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Abstract— In recent years, the Particle Swarm Optimization

has rapidly gained increasing popularity and many variants and
hybrid approaches have been proposed to improve it. Motivated
by the behavior and the proximity characteristics of the social
and cognitive experience of each particle in the swarm, we
develop a hybrid approach that combines the Particle Swarm
Optimization and the Differential Evolution algorithm. Particle
Swarm Optimization has the tendency to distribute the best
personal positions of the swarm near to the vicinity of problem’s
optima. In an attempt to efficiently guide the evolution and
enhance the convergence, we evolve the personal experience of
the swarm with the Differential Evolution algorithm. Extensive
experimental results on twelve high dimensional multimodal
benchmark functions indicate that the hybrid variants are very
promising and improve the original algorithm.

I. INTRODUCTION

The Particle Swarm Optimization (PSO) algorithm is

an Evolutionary Computation method, which belongs to

the broad class of Swarm Intelligence methods. PSO was

introduced in [1], is inspired by the social behavior of

bird flocking and fish schooling, and is based on a social-

psychological model of social influence and social learning.

The fundamental hypothesis to the development of PSO

is that an evolutionary advantage is gained through the

social sharing of information among members of the same

species. Moreover, the behavior of the individuals of a flock

corresponds to fundamental rules, such as nearest-neighbor

velocity matching and acceleration by distance [2], [3]. The

PSO algorithm is capable of handling non-differentiable,

discontinuous and multimodal objective functions and has

gained increasing popularity in recent years due to its ability

to efficiently and effectively tackle several real-world appli-

cations [4], [5].

To improve the performance and the convergence behavior

of Particle Swarm Optimization algorithm, several variations

and hybrid approaches have been proposed [6]–[11]. One

class of variations include hybrids that combine the PSO

and the Differential Evolution (DE) algorithms [12]. These

approaches aim to aggregate the advantages of both methods

to efficiently tackle the optimization problem at hand. The

PSO–DE hybrids usually combine the evolution schemes

of both algorithms to produce a new evolutionary position
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scheme [13]–[17], apply one of the two algorithms as local

search to evolve some pre-specified particles [18]–[20], or

evolve the control parameters with one of the evolutionary

approaches to produce a parameter-free hybrid [13], [21]–

[23].

The current study has been motivated by the behavior

and the proximity characteristics of the personal experience

of each particle during the evolution process. Each parti-

cle interacts with the rest of the swarm particles. More

specifically, the movement of each particle is controlled by

forces; the best previous position of the particle (cognitive

experience) and the position attained by the best particle in

the swarm or neighborhood (social experience). Extensive

simulations indicate that through the evolution process of

the PSO algorithm, the cognitive experience of each particle

tend to be distributed in the vicinity of the problem’s optima.

To this end, we propose a hybrid evolutionary scheme to

efficient evolve the social and cognitive experience of the

swarm and enhance the convergence properties of the PSO

algorithm. Here, we incorporate the DE algorithm, which

is a simple and compact evolutionary algorithm exhibiting

good convergence characteristics. Initial experimental results

in a benchmark set consisting of twelve difficult high-

dimensional benchmark functions demonstrate that this is a

promising approach.

The rest of the paper is organized as follows: Section II

and Section III briefly describe the basic operations of

the canonical PSO and the DE algorithms, respectively. In

Section IV, we analyze the behavior of the cognitive and

social experience in the PSO algorithm that motivated the

proposed approach. In Section V we propose the new hybrid

evolutionary scheme, while in Section VI, we present the

experimental analysis. The paper concludes with a short

discussion and some pointers for future work.

II. THE PARTICLE SWARM OPTIMIZATION ALGORITHM

The PSO algorithm is a population–based stochastic algo-

rithm that exploits a population of individuals to effectively

probe promising regions of the search space. Therefore, each

individual (particle) of the population (swarm) moves with

an adaptable velocity within the search space and retains in

its memory the best position it ever encountered. There exist

two main PSO versions; namely the global PSO and the local

PSO. In the global PSO version, the best position ever at-

tained by all individuals of the swarm is communicated to all

the particles, while in the local PSO version, for each particle

it is assigned a neighborhood consisting of a pre-specified

number of particles and the best position ever attained by



the particles in their neighborhood is communicated among

them [3].

