid, similar to how we present

the user’s own population, in order to be consistent. For

more than one peer, we cannot display all the individuals

belonging to the subset of each peer, since we only display

nine. We do make sure that the user selected best individuals

from each peer are displayed on the peers subset. We save

the user selected best from generation to generation, and

we always make it part of the subset displayed the next

time the IGA requires user input. We select the rest of the

individuals that make up the peers subset by taking random

individuals from a collective pool consisting of all individuals

taken from peers. By selecting a random subset, we believe

that over many generations, all of the participants will get

approximately the same amount of their designs displayed

on the screens of collaborators.

Fig. 4. Screen shot of individual floorplan designing.

The benefit of viewing the best individuals from peers is

limited, unless the user is able to take promising individuals

from peers and mold them to their liking. We support this

by allowing the user to inject individuals from the subset of

peers into the user’s own population. The user can also select

a best individual from the subset of individuals from peers,

in which case the user selected best is automatically injected

into the population, and used for fitness interpolation. We

require the user to select a best individual, but it does not

have to be from the user’s own population - the user selected

best can come from peers.

The injected individuals replace the bottom 10% of the

population as done in [16]. If the number of injected indi-

viduals is less than 10% of the population, then we insert

numerous copies of the injected individuals, until the total

sum of the injected individuals is 10%. In CIGARs typically

a case base is kept of solutions to previously solved problems,

and based on problem similarity, individuals similar to the

best individuals in the current population are periodically

injected, replacing the worst individuals [16]. In our algo-

rithm, the designer plays the role of determining how many,

when, and which individuals to inject at any step during the

collaborative evolutionary process. If the injected individuals

make a positive contribution to the overall population, then

they will continue to reproduce and live on, while injected

individuals which do not improve the population performance

will eventually die off. Hence, the user is not penalized for

injecting subpar individuals.



Fig. 5. Screen shot of collaborative floorplan designing.

F. Fitness Biasing

We use fitness biasing to ensure that injected individuals

survive long enough to leave a mark on the host population.

We use the concept of bloodline to do fitness biasing. Injected

individuals are considered to be full blood, while those in-

dividuals already in the population are treated as individuals

with no blood. The bloodline consists of a number between 0
(no blood) and 1 (full blood).When a full-blooded individual

crosses over with a no-blooded individual, then the offspring

will inherit a bloodline value equal to a weighted sum of the

bloodline of the parents, where the weight values depend

on the percentage of the genetic material inherited from

each parent. This is shown in equation 1, where p1 is the

percent of genetic material inherited from the first parent,

p1blood is the bloodline value of the first parent, p2 is the

percent of genetic material inherited from the second parent

(p2 = 1 − p1), and p2blood is the bloodline value of the

second parent. The product of an individual’s fitness value

and bloodline (or 1 minus the bloodline if minimizing fitness

values) is the bias added to the individual’s fitness.

child blood = p1 ∗ p1blood + p2 ∗ p2blood (1)

IV. CASE STUDY: FLOORPLANNING

We use floorplanning as the case study to test the model of

creative design. The rooms in the floorplans are color coded

as red (living area), yellow (bedrooms), green (eating areas

- kitchen and/or dining rooms), firebrick (bathrooms), and

white (empty spaces).

A. Floorplan Representation

For evolving floorplans we have used a binary tree rep-

resentation, coded as a nested list. At every node of the

tree, the parameters specify how the rectangular panel at that

level is subdivided (either left/right or top/bottom) and the

percentage of panel area at that level contained in either

the left or the top subdivision. Figure 6 shows how the

rectangular panel is subdivided into rooms and spaces. A

room is represented by the array [0, 1] and a space by

[0, 0]. An arbitrary array [0, 0.75] represents division in

top/bottom configuration with top sub-panel containing 75%

of the parent panel. Another list [1, 0.80] represents division

in left/right configuration with left sub-panel containing 80%

of the parent panel. Even though the representation is quite

intuitive, it only allows us to represent rectangular shapes. To

represent more complicated (possibly organic) shapes, a more

complex representation is needed. The plans are decoded

according to the guidelines in [17] - depending on the number

of rooms (the number of [0, 1] arrays in the encoding) and

their relative sizes, the guidelines have explicit instructions

pertaining to room labels (living, bed, kitchen etc.). For

example if a particular plan has two rooms, the bigger room

is labeled as the Living-Bed-Kitchen (studio configuration)

and the smaller room is labeled as the Restroom. For plans

with more than three rooms or more, the bedrooms are

separated from the living room.

