
 
 

 

  

Abstract—History-driven Evolutionary Algorithm (HdEA) is 
an EA that uses the entire search history to improve searching 
performance. By building the approximated fitness landscape 
and estimating the gradient using the entire history, HdEA 
performs a parameter-less adaptive mutation. In order to 
decrease the number of parameters that makes the HdEA more 
robust, this paper proposes a novel adaptive parameter control 
system. This system is as an add-on component to HdEA, which 
uses the whole search history in HdEA to control the parameters 
in an automatic manner. The performance of the proposed 
system is examined on 34 benchmark functions. The results 
shows that the parameter control system gives similar or better 
performance in 24 functions and has the benefit that two 
parameters of the HdEA are eliminated; they are set and varied 
automatically by the system.   

I. INTRODUCTION 
  
istory Driven Evolutionary Algorithm (HdEA) is an 

evolutionary algorithm proposed by Chow and Yuen [1].  By 
implementing the Binary Search Partitioning (BSP) tree to 
store the entire search history, HdEA gives a non-parametric 
fitness landscape approximation of the objective function and 
performs a gradient-descent-like mutation, which is adaptive 
and parameter-less. The performance of HdEA has been 
tested on 34 well known benchmark functions with 
dimensions ranging from 2 to 40.  HdEA ranks 1st compared 
with eight benchmark Evolutionary Algorithms (EA), which 
including real coded GA, differential evolution (DE), two 
improved DE, covariance matrix adaptation evolution 
strategy (CMA-ES), two improved particle swarm 
optimization (PSO), and estimation of distribution algorithm 
(EDA).  

 
There are three main differences of HdEA compared with 

other EA. They are listed below: 

 
 
The work described in this paper was supported by a grant from the 

Research Grants Council of the Hong Kong Special Administrative Region, 
China [Project No. CityU 124409]. The first author was also supported by a 
Postgraduate Research Studentship of City University of Hong Kong.  

Shing Wa Leung is with the Department of Electronic Engineering, City 
University of Hong Kong, Hong Kong SAR, China. E-mail: 
shinleung8@student.cityu.edu.hk 

Shiu Yin Yuen is with the Department of Electronic Engineering, City 
University of Hong Kong, Hong Kong SAR, China. E-mail: 
kelviny.ee@cityu.edu.hk 

Chi Kin Chow is with the Department of Electronic Engineering, City 
University of Hong Kong, Hong Kong SAR, China. E-mail: 
chowchi@cityu.edu.hk  

 
1) Like the Non-revisiting Genetic Algorithm (NrGA) [2], it 

stores and uses the entire history to improve the 
performance. 

2) It uses only a few parameters. Except the two main 
parameters, namely, population size and number of 
generations, it only needs to define the crossover (with its 
attendant probability) and selection operation. 

3)  When the HdEA is running, more and more chromosomes 
will be evaluated, thus the fitness landscape will becomes 
finer to give better approximation. This can be seen as an 
incremental learning process.  

 
Thanks to fitness landscape approximation, the HdEA can 

estimates the fitness of chromosomes rather than evaluates the 
chromosomes to get the fitness, which saves a lot of resources 
in evaluations, especially for applications involving 
computationally expensive and/or time consuming fitness 
evaluations.  It is used in the mutation of HdEA, by estimating 
the fitness landscape of the objective function, HdEA mutates 
chromosomes with an adaptively mutation towards the 
direction containing better evaluated chromosomes.  

A. History implementation and fitness estimation in HdEA 
HdEA uses a BSP tree as the memory archive which stores 

the position and the fitness values of evaluated chromosomes. 
It partitions the whole search space according to the 
distribution of evaluated chromosomes. It uses the same 
process as NrGA in tree construction, tree management and 
chromosomes recording. For the detailed description and 
working example, please refer to [1]. Note that there are four 
differences between the memory archives of HdEA and NrGA 
in terms of the tree operation and represented information:  

 
1) The memory archive of HdEA stores both position and 

fitness values of the evaluated chromosomes but the 
memory archive of NrGA only stores the position. 

2) By storing fitness of evaluated chromosomes, the archive 
of HDEA approximates the fitness landscape, but the 
archive of NrGA only represents the density of the 
evaluated chromosomes. 

3) Search space of HdEA is continuous such that the number 
of possible chromosomes in every partition is infinite and 
no node-pruning is performed.  

4) Since no node-pruning is preformed, the number of nodes 
in BSP tree is exactly the same as the number of evaluated 
chromosomes.  

Parameter Control by the Entire Search History: Case Study of 
History-driven Evolutionary Algorithm 

Shing Wa Leung, Shiu Yin Yuen and Chi Kin Chow 

H

978-1-4244-8126-2/10/$26.00 ©2010 IEEE



 
 

 

Definition 1: The sub-region of x 
 Suppose x is a chromosome in the search space S, i.e. x ∈S, 
and S is partitioned as the sub-region set H=∪ihi by the BSP 
tree, the sub-region h⊆H is defined as the ‘sub-region of x’ if 
x ∈ h and h is represented by a leaf node of the BSP tree. 
 