More specifically, each particle is a D-dimensional vector,

and the swarm consists of NP particles. Therefore, the

position of the i-th particle of the swarm can be represented

as: Xi = (xi1, xi2, . . . , xiD). The velocity of each particle

is also a D-dimensional vector and for the i-th particle is

denoted as: Vi = (ui1, ui2, . . . , uiD). The best previous

position of the i-th particle can be recorded as: Pi =
(pi1, pi2, . . . , piD) and the best particle in the swarm (i.e. in

minimization problems, the particle with the smallest fitness

function value) is indicated by the index best. Furthermore,

the neighborhood of each particle is usually defined through

its index. The majority of the PSO variants utilize the

ring topology which is the most common topology in the

literature. In the ring topology, the neighborhood of each

particle consists of particles with neighboring indices [24],

[25].

In the present investigation, we consider the version of

PSO proposed by Clerc and Kennedy [26], which incor-

porates the parameter χ, known as the constriction factor.

The main role of the constriction factor is to control the

magnitude of the velocities and alleviate the “swarm explo-

sion” effect that sometimes prevented the convergence of the

original PSO algorithm [27]. As stated in [26], the dynamic

behavior of the particles in the swarm is manipulated using

the following equations:

Vi(t + 1) = χ

(

Vi(t) + c1r1

(

Pi(t) − Xi(t)
)

+c2r2

(

Pbest(t) − Xi(t)
)

)

, (1)

Xi(t + 1) = Xi(t) + Vi(t + 1), (2)

for i = 1, 2, . . . ,NP , where χ is the constriction factor

parameter, c1 and c2 are positive constants referred to as

cognitive and social parameters respectively, and r1 and r2

are randomly chosen numbers uniformly distributed in [0, 1].
The cognitive parameter controls the experience influence

of each particle with respect to its best performance found

so far, while the social parameter with respect to the best

position found by its society, i.e. either the whole swarm

or its neighborhood. Furthermore, in a stability analysis

provided in [26], it was implied that the constriction factor

is typically calculated according to the following formula:

χ = 2κ

|2−φ−
√

φ2−4φ|
, where φ = c1 + c2 and k = 1, and

to guarantee the quick convergence of the scheme, the value

of φ has to satisfy φ > 4. The aforementioned scheme is

typically utilized for the constant φ = 4.1, with χ = 0.72984
and c1 = c2 = 2.05 [24], [26].

Below, we briefly describe the basic operators of the DE

algorithm.

III. THE DIFFERENTIAL EVOLUTION ALGORITHM

The DE algorithm [12] is a stochastic parallel direct search

method, which utilizes concepts borrowed from the broad

class of Evolutionary Algorithms (EAs). The DE method

requires few control parameters and several experimental

studies have shown that DE has good convergence properties

and outperforms other well known and widely used EAs [12],

[28]–[30].

More specifically, DE is a population–based stochastic

algorithm that exploits a population of potential solutions,

individuals, to effectively probe the search space. Like PSO,

the population of individuals is randomly initialized in the

optimization domain with NP, D–dimensional, vectors fol-

lowing a uniform probability distribution. Individuals evolve

over successive iterations to explore the search space and

locate the minima of the objective function. Throughout the

execution process, the user–defined population size, NP, is

fixed. At each iteration, called generation, new vectors are

derived by the combination of randomly chosen vectors from

the current population. This operation in our context can

be referred to as mutation, while the outcoming vectors as

mutant individuals. Each mutant individual is then mixed

with another, predetermined, vector – the target vector –

through an operation called recombination. This operation

yields the so–called trial vector. Finally, the trial vector

undergoes the selection operator, according to which it is

accepted as a member of the population of the next gen-

eration only if it yields a reduction in the value of the

objective function f relative to that of the target vector.

Otherwise, target vector is retained in the next generation.

The search operators efficiently shuffle information among

the individuals, enabling the search for an optimum to focus

on the most promising regions of the solution space.

Here we describe the original mutation operators proposed

in [12]. Specifically, for each individual xi
g , i = 1, . . . , NP,

where g denotes the current generation, the mutant individual

vi
g+1 can be generated according to one of the following

equations:

1) “DE/best/1”

vi
g+1 = xbest

g + F (xr1

g − xr2

g ), (3)

2) “DE/rand/1”

vi
g+1 = xr1

g + F (xr2

g − xr3

g ), (4)

3) “DE/current-to-best/1”

vi
g+1 = xi

g + F (xbest
g − xi

g) + F (xr1

g − xr2

g ), (5)

4) “DE/best/2”

vi
g+1 = xbest

g + F (xr1

g − xr2

g ) + F (xr3

g − xr4

g ), (6)

5) “DE/rand/2”

vi
g+1 = xr1

g + F (xr2

g − xr3

g ) + F (xr4

g − xr5

g ), (7)

where xbest
g is the best member of the previous generation,

r1, r2, r3, r4, r5 ∈ {1, 2, . . . , i − 1, i + 1, . . . ,NP}, are ran-

dom integers mutually different and not equal to the running

index i, and F > 0 is a real parameter, called mutation

or scaling factor. The user–defined mutation constant F ,

controls the amplification of the difference between two

individuals, and is used to prevent the risk of stagnation,



of the search process. It is also mainly responsible for the

convergence rate of the algorithm. Therefore, an inappropri-

ate mutation constant value can cause deceleration of the

algorithm and decrease of the population diversity.