Fig. 6. The binary tree representation of a floorplan.

The binary tree representation for floorplans necessitates

the need for a specialized tree-crossover operator. The nested

list is parsed as a binary tree and two such parent trees are

crossed at randomly chosen nodes, such that entire sub-trees

following those nodes are swapped. The tree representation is

used in genetic programming [14] and hence, our crossover

operator maps to the crossover operator used in genetic

programming. Depending on the probability of mutation, the

mutation operator works on the two parameters of the nodes

(or leaves) differently. It performs a binary swap on the first

parameter thereby changing the subdivision configuration.

Depending on the value of the second parameter, the operator

either performs a binary swap (if the value is either 0 or 1),

thereby changing a room to a space and vice versa, or if

the second parameter is a real number between 0 and 1, the

operator replaces it by another random real number in the

same interval, thereby altering the dimensions of the room

(or the space).

B. Fitness Evaluation

1) Objective Evaluation: Plans are compared room-wise

to ascertain if they meet the minimum dimension and area

criteria in [17]. The guidelines for a two-room single-storey

house plan call for the bigger room to be at least 300ft2

and have a minimum dimension of 20
′

10”. The number

of rules that a particular plan needs to adhere to increases



with the number of rooms. The objective measure assigned

to a two-room plan that satisfies the minimum area and

minimum dimension requirement is [0.0, 0.0]. If the area

of the bigger room of a certain other plan is area such

that area < 300ft2, and if the minimum dimension of the

bigger room is minlen such that minlen < 20
′

10”, then the

objective minimization measure is given by equation 2.

obj = [
300 − area

300
,
20

′

10” − minlen

20′10”
] (2)

2) Subjective Evaluation: We also compare the plans to

the user-selected best on three criteria. The three criteria are:

(1) number of rooms, (2) room adjacencies, and (3) total built

area of the plan. The first criteria compares the number of

rooms in the user-selected best plan to the particular plan in

question. If the user-selected best plan has b rooms, a plan

with c number of rooms is assigned a measure of |b − c|. If

1 < c < 8, then it is assigned a measure of:

1 + max(b − 2, 8 − b) (3)

In order to compare plans for similarity (or dissimilarity)

in room adjacencies, we compare adjacency similarity in

certain pairs of rooms, such as living-bedroom adjacency,

restroom-bedroom adjacency, kitchen-dining area adjacency,

and restroom-kitchen adjacency. This information is stored

in a four-bit string (1 for adjacency and 0 for no-adjacency).

The Euclidean distance between the bit string for the user-

selected best plan and the bit string for the particular plan

provides the second subjective measure. For plans that do

not have separate kitchens or dining areas or bedrooms,

the default adjacency measure is always unity. The third

criteria measures the similarity between the plan in question

and user-selected best plan in terms of total built area, i.e.

area occupied by all rooms. If the user-selected best plan

has a total built area of barea, and the plan in question

has a total built area of carea, then the penalty associated

with the third criteria is given by, (barea − carea)/barea
if carea < barea. This is also treated as a minimum

subjective requirement, hence there is no default penalty

(plans with more built area than the user-selected best get

a penalty measure of 0.0). These three measures, added

together together and normalized, constitute the subjective

penalty function of NSGA-II.

V. EXPERIMENTAL SETUP

We had 20 participants in our study, eight females and 12

males. Out of the 20 participants, 11 were from engineering

and math, two were undeclared, and seven were from social

sciences. Participants were assigned to groups of four based

on schedule availability. We picked groups of four, so that

using a 3x3 display grid, allowed for three floorplans from

each peer to be displayed on the screen of every other

participant.

Participants first were allowed to get familiar with the

IGA. They were instructed in how to guide the process, both

individually and collaboratively. The participants were told

the set of requirements which they would have to follow after

the tutorial. This was done so that participants could develop

an intuition and a sense for how the system worked. The par-

ticipants were not told that they were using an evolutionary

system, they were simply told that after selecting the best

floorplan, the screen would refresh, displaying a new set of

floorplans would be similar to what they previously selected

as the best.