 In the approximated fitness landscape, the whole search 
space is divided into many sub-regions hi by different 
evaluated chromosome xi. It is assumed that all chromosomes 
inside the same sub-region h share the same fitness f, i.e.: f(x) 
= f(a) for all a∈h. Therefore, by determining the sub-region h 
which contains chromosome a, the estimated fitness of 
chromosome a can be determined. Fig.1 shows an example of 
the approximated fitness landscape of a 2-dimensional 
function. 
 

B. Idea of parameter-control system in HdEA 
In this paper, we use “parameters” to represent both 1) 

operator choice and 2) parameter of the operator once the 
choice has been made.  

 
As mentioned by Eiben et al. in [3], how to set the 

parameters of an EA is a challenging problem for researchers. 
Even EA experts who work in parameter control feel that this 
is a largely unresolved problem in the field. Note that the 
performance (i.e. property) of an EA may critically depend on 
their parameters; given the same design, setting good values 
for those parameters are very difficult.  

 
Moreover, some researches empirically and theoretically 

demonstrated that different values of parameters should be 
used in different stages of the evolutionary process in order to 
optimize the performance of the EA [4-7]. Thus given a 
problem, we should not use a fixed set of parameters; it is 
more reasonable to change the parameters during the EA run. 
Similarly, different problems require different initial 
parameter settings.  Though HdEA gives significantly better 
results than many other EAs [1], it runs with a fixed set of 
operators and parameters. In this paper, we aim to design a 
parameter control system for HdEA to decrease the number of 
parameters and make it more robust.    

 
In this paper, we propose an adaptive parameter control 

system to automatically find the operators and parameters for 
HdEA. Different from other parameter control system, our 
system changes parameters depending on the entire search 
history. Using the taxonomy in [3], the method is a novel 
addition to the class of adaptive parameter control, which 
adjusts parameters using feedback. Meanwhile, since the 
changes in parameters will result in a change in the search 
strategy of the EA as well as the performance of the EA, 
search history is a good reference to directly measure the 
performance of an operator choice or a parameter value. 
Therefore, in the proposed system, the entire search history is 
used as a feedback to the system to estimate the “good” 
settings at different stages of different problems. 

During the HdEA runs, the proposed system stores the 
entire search history and maintains the approximated fitness 
landscape for estimating the fitness of chromosomes. Besides 
storing the search history, it also keeps checking whether 
adjustment in parameters is needed. If adjustment is necessary, 
the system generates chromosomes with different sets of 
parameters. By calculating the average estimated fitness of 
those chromosomes – without actually evaluating them, the 
system measures the performance of parameters and changes 
parameters to the best settings. In general, the system has the 
following properties: 

 
1) It is an adaptive parameter control system which adjusts 

parameters depending on whole search history.  
2) Performance of parameters is obtained by estimating 

fitness in the history rather than evaluating the 
chromosomes, which can save a lot of resources in fitness 
evaluations when choosing parameters. 

3) The learning process increases the accuracy of estimation 
continuously during the EA runs.  

4) It can be considered as a natural extension of HdEA, the 
central idea being to reuse the entire search history for 
parameter control. 

 
Since the parameter control system uses the entire history to 

learn an appropriate parameter setting, it is expected that the 
proposed system sacrifices a small amount of accuracy of the 
HdEA. Our goal is to sacrifice as little accuracy as possible in 
exchange for a decrease in the number of parameters in EA. It 
is doubtless that such a decrease is very valuable if one can 
also maintain the performance. 

 
The rest of this paper is organized as follows:  Section II 

presents a general framework of the proposed parameter 
control system using entire search history. Section III reports 
the application of the general framework on HdEA. Section 
IV presents experimental results and discussions. Finally, 
Section V draws a conclusion. 

 

 
Fig. 1: Example of approximated fitness landscape of a 2-D function. 



 
 

 

II. GENERAL FRAMEWORK OF PARAMETER CONTROL USING 
ENTIRE SEARCH HISTORY  

A general framework for parameter control using the entire 
search history that is applicable to any EA is presented below. 
The framework consists of four main modules: (1) Problem, 
(2) EA, (3) Learning process and (4) Parameter control.  

 
The problem module is the fitness function which is used to 

evaluate the fitness of chromosomes generated by EA.   
 
The EA module contains the EA for which our parameter 

control system would set the parameters. It selects 
chromosomes which represents possible solutions to the 
problem and performs evolution operations (e.g. crossover 
and mutation). In this paper, we use HdEA as the EA module.  

 
The learning process module records all chromosomes and 

their fitness in the memory and estimates the approximated 
fitness landscape of the problem. In this paper, we reuse the 
Binary Space Partitioning (BSP) Tree in HdEA as the memory 
archive to record the individuals and estimate the 
approximated fitness landscape. As the EA runs, more and 
more information will be recorded; the approximated 
landscape will become more detailed, such that the learning 
module can give better and better estimates to the parameter 
control system. 