Furthermore, here we utilize the trigonometric mutation

operator [31], which performs a mutation according to the

following equation, with probability τµ:

6) “TDE/rand/1”

vi
g+1 =(xr1

g +xr2
g +xr3

g )/3+(p2−p1)(x
r1
g −xr2

g )+

+(p3−p2)(x
r2
g −xr3

g )+(p1−p3)(x
r3
g −xr1

g ),(8)

and with probability (1 − τµ), the mutation is performed

according to Eq. (4). τµ is a user defined parameter, typically

set around 0.1. The values of pm, m = {1, 2, 3} and p′ are

obtained through the following equations: p1 =
∣

∣f(xr1
g )

∣

∣ /p′,
p2 =

∣

∣f(xr2
g )

∣

∣ /p′, p3 =
∣

∣f(xr3
g )

∣

∣ /p′, and p′ =
∣

∣f(xr1
g )

∣

∣ +
∣

∣f(xr2
g )

∣

∣ +
∣

∣f(xr3
g )

∣

∣ .
Having performed the mutation, the recombination oper-

ator is subsequently applied to further increase the diversity

of the population. To this end, the mutant individuals are

combined with other predetermined individuals, called the

target individuals. Specifically, for each component l (l =
1, 2, . . . , D) of the mutant individual vi

g+1, we randomly

choose a real number r in the interval [0, 1]. Then, we

compare this number with the user–defined recombination

constant, CR. If r 6 CR, then we select, as the l–th

component of the trial individual ui
g+1, the l–th component

of the mutant individual vi
g+1. Otherwise, the l–th component

of the target vector xi
g becomes the l–th component of the

trial vector. This operation yields the trial individual. It is

evident that if the value of the recombination constant is too

small (close to zero) the effect of the mutation operator is

cancelled, since the target (and not the mutant) vector will

become the new trial vector.

Finally, the trial individual is accepted for the next genera-

tion only if it reduces the value of the objective function (se-

lection operator): ui
g+1 =

{

vi
g+1, iff(vi

g+1) < f(xi
g)

xi
g, otherwise

.

IV. STUDYING THE COGNITIVE AND SOCIAL EXPERIENCE

Numerous PSO variations have been proposed to improve

the accuracy of solutions and PSO convergence behavior [7],

[25], [32]. In [11], [26] has been formally proven that each

particle converges to a weighted average of its personal

best and neighborhood best positions. Motivated by this

finding new variants have been introduced that incorporate

knowledge which exploit the best personal positions [33].

Moreover, the exploitation of the best personal experience

has been incorporated in several PSO variants with multiple

different methodologies. Specifically, some variants adapt

the best personal positions using distributions that are based

on best personal positions [33], or include a weighted sum

of best personal positions [25]. Other variants incorporate

update schemes that utilize information of the best personal

positions by means of an average of two or more best

personal positions [19], [34].

Fig. 1. local PSO population’s positions after 1, 5, 10, and 20 generations

Fig. 2. local PSO population’s best personal positions after 1, 5, 10, and
20 generations

The aforementioned approaches and their convergence

characteristics enhance our findings. Extensive experimental

simulations have verified that the PSO algorithm tends to

distribute the best positions encountered by the particles in

the swarm to the vicinity of a minimum. Additionally, the

local version of PSO has more explorative characteristics,

and tends to distribute the best personal positions to regions

around many minima, while the global version of PSO ex-

hibits more exploitive characteristics and rapidly gathers the

best personal experience to the basin of attraction of a (global

or local) minimum. Here, to demonstrate the evolution of

the swarm, as well as the best position of each individual,

we utilize the Shekel’s Foxholes benchmark function, which

has twenty five local minima and one global minimum

(f(−32, 32) = 0.998004). Fig. 1 illustrates contour plots of

the Shekel’s Foxholes function and the positions of a swarm

consisting of 40 particles that have been evolved with the

local version of PSO after 1, 5, 10, and 20 generations, while

Fig. 2 demonstrates the distribution of their best personal

experience. It is evident that an efficient strategy to adapt or

evolve the social and cognitive experience of the swarm may

enhance the original PSO scheme.