The set of floorplan requirements given to the partic-

ipants were: (1) Create a floorplan for a 2 bedroom, 1

bathroom apartment, (2) the bathrooms should be close to

the bedrooms, and (3) the bathrooms should be far from

the kitchen and dining room areas. During the tutorial phase

participants were given the requirements, so that they could

practice guiding the IGA to floorplans that meet the given

requirements. We also meant for the tutorial to remove

any bias with regards to unfamiliarity with the system and

with IGAs. Participants were allowed to run for as many

generations as they wished. Once the participants had found

a floorplan that met all requirements and that they also liked,

then they would make a final selection of the best floorplan,

and quit the program.

After the tutorial session, the participants were instructed

to create a floorplan individually that met all of the require-

ments. Following this, the participants created a floorplan

with collaboration. During the collaborative run, the partic-

ipants were allowed to inject as many designs from their

peers as they wished, but their final floorplan selection had

to come from their own collection of floorplans.

In each group, every participant picked one final floorplan

from the individual run as the best and one final floorplan

from the collaborative run as the best. Each participant in the

group then graded the two best floorplans selected from each

of his/her peers, so that each participant evaluated six floor-

plans - three collaborative and three individual floorplans.

The floorplans were evaluated by the participants using the

following criteria: (1) appealing - unappealing, (2) average -

revolutionary, (3) commonplace - original, (4) conventional

- unconventional, (5) dull - exciting, (6) fresh - routine, (7)

novel - predictable, (8) unique - ordinary (9) usual - unusual,

and (10) meets all requirements - does not meet requirements.

Each of these criteria was scored using a seven-point

Likert scale. The criteria were derived from a subset of the

Creative Product Semantic Scale [4], [1]. The presentation

of the criteria was randomized for each of the floorplans, to

make sure the participants were alert and to make sure they

read the criteria before providing a score. The participants

were given as much time as necessary to complete the

evaluation.

VI. RESULTS

Assuming the exploration of a large design solution space,

we ask whether collaboration amongst peers is sufficient to

allow for the potential to produce creative content in design-

ing without explicitly expanding the design solution space

by adding one or more variables. Our hypothesis was that



collaboration would be sufficient to produce creative content,

and that designs evolved collaboratively would consistently

rank higher in the evaluation criteria than those created

individually.

The compiled evaluation results for all groups are shown

in table I. The table shows all evaluation criteria in the

first column. The second column, “Desired Value”, specifies

the desired range in the seven-point Likert scale that would

support our hypothesis. For the first criterion, “Appealing

- Unappealing”, a value of 1 would represent that a given

floorplan was “appealing” while a value of 7 would represent

that a given floorplan was “unappealing”. For the second

criterion, “Average - Revolutionary”, a value of 1 would rep-

resent that a given floorplan was “average” while a value of

7 would represent that a given floorplan was “revolutionary”,

and so on.

The third and fourth columns in table I show individual

and collaborative averages. The individual average provides

the average score received by each floorplan evolved indi-

vidually by each of the 20 participants. The collaborative

average provides the average score received by each floorplan

evolved collaboratively by each of the 20 participants. The

fifth and sixth columns show the corresponding standard

deviations. The last column shows the corresponding p-value

for each criterion.

By looking at the p-value, we can say that the floorplans

created collaboratively ranked slightly higher in the “average-

revolutionary” and the “commonplace-original” criteria. For

the other criteria, the differences in the averages are not

statistically significant. However, even though the floorplans

created collaboratively were considered to be more “revolu-

tionary” and “original” than those created individually, the

average scores are near the median of the seven-point Likert.

Ideally, we would have liked to see these values farther apart,

with the values for “revolutionary” and “original” being

closer to 7 rather than to 4. Finally, we can see that the

participants, either individually or with collaboration, were

able to effectively bias the floorplan designs subjectively to

designs which met most of the requirements, as is shown by

the low average scores obtained in the requirements criterion.

From the results obtained we can deduce that perhaps

collaboration was not sufficient to make a clear distiction in

the creative value between the individual and collaborative

floorplans. There are some issues that came up during

evaluation that can shed some light on these results. The first

is that the participants were not told explicitly which of the

contrasting adjectives in the evaluation criteria were positive

and which were negative. For example, some participants

expressed that while some of the floorplans were “unappeal-

ing”, because they would not have liked to live in such an

apartment, they found the floorplan “appealing” because of

its innovative, and at times, bizarre room layouts. Hence,

there was some ambiguity in how to evaluate the resulting

flooroplan designs. Another issue is the applicability of

some of the criteria to floorplan design. For a student, a

floorplan for an apartment might not be something that

would instill a feeling of “exciting”, even if the floorplan

had a creative layout. A domain expert, such as an architect,

might have a more refined appreciation of the quality of

the designs, which might have yielded radically different

results. Finally, the participants had one try at creating a

floorplan individually and one try at creating a floorplan

collaboratively. Asking the participants to evolve more than

one floorplan individually and collaboratively might have

also yielded a more significant difference in the results.