 
The parameter control module is the main part of the 

proposed system; it (i) checks whether the parameters of the 
EA should be adjusted and (ii) propose a set of adjusted 
parameter(s). This module includes a triggering condition. 
When the condition is satisfied, it implies that some changes 
should be made to the parameters, whence the parameter 
control system will be enabled to decide the necessary 
changes to the parameters. The process is as follows: It firstly 
generates chromosomes by different candidate sets of 
parameters – the possible candidate sets are designed into the 
system by the parameter control designer (e.g. One set of 
parameters may be: Crossover operator choice: Uniform 
crossover; crossover rate 0.9; the possible candidate crossover 
operator and the possible candidate crossover rates are 
designed into the system by the parameter control designer), 
then estimates the fitness of those chromosomes by the 
approximated landscape stored in learning process module. 
Note that this does not involve any actual fitness evaluation. 
For each candidate parameter set, P chromosomes are 
generated. This gives P estimated fitness. The average 
estimated fitness of the chromosomes is used to estimate the 
performance of a candidate parameter set. P chromosomes are 
used instead of 1 to give a more reliable estimated 
performance. The set of parameters with the best performance 
is chosen to be the parameter settings in the next generation. 
 

The flow of the proposed system is as follows: first the EA 
selects chromosomes, performs evolution operations, then 
evaluates the fitness. Each time the problem responds by 
reporting the fitness of a chromosome to the EA, the learning 

process will record the chromosome and update the 
approximated fitness landscape. Also, when a generation is 
finished, the system will determine whether the triggering 
condition is satisfied or not. In this paper we use the decrease 
of slope of average fitness as the triggering condition. Let f(x), 
favg, m and P be the fitness of chromosome x, average fitness, 
slope of average fitness and the population size respectively. 
Assume, without loss of generality, that we are solving 
minimization problems. The slope of average fitness in the 
generation n is calculated by eqn (1), which favg(n) and m(n) 
represents the average fitness and the slope of average fitness 
in the generation n respectively. When the difference of 
average fitness between two generations decreases, the slope 
of average fitness will be decreased, i.e., m (n+1) < m (n). 

 
 )()1()( nfnfnm avgavg −−=      (1) 

P
xf

f
Pi

i i
avg

∑ =

== 1
)(

       (2) 

 
Once this condition is satisfied, the parameter control 

system will be enabled to change parameters. In turn, the 
parameter control system generates chromosomes with 
different candidate sets of parameters, and reuses the fitness 
estimation process in HdEA to obtain the estimated fitness of 
those chromosomes by the approximated landscape in the 
learning process module. The system makes a decision to 
change the parameters to the set that generates better 
chromosomes on average. After that, the learning process and 
the EA will continue to run with the new parameter set, and the 
parameter control system will be disabled until adjustment in 
parameters is needed again.  

 
A fine point to note is that,  as the slope of average fitness is 

calculated by the difference of average fitness between the 
previous and the current generation, the slope of average 
fitness is undefined in the generation 0 (i.e., the initial 
generation) since favg(-1) does not exist. Thus the parameter 
control system will be enabled once during parameter 
initialization. In other words, at the end of the initialization, 
the search history will consist of the P evaluated solution; 
parameter control is invoked; as a result, the parameters in the 
initial generation is determined automatically, without 
requiring user settings. The proposed framework is shown in 
fig. 2. 

 
The algorithm of the parameter control system is shown 

below: 
1. Initialization of the EA 
2. Trigger the parameter control system; 
3. For generation = 1: N 
4.  Generate a new population of offspring by the current 

set of parameters. 
5.  Evaluate the offspring. 
6.   Call the learning process to save information in the 

history.  
7.  Survivors selection operation. 



 
 

 

8.  Check whether the triggering condition is satisfied.  
9.  If the triggering condition satisfied 
10.   Generate individuals by different candidate sets 

of parameters. 
12.   Estimate the fitness of individuals by the history. 
13.   Change the parameter set to the set which gives 

the best estimated fitness. 
14.  EndIf 
15. Next generation 

 
Steps 1, 3, 4, 5 and 7 are the steps performed in a generic 

EA.  The other steps are introduced to perform parameter 
control using the entire search history. For example, suppose 
one uses a canonical GA as the EA module. The system will 
initialize an empty memory archive before the GA 
initialization. The first generation of individual (generation 0) 
will be generated randomly and evaluated during initialization 
(step 1). Then the parameter control system will be enabled 
once to initialize parameters based on the search history in the 
generation 0 (step 2). After that, the GA starts the evolutionary 
cycle (steps 3 – 15). In each generation, a pool of offspring 
will be generated by individuals in the previous generation 
using crossover and mutation (step 4). Those offspring will be 
evaluated and stored into the memory archive (steps 5-6). 
After the survivor selection operation, the average fitness of 
offspring favg(n) and that of their parents favg(n-1) will be used 
to calculate the slope of average fitness m(n) (step 8). If the 
triggering condition satisfied, i.e., m(n)<m(n-1) the parameter 
control system will be enabled once to change the parameters 
in the next generation (steps 9-14). Then the GA continues to 
run the next generation (step 4) . 

III. EXPERIMENT OF PARAMETER CONTROL SYSTEM USING 
HDEA 

A. Experiment Settings 
In this paper, the general framework that we have outlined 

above is applied to the parameter control of HdEA. The 
resulting novel HdEA shall be called HdEA-PC, which stands 
for HdEA with parameter control using the entire search 
history. The settings of the experiment are shown in Table 1. 
The learning module in this experiment is reusing the memory 
archives and fitness approximation method in HdEA [1], 
which is a nearest neighbour search; the system estimates that 
the new chromosome has the same fitness as the most similar 
evaluated chromosomes. The original crossover operation 
settings of HdEA are uniform crossover with crossover rate 
0.9.  For more details about the settings of HdEA, please refer 
to [1]. 