Algorithm 1 The PSO algorithmic scheme utilizing Differ-

ential Evolution for evolving personal experience

1: Initialize particles in the swarm

2: for each time step t do

3: for each particle i in the swarm do

4: Update position Xi(t + 1) using Eqs. (1) and (2)

5: Evaluate particle Xi(t + 1).
6: Update social and cognitive experience

7: if Pi(t) has changed position then

8: /* Evolve Pi(t) utilizing one DE step in Sp*/

9: Mutate Pi(t) and generate the corresponding

mutant vector vi
t through one of the mutation

strategies defined by Eqs. (3) – (8)

10: Recombine the mutant vector vi
t and generate the

corresponding trial vector ui
t.

11: Evaluate the trial vector ui
t.

12: Update the Pi(t) with the ui
t, if f(ui

t) <
f(Pi(t)).

13: end if

14: end for

15: end for

V. THE PROPOSED APPROACH

Motivated by the aforementioned PSO variants and our

findings, we propose the evolution of the social and cognitive

experience of the Particle Swarm Optimization algorithm

with the Differential Evolution algorithm. In general, the

evolutionary process is a very efficient procedure, but it

demands a high number of function evaluations to effectively

converge to an optimum. The incorporation of DE algorithm

in each evolution step may result in an increase of the

required function evaluations. To this end, we propose to

evolve only the “promising” best personal positions of the

swarm in the current generation. By “promising”, we define

the best personal position that has changed (improved) during

the previous step and may evolve to an even better position.

Extensive experimental results exhibit that the procedure of

evolving only the “promising” particles is more effective than

evolving the best personal positions of the whole swarm.

We define the best personal experience set as Sp =
{P1, P2, . . . , PNP}. Hence, after each time step of the PSO

algorithm, we apply one DE step to the particles that their

best personal positions have improved. The DE mutation

operator is using individuals from the Sp set. Specifically,

the three main DE evolution steps (mutation, recombination,

and selection) are applied to the promising personal bests. In

the mutation procedure one of the aforementioned mutation

strategies (Eqs. (3)–(8)) is utilized. A detailed algorithmic

scheme of the proposed approach is illustrated in Algo-

rithm 1.

We believe that the proposed evolutionary hybrid approach

achieves a good balance between exploration and exploitation

of the search space. The evolution of the personal experience

will initially promote the exploration of the personal experi-

ence space while in the later time steps where the distribution

TABLE I

A BRIEF DESCRIPTION OF THE BENCHMARK FUNCTION SET

Benchmark function n S fmin

F1 Generalized Schwefel Problem 2.26 50 [−500, 500]50 -12569.5

F2 Generalized Rastrigin’s Function 50 [−5.12, 5.12]50 0

F3 Ackley’s Function 50 [−32, 32]50 0

F4 Generalized Griewank Function 50 [−600, 600]50 0

F5 Generalized Penalized Function 1 50 [−50, 50]50 0

F6 Generalized Penalized Function 2 50 [−50, 50]50 0

F7 Shifted Sphere Function n [−100, 100]n -450
F8 Shifted Schwefel’s Problem 2.21 n [−100, 100]n -450
F9 Shifted Rosenbrock’s Function n [−100, 100]n 390
F10 Shifted Rastrigin’s Function n [−5, 5]n -330
F11 Shifted Griewank’s Function n [−600, 600]n -180
F12 Shifted Ackley’s Function n [−32, 32]n -140

of the personal best have been gathered in the vicinity of

a local/global minimum, will promote exploitation of the

gathered experience.

VI. EXPERIMENTAL RESULTS

This section compares the performance of the proposed

PSO-DE hybrid variants with the original PSO algorithm

discussed in Section II. To verify the effectiveness of the

proposed approach we have used twelve widely known high

dimensional benchmark functions with different characteris-

tics. These function are from two recently proposed bench-

mark test sets [35], [36]. The first set of six test functions

(F1−F6) are high dimensional multimodal functions, where

the number of local minima increases exponentially with

their dimensionality [35]. The remaining six test functions

are high dimensional and scalable benchmark functions; two

shifted unimodal (F7 and F8) and four shifted multimodal

benchmark functions (F9–F12) [36]. A brief description of

the functions is provided in Table I. More specifically, n de-

notes the dimensionality of the function, S is the optimization

range box, and fmin stands for the global minimizer value.

A detailed description of the benchmark functions can be

found in [35], [36].

In this section, we report results averaged over 50 in-

dependent simulations. For each simulation and each PSO

variant we have initialized the swarms using a uniform

random number distribution with the same random seeds.