From our observations and feedback from the participants,

we found that (while not explicitly shown by the numbers)

the participants found evolution of the floorplan designs dur-

ing the collaborative session to be easier. During individual

evolution, the floorplans tended to converge, as expected, to

floorplans which were high fitness but which differed slightly

in terms of room dimensions and room layout. On the other

hand, during collaborative evolution, the participants were

exposed to diverse high fitness individuals which belonged

to the peers. Some of the participants also used the ability to

inject numerous design solutions from peers as a mechanism

to manage diversity in their own populations. We gave the

participants no limit to the number of generations (number

of picks) before they had to pick their final floorplan selec-

tion. While the system was designed to support exploration,

many participants looked through the entire population of

floorplans to find a design which met the requirements,

and stopped after one to two generations, instead of taking

advantage of the evolutionary process in order to try and

breed new interesting floorplan designs. Other participants

restricted themselves to picking from the subset of the best

nine floorplans, and picked as many as 10 generations,

until they were certain that their population had converged.

We found that many participants concentrated in finding a

floorplan that met all requirements and subsequently stopped,

even if the floorplan looked uninhabitable. We believe this

might be due to the system’s lack of affordance, which might

have encouraged users to continue exploring, and to lack

of motivation, since participants had no real incentive to

continue exploring and find a better looking floorplan. In

average all participants evolved the floorplan designs in less

than 10 minutes.

VII. FUTURE WORK

The current case study was chosen in part because it

had a convenient digital representation, thus it was well

suited for our initial tests. However, we intend to apply

our computational model to other case studies, which will

require different and more complex representations, in order

to further test the validity of the model.

In the work presented, we had the group members evaluate

each other’s designs. We are interested in further evaluation

of the resulting designs by domain experts. In the case

of floorplanning, a group of architects could evaluate the

resulting designs.

Finally, we will implement the addition of design variables

to the computational model of design, so that the system

conforms to the definition of creative design followed by



TABLE I

INDIVIDUAL VERSUS COLLABORATIVE SCORING RESULTS

Evaluation Criterion Desired Value Ind. Avg. Coll. Avg. Ind. σ Coll. σ P-value

Appealing - Unappealing Low 4.08 4.39 1.29 1.29 0.458

Average - Revolutionary High 3.76 4.34 0.92 0.91 0.052

Commonplace - Original High 3.97 4.68 1.02 1.01 0.034

Conventional - Unconventional High 4.03 4.41 1.11 1.41 0.353

Dull - Exciting High 3.65 3.93 0.76 0.72 0.234

Fresh - Routine Low 3.82 3.68 0.96 1.14 0.690

Novel - Predictable Low 3.55 3.40 0.88 0.94 0.604

Unique - Ordinary Low 3.49 3.11 1.12 1.10 0.280

Usual - Unusual High 4.21 4.51 1.14 1.28 0.439

Meets All Req. - Does Not Meet Req. Low 2.63 2.83 1.37 1.54 0.666

computational models described in the literature [10]. This

can be implemented in IGAP by allowing individual de-

signers to start their corresponding evolutionary processes

with a subset of all design variables being evolved, with

the rest fixed. For example, assuming two individuals are

collaborating, and four variables are being evolved for design

exploration, then each of the users could start having two

variables fixed and two being evolved. In this scenario,

case injection through collaboration would expand the initial

search space, from exploring designs with two evolving

variables to exploring the space of designs with four evolving

variables.

VIII. CONCLUSION

We have presented a computational model of creative

design based on collaborative interactive genetic algorithms.

We showed the potential of the model to produce creative

content by analyzing design space exploration. Our results

showed that those floorplans created collaboratively scored

slightly higher in terms of “revolutionary” and “uncon-

ventional” criteria than floorplans created individually. We

expected collaboration in our computational model to provide

enough potential to produce creative designs. However, from

our results we can conclude that in the majority of the crite-

ria, floorplans created individually scored similarly to those

created collaboratively. Thus, there is a need to combine

collaboration in our model with an explicit expansion of the

design solution space by adding one or more variables.
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