 
TABLE I 

EXPERIMENT SETTING 
EA module HdEA 
Memory BSP tree
Learning module Nearest Neighbor Search 
Triggering Condition Slope of average fitness decreases 
Target parameter Crossover operation 

Target Set Gene, Arithmetic, Uniform, 
One-point  

Target parameter set 0.1,0.4,0.7,0.9 

Population size 20 
No. of Generation 2000 

Mutation Anisotropic parameter-less adaptive 
mutation (as used in HdEA)  

Selection scheme (μ+μ) elitism selection (as used in 
HdEA) 

Problem Environment 34 benchmark functions 

 
 
In this experiment, we wish to test the framework on its 

ability to select automatically, online, and in a parameter-less 
manner the crossover operator and the crossover rate of 
HdEA. Four different crossover methods are in the candidate 
set:  

 
i) Gene Crossover: It randomly selects one gene to swap 

between two parents. Crossover rate is not necessary in this 
operator. 

ii)  Arithmetic Crossover: The child chromosome is calculated 
by interpolating the two parents. The crossover rate is used 
as the interpolation ratio. 

 
iii) Uniform Crossover: Each gene in the parents has a 

probability of swapping. The crossover rate is the 
probability to swap. 

 
iv) One-point Crossover: It randomly selects one position to 

swap all genes in the parents after that position. The 
crossover rate is the probability to swap.  

Problem EA 

 
Learning 
Process 

 
 

Memory 
Parameter 

Control 
System 

Test 

Change 
parameters 

Trigger 

Estimate 

Update 

Fig. 2: Block diagram of the framework 

The proposed system 

Respond 



 
 

 

Apart from the Gene crossover, each crossover operator is 
has four candidate crossover rates. Thus in total, there are 13 
different combinations of crossover operators and crossover 
rates involved in this experiment. Besides the crossover 
operation, all other settings follow the original HdEA design 
[1].  

B. Test functions 
The same 34 real valued functions used in [1] are used in 

this paper to show the performance of HdEA after adding the 
parameter control system. The 34 functions (f1-f34) are listed 
below: 

1. Sphere function [8] 
2. Schwefel’s problem 2.22 [8] 
3. Schwefel’s problem 1.2 [8] 
4. Schwefel’s problem  2.21 [8] 
5. Generalized Rosenbrock function [8] 
6. Quartic function [8] 
7. Generalized Rastrigin function [8] 
8. Generalized Griewank function [8] 
9. Generalized Schwefel’s problem 2.26 [8] 
10. Ackley function [8] 
11. Shekel’s Foxholes function [8] 
12. Six-Hump Camel-Back function [8] 
13. Branin function [8] 
14. Goldstein-Price function [9] 
15. High conditioned elliptic function [9]  
16. Weierstrass’s function [9] 
17. Hybrid composition function [9] 
18. Levy function [10] 
19. Zakharov function [10] 
20. Alpine function [10]  
21. Pathological function [10] 
22. Inverted cosine wave function (Masters) [10] 
23. Inverted cosine mixture problem [11] 
24. Epistatic michalewicz problem [11] 
25. Levy and Montalvo 2 problem [11] 
26. Neumaier 3 problem [11] 
27. Odd Square problem [11] 
28. Paviani problem [11] 
29. Periodic problem [11] 
30. Salomon problem [11] 
31. Shubert problem [11] 
32. Sinusoidal problem [11] 
33. Michalewicz function [10] 
34. Whitely’s function [8] 

 
Seven of them are uni-modal functions; the remaining 

twenty-seven are multi-modal functions designed with a 
considerable amount of local minima. Additionally, function 
f6 is a noisy function and function f17 is a hybrid composition 
function. The dimensions of the first ten and the last twenty 
functions are adjustable while the dimensions of f11 - f14 are 
fixed at two, as they are two-dimensional functions as defined 
in the original references.  

C. Test algorithms 
HdEA-PC has been compared with HdEA and 8 other EA.  

Apart from the crossover operator and the crossover rate, 
HdEA-PC uses the same settings as HdEA.  The 8 other EA 
uses the recommended parameter settings in the original 
literature. For more details, please refer to [1]. 

 
1) History Driven Evolutionary Algorithm with Parameter 

Control System (HdEA-PC). 

2) History Driven Evolutionary Algorithm (HdEA) [1]. 

3) Real coded GA with Uni-modal Normal Distribution 
Crossover (RCGA-UNDX) [12]. 

4) Covariance Matrix Adaptation Evolutionary Strategy 
(CMA-ES) [13].The source code of CMA-ES is taken 
from [13] (Aug. 2007 version). 

5) Differential Evolution (DE) [14].  

6) Opposition-Based Differential Evolution (ODE) [15]. 

7) Differential Evolution with Adaptive Hill-Climbing 
Simplex Crossover (DEahcSPX) [16]. 

8) Dissipative Particle Swarm Optimization (DPSO) [17]. 