Furthermore, all PSO variants have been implemented with

the default parameters settings, i.e. a ring topology, φ = 4.1,

χ = 0.72984 and c1 = c2 = 2.05 [24], [26]. Regarding the

DE control parameters, the common settings of F = 0.5 and

CR = 0.9 were used for all hybrid variants [12], [28].

To evaluate the efficiency and effectiveness of the hybrid

PSO-DE variants against the respective original PSO vari-

ants, we utilized the F1 − F6 50-dimensional benchmark

functions to calculated two performance measures: the Suc-

cess Rate (SR) and the Success Performance (SP) [28], [29],

[37]. The SR is defined as the fraction of the number of

times the algorithm has reached the global optimum during

a pre-specified budget of function evaluations over the total

number of simulations and the Success Performance measure



TABLE II

FIRST EXPERIMENTAL SET FOR THE ORIGINAL AND THE HYBRID PSO VARIANTS OVER THE SIX 50-DIMENSIONAL BENCHMARK FUNCTIONS

Algorithm Gen. Schwefel Prob. 2.26 Gen. Rastrigin’s Function Ackley’s Function
NFE SR SP NFE SR SP NFE SR SP

lPSO 996200 0.02 49810000 N/A 0 N/A 145637 1 145637

lPSO:DE/best/1 153914 1 153914 N/A 0 N/A 136215 1 136215
lPSO:DE/rand/1 178106 1 178106 831879 0.02 41594000 141219 1 141219
lPSO:DE/current-to-best/1 140063 1 140063 N/A 0 N/A 129502 1 129502
lPSO:DE/best/2 167644 1 167644 639785 0.12 5331540 142887 1 142887
lPSO:DE/rand/2 173306 1 173306 720542 0.3 2401810 145349 1 145349
lPSO:TDE/rand/1 163135 1 163135 648835 0.06 10813900 140335 1 140335

gPSO 140370 0.1 1403700 N/A 0 N/A N/A 0 N/A

gPSO:DE/best/1 131156 0.42 312277 N/A 0 N/A 108258 0.46 235344
gPSO:DE/rand/1 103045 0.82 125665 N/A 0 N/A 108877 0.2 544385
gPSO:DE/current-to-best/1 112455 0.56 200813 N/A 0 N/A 110277 0.3 367589
gPSO:DE/best/2 99692 0.66 151049 N/A 0 N/A 108041 0.2 540206
gPSO:DE/rand/2 83491 0.76 109858 N/A 0 N/A 106611 0.2 533054
gPSO:TDE/rand/1 86529 0.64 135202 N/A 0 N/A 105347 0.24 438944

Algorithm Gen. Griewank Function Gen. Penalized Function 1 Gen. Penalized Function 2
NFE SR SP NFE SR SP NFE SR SP

lPSO 119284 0.92 129656 133156 0.96 138704 104344 0.88 118573

lPSO:DE/best/1 91622 0.82 111734 86470 0.96 90073 92763 0.96 96628
lPSO:DE/rand/1 93844 0.9 104271 90421 0.96 94188 96992 1 96992
lPSO:DE/current-to-best/1 93156 0.9 103507 80732 0.98 82379 86735 0.98 88505
lPSO:DE/best/2 103653 0.96 107971 92052 0.98 93931 98407 0.96 102508
lPSO:DE/rand/2 98186 0.94 104454 94726 1 94726 102005 0.98 104086
lPSO:TDE/rand/1 94641 0.86 110048 90448 1 90448 98313 0.98 100320

gPSO 60030 0.1 600300 95909.5 0.42 228356 89780 0.36 249390

gPSO:DE/best/1 67977 0.5 135956 87787 0.54 162570 77619 0.54 143740
gPSO:DE/rand/1 66482 0.46 144526 82307 0.44 187063 75760 0.5 151520
gPSO:DE/current-to-best/1 66871 0.56 119414 88979 0.54 164776 76605 0.58 132078
gPSO:DE/best/2 66187 0.66 100285 83094 0.48 173113 73441 0.64 114752
gPSO:DE/rand/2 65453 0.34 192509 84892 0.38 223402 75767 0.64 118387
gPSO:TDE/rand/1 65415 0.34 192398 87444 0.34 257188 73423 0.62 118426

is defined as the fraction of the mean Number of Function

Evaluations (NFE) over the SR measure. In this set, we

incorporate 100 particles in each swarm and a budget of

1, 000, 000 function evaluations for each simulation.

Table II, for each algorithm and each benchmark function,

illustrates the average number of function evaluations, and

the SR and SP measures. It is evident that the proposed

PSO-DE hybrid variants for both the global (gPSO) and the

local (lPSO) versions of PSO exhibit superior performance

with respect to the SP measure. The incorporation