9) PSO with Spatial Particle Extension (SEPSO) [18]. 

10) Estimation of Distribution Algorithm (EDA) [19].The 
source code of the EDA is taken from [20] (Feb. 2009 
version). 

IV. RESULTS 
The number of independent trials for each function is 100. 

Except functions f11-f14 whose dimensions are fixed at 2, all 
other functions are tested in 30 and 40 dimensions. The 
experimental results are shown in Table II to Table VII. 

  
To illustrate the difference between HdEA-PC with other 

algorithms clearly, Table II to Table VI are shown in this 
format: The first three columns of the tables show the tested 
fitness function, and the performance in ranks of HdEA and 
that of HdEA-PC respectively. An algorithm with rank 1 (10) 
is the best (worst) algorithm respectively. In the fourth and 
fifth columns of those tables, upper rank and lower rank show 
the average fitness of the algorithm that ranks higher and 
lower than HdEA-PC by 1 respectively. For example, if the 
rank of HdEA-PC is 2, the upper rank and lower rank show 
the average fitness of the algorithm whose ranks are 1 and 3 
respectively. 

 
HdEA-PC gives a similar or better performance in 26 out of 

34 functions. Amongst these 26 functions, the parameter 
control system gives significant improvements to 8 functions, 
and gives similar results to 18 functions. It empirically shows 
that the parameter control system can set “good” parameters to 
the HdEA.  
 



 
 

 

The parameter control system gives significant 
improvement to the original HdEA in 8 functions: f3-4, f6, f14, 
f19, f26, f30 and f32.  In those functions, the HdEA-PC 
performs better than original HdEA, and the difference in 
fitness is relatively large compared to the algorithms within 1 
rank.  For example, in f3, the average fitness of HdEA is 
16920.23, the difference between HdEA and HdEA-PC is 
relatively large when compared to the difference between 
HdEA-PC and upper rank (ODE: 78.17) and lower rank 
(DEahcSPX: 1955.22). It means in those functions, the 
original settings of HdEA, which uses uniform crossover 
operator with crossover rate 0.9, is not suitable for those 
functions, but the parameter control system corrects the 
parameters in crossover operation to the right set. 
 
 The HdEA-PC gives similar results as HdEA in 18 
functions:  f1-2, f7-10, f16-18, f21-24, f27-29, f31 and f33. 
Nonetheless, it is worthy to note that the difference between 
HdEA and HdEA-PC is relatively smaller than the differences 
between HdEA-PC and other algorithms. Results in this group 
shows that the parameters suggested by the parameter control 
system are almost the same as the original settings of HdEA. 
 
 Finally, only in 8 functions, f5, f11-13, f15, f20, f25 and f34, 
the average performance decreases after adding the parameter 
control system. In those cases, the difference in fitness is 
relatively high. It means that the parameter control system has 
suggested the wrong parameters settings to the HdEA-PC. As 
a result, many generations are sacrificed because of improper 
learning.  
  

The average ranking of all algorithms are shown in Table 
VII for reference. In this table, we can see that the HdEA and 
the HdEA-PC ranks 1 and 2 respectively in the test algorithms 
set. Although the HdEA-PC does not outperform HdEA after 
adding the parameter control system, HdEA-PC still works 
better than other algorithms in the test algorithms set.  This is 
an achievement because unlike HdEA, the algorithm designer 
has not manually specified a good crossover operator and a 
good crossover rate that would work well on the 34 
benchmark function by his experience – which uses human 
intelligence, but HdEA-PC finds them out by itself.  In other 
words, HdEA-PC releases the heavy burden of the algorithm 
designer on the settings of two parameters (the type of 
crossover, and its crossover rate as a function of the stages of 
the optimization) 
 

V. CONCLUSION 
In this paper, we have proposed a novel general 

Evolutionary Algorithm (EA) framework, “Parameter Control 
Using the Entire Search History”, EA-PC, for controlling 
parameters in an EA. By reusing the memory archives in 
History driven Evolutionary Algorithm (HdEA), the proposed 
system uses the entire search history in a novel way for 
parameter control (parameters include both operators and 
parameters).  It estimates fitness of chromosomes generated 

by different parameters to help the EA to choose parameters 
online, automatically, and in a parameter-less manner. As a 
result, the algorithm designer is relieved of the burden to set 
some parameters in the EA.   

 
The proposed framework has five main advantages: 

1) It adaptively changes the parameters without using any 
prior knowledge about the problem. 

2) We propose to measure the performance of the candidate 
sets of parameters by the average estimated fitness of 
corresponding candidate solutions. The fitness values of 
these candidate solutions are estimated from the search 
history instead of performing an actual fitness evaluation. 
Large amount of computation effort is saved as a result for 
computationally expensive and/or time consuming fitness 
functions. 

3) The proposed system uses an incremental learning 
approach. It is expected that the suggested parameters 
from the system are more and more accurate as the search 
progresses. 

4) It is not necessary to set the initial settings for the 
parameters. 

5)  Instead of running the proposed system at each iteration, 
we proposed a novel fitness improvement based triggering 
condition which optimizes the frequency of the parameter 
adjustment. 

 
HdEA-PC is compared with HdEA (with designer choice of 

fixed crossover operator and fixed crossover rate) and other 8 
famous EA in 34 benchmark functions with dimensions from 
2 to 40.  It is shown in 26 functions that the average 
performance of HdEA-PC is better (in 8 functions) or similar 
(in 18 functions) than the original HdEA.  In the remaining 8 
functions, HdEA-PC performs worse than HdEA because of 
incorrect learned knowledge. Nevertheless, HdEA-PC 
achieves impressive performance; it ranks only 2nd to HdEA 
and outperforms the other 8 EAs.   The result that it does not 
outperform HdEA is expected, as HdEA uses designer choices 
of parameters, while HdEA-PC relieves the burden of the 
designer to set two parameters (crossover operator and 
crossover rate) but still remains very competent.  We should 
have reason to believe that HdEA-PC will perform well in 
novel, unfamiliar problems beyond those of the 34 well known 
benchmarks. 

 
 From the empirical results, we conclude that the parameter 

control system using entire search history can help to find an 
appropriate setup for HdEA without significant performance 
drop.  Since it seems reasonable to use the entire history in a 
non-parametric manner as the feedback in controlling the 
parameters in EA; and the results shows that it works in the 
HdEA, in the future, we plan to study the effect of parameter 
control using the entire search history on other EAs. 



 
 

 

REFERENCES 
[1] C.K. Chow and S.Y. Yuen, “An Evolutionary Algorithm that Makes 

Decision Based on the Entire Previous Search History,” IEEE Trans. 
Evol.Comput., to be published. 

[2] S.Y. Yuen and C.K. Chow, “A Genetic Algorithm that Adaptively 
Mutates and Never Revisits,” IEEE Trans. Evol. Comput., vol. 13, no. 
2, pp. 454-472, Apr. 2009.  

[3] A.E. Eiben, Z. Michalewicz, M. Schoenauer, and J.E. Smith, 
“Parameter control in Evolutionary Algorithms,” Studies in 
Computational Intelligence, Berlin: Springer, vol. 54, 2007, pp. 19-46. 

[4] T. Bäck, “The interaction of mutation rate, selection and 
self-adaptation within a genetic algorithm,” in Proc. 2nd Conf. on 
Parallel Problem Solving from Nature, 1992, pp. 85-94. 

[5] T. Bäck, “Self-adaptation in genetic algorithms,” in  Toward a Practice 
of Autonomous Systems: Proc. 1st European conf. on Artificial Life, 
1992, pp. 263-271. 

[6] T. Bäck, “Optimal mutation rates in genetic search,” in Proc. 5th Int. 
Conf. on Genetic Algorithms, 1993, pp.2-8. 

[7] G. Syswerda, “A study of reproduction in generational and steady state 
genetic algorithms,” in Foundations of Genetic Algorithms, G. J. E. 
Rawlins, Ed . Los Altos: Morgan Kaufmann, 1991, pp. 94-101. 

[8] X. Yao, Y. Liu, and G.M. Lin, “Evolutionary programming made 
faster,” IEEE Trans. Evol. Comput., vol.3, no.2, pp. 124-141, Jul.1999. 

[9] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger 
and S. Tiwari, “Problem Definitions and Evaluation Criteria for the 
CEC 2005 Special Session on Real-Parameter Optimization,” 
Technical Report, Nanyang Technological University, Singapore, 
KanGAL Report #2005005, IIT Kanpur, India, 2005.  

[10] V.K. Koumousis, C.P. Katsaras, “A sawtooth genetic algorithm 
comvining the effects of variable population size and reinitialization to 
enchance performance,” IEEE Trans. Evol. Comput., vol. 10, no.1, pp. 
19-28, Feb. 2006. 

[11] M.M. Ali, C. Khompatraporn, and Z.B. Zabinsky, “A Numerical 
Evaluation of Several Stochastic Algorithms on Selected Continuous 
Global Optimization Test Problems,” Journal of Global Optimization, 
vol. 31, no. 4, pp. 635-672, Apr. 2005. 

[12] I. Ono and S. Kobaashi, “A Real-code Genetic Algorithm for Function 
Optimization Using Unimodal Normal Distribution Crossover,” in  
Proc. 7th Int. Conf. on Genetic Algorithm, pp.246-253, 2007. 

[13] N. Hansen, “The CMA Evolutionary Strategy: A Tutorial,” Technical 
Report, 31 Aug. 2007. Link: 
www.bionik.tu-berlin.de/user.niko/cmatutorial.pdf 

[14] R. Storn and K. Price, “Differential evolution-A simple and efficient 
adaptive scheme for global optimization over continuous spaces.” 
Berkeley, CA, Technical Report TR-95-012, 1995. 

[15] H.R. Tizhoosh, “Opposition-based learning: A new scheme for 
machine intelligence,” in Proc. of Int. Conf. Comput. Intell. Modeling 
Control and Autom., 2005, pp. 695-701.  

[16] N.Noman and H. Iba, “Accelerating Differential Evolution Using an 
Adaptive Local Search,” IEEE Trans. Evol. Comput., vol. 12, no.1, 
pp.107-125, Feb. 2008. 

[17] X.F. Xie, W.J. Zhang and Z.L. Yang, “A dissipative particle swarm 
optiziation,” in Proc. IEEE Cong. Evol. Comput.,2002, pp. 1666-1670. 

[18] T. Krink, J.S. Vesterstrom and J. Riget, “Particle swarm optimization 
with spatial particle extension,” in Proc. IEEE Cong. Evol. Comput., 
2002, pp. 1474-1497. 

[19] R. Santana, C. Echegoyen, A. Mendiburu, C. Bielza, J.A. Lozano, P. 
Larrañaga, R. Armañanzas and S. Shakya, “MATEDA: A suite of EDA 
programs in Matlab,” Technical Report EHU-KZAA-IK-2/09, 
University of the Basque Country, February 2009. 

[20] Matlab toolbox for Estimation of Distribution Algorithms 
(MATEDA-2.0). Link: 
http://www.sc.ehu.es/ccwbayes/members/rsantana/software/matlab/Int
EDA.tar.gz 

 
TABLE II 

EXPERIMENT RESULT FOR FUNCTION 1 - 7 
functions HdEA (rank) HdEA - PC (rank) Upper rank (algorithm) Lower rank (algorithm) 

f1 30 
40 

0.00 (1) 
0.00 (1) 

0.000008 (5) 
0.000875 (5) 

0.00 (ODE) 
0.0001 (ODE) 

0.02 (DE) 
0.01 (DEahcSPX) 

f2 30 
40 

0.00 (1) 
0.0034 (4) 

0.000079 (4) 
0.005384 (5) 

0.00 (CMA-ES) 
0.0034 (HdEA) 

0.03 (DEahcSPX) 
0.35 (ODE) 

f3 30 
40 

16920.23 (9) 
34006.13 (9) 

259.83525 (4) 
645.41114 (4) 

78.17 (ODE) 
409.99 (ODE) 

1955.22 (DPSO) 
3986.09 (DPSO) 

f4 30 
40 

10.8802 (5) 
22.6509 (7) 

0.210545 (3) 
0.570278 (3) 

0.01 (ODE) 
0.15 (ODE) 

10.54 (DPSO) 
13.3 (DPSO) 

f5 30 
40 

21.1276 (2) 
93.6767 (4) 

141.75715 (5) 
300.21829 (5) 

71.13 (RCGA-UNDX) 
93.6767 (HdEA) 

614.46 (DE) 
2023.17 (DE) 

f6 30 
40 

10.4615 (7) 
16.1244 (8) 

8.495496 (2) 
12.410698 (2) 

0.23 (CMA-ES) 
0.27 (CMA-ES) 

8.52 (ODE) 
12.43 (ODE) 

f7 30 
40 

0.00 (1) 
0.0082 (1) 

0.000074 (2) 
0.0082 (2) 

0.00 (HdEA) 
0.00 (HdEA) 

25.71 (DE) 
57.39 (DE) 

 
TABLE III 

EXPERIMENT RESULT FOR FUNCTION 7 - 16 
functions HdEA (rank) HdEA - PC (rank) Upper rank (algorithm) Lower rank (algorithm) 

f8 30 
40 

0.00 (1) 
0.001(2) 

0.004447 (3) 
0.14573 (4) 

0.00 (CMA-ES) 
0.04 (DEahcSPX) 

0.03 (ODE) 
0.24 (ODE) 

f9 30 
40 

-13780.72 (1) 
-18374.62 (2) 

-13776.7031 (2) 
-18370.321 (2) 

-13780.72 (HdEA) 
-18374.62 (HdEA) 

-12801.84 (DE) 
-15568.76 (DE) 

f10 30 
40 

0.00 (1) 
0.005 (1) 

0.000189 (2) 
0.006266 (2) 

0.00 (HdEA) 
0.005 (HdEA) 

0.01 (ODE) 
0.12 (ODE) 

f11 2 1.2082 (1) 2.885618 (7) 2.821 (EDA) 6.52 (RCGA-UNDX) 
f12 2 -1.0316 (1) -1.026798 (4) -1.03 (SEPSO) -1.02 (CMA-ES) 
f13 2 0.401 (3) 0.451461 (7) 0.43 (DEahcSPX) 0.46 (RCGA-UNDX) 
f14 2 4.4101 (7) 3.985438 (6) 3.52 (ODE) 4.41101 (HdEA) 
f15 30 

40 
0.00 (1) 

1.6503(1) 
3.190466 (3) 

795.127855 (3) 
1.16 (ODE) 

254.33 (ODE) 
41.44 (CMA-ES) 

2085.96 (DEahcSPX) 
f16 30 

40 
0.0047 (1) 
0.1451 (2) 

0.0007041 (2) 
0.123465 (1) 

0.0047 (HdEA) 
----------------- 

0.74 (DEahcSPX) 
0.1451 (HdEA) 

 



 
 

 

TABLE IV 
EXPERIMENT RESULT FOR FUNCTION 17- 23 

functions HdEA (rank) HdEA - PC (rank) Upper rank (algorithm) Lower rank (algorithm) 
f17 30 

40 
8814.832 (6) 
14179.81 (5) 

7625.46599 (5) 
14678.6596 (6) 

6571.29 (CMA-ES) 
14179.81 (HdEA) 

8814.832 (HdEA) 
34420.03 (RCGA-UNDX) 

f18 30 
40 

0.00 (1) 
0.00 (1) 

0.00 (1) 
0.00003 (3) 

------------------- 
0.00 (CMA-ES) 

0.0032 (DE) 
0.000568 (ODE) 

f19 30 
40 

261.3953 (7) 
395.2277 (7) 

3.65284 (2) 
18.244904 (1) 

2.21 (DEahcSPX) 
------------------- 

69.74 (EDA) 
30.15 (DEahcSPX) 

f20 30 
40 

0.0004 (1) 
0.0057 (2) 

0.003572 (3) 
0.011904 (3) 

0.0013 (DEahcSPX) 
0.0057 (HdEA) 

0.03 (ODE) 
0.09 (ODE) 

f21 30 
40 

4.8663 (3) 
7.6184 (3) 

5.065368 (4) 
7.909705 (4) 

4.8663 (HdEA) 
7.6184 (HdEA) 

5.4 (DE) 
8.22(DE) 

f22 30 
40 

-24.9443 (2) 
-31.9794 (2) 

-24.794646 (3) 
-31.70918 (3) 

-24.9443 (HdEA) 
-31.9794 (HdEA) 

-18.728 (EDA) 
-22.469 (EDA) 

f23 30 
40 

0.00 (1) 
0.00 (1) 

0.00 (1) 
0.000003 (3) 

---------- 
0.18 (DEahcSPX) 

0.00 (HdEA) 
0.02 (SDE) 

 
TABLE V 

EXPERIMENT RESULT FOR FUNCTION 24- 30 
functions HdEA (rank) HdEA - PC (rank) Upper rank (algorithm) Lower rank (algorithm) 

f24 30 
40 

-25.3678 (1) 
-32.2103 (1) 

-24.875671 (2) 
-31.824718 (2) 

-25.3678 (HdEA) 
-32.2103 (HdEA) 

-19.18 (CMA-ES) 
-24.01 (CMA-ES) 

f25 30 
40 

0.1626 (2) 
2.4995 (2) 

28.717005 (5) 
39.576957 (4) 

26.1 (ODE) 
18.692 (EDA) 

37.17 (DEahcSPX) 
47.35 (ODE) 

f26 30 
40 

8025.425 (5) 
73996.06 (5) 

113.72684 (3) 
4209.59937 (3) 

-2428.19 (ODE) 
413.73 (ODE) 

1911.3 (DEahcSPX) 
8562.51 (DEahcSPX) 

f27 30 
40 

-0.0004 (8) 
-0.0001 (8) 

-0.001928 (7) 
-0.000825 (7) 

-0.0107 (ODE) 
-0.0032 (ODE) 

-0.0004 (HdEA) 
-0.0001 (HdEA) 

f28 30 
40 

-997867 (2) 
-1.00E+8 (1) 

-997867.463 (1) 
-99993721 (2) 

------ 
-1.00E+8 (HdEA) 

-997867 (HdEA) 
-98215006 (CMA-ES) 

f29 30 
40 

1.0004 (2) 
1.0046 (2) 

1.001484 (3) 
1.008876 (3) 

1.0004 (HdEA) 
1.0046 (HdEA) 

1.45 (DE) 
2.14 (DE) 

f30 30 
40 

1.2051 (5) 
2.1347 (5) 

0.6309999 (3) 
1.009196 (3) 

0.5 (DEahcSPX) 
0.9 (ODE) 

1.2 (CMA-ES) 
1.46 (CMA-ES) 

 
 

TABLE VI 
EXPERIMENT RESULT FOR FUNCTION 31-34 

functions HdEA (rank) HdEA - PC (rank) Upper rank (algorithm) Lower rank (algorithm) 
f31 30 

40 
-2.00E+34 (1) 
-2.71E+45 (1) 

-1.602E+34 (2) 
-1.07E+45 (2) 

-2.00E+34 (HdEA) 
-2.71E+45 (HdEA) 

-9.03E+29 (DE) 
-1.55E+38 (DE) 

f32 30 
40 

-1.521 (9) 
-1.3187 (8) 

-3.498522 (2) 
-3.478247 (3) 

-3.5 (ODE) 
-3.49 (ODE) 

-3.37 (RCGA-UNDX) 
-2.52 (CMA-ES) 

f33 30 
40 

-29.559 (1) 
-38.8299 (1) 

-29.493198 (2) 
-38.644751 (2) 

-29.559 (HdEA) 
-38.8299 (HdEA) 

-24.87 (DE) 
-30.02 (DE) 

f34 30 
40 

20.6012 (1) 
694.993 (2) 

746.85978 (3) 
1507.15997 (4) 

319.37 (CMA-ES) 
1438.33(ODE) 

766.95 (ODE) 
1765.99 (DE) 

 
 

TABLE VII 
AVERAGE RANKING OF ALGORITHMS 

Algorithms Average Ranking 
HdEA 3.109375 
RCGA-UNDX 7.6875 
CMA-ES 4.375 
DE 5.90625 
ODE 3.390625 
DEahcSPX 4.5 
DPSO 7.0625 
SEPSO 6.703125 
EDA 7.34375 
HdEA - PC 3.265625 

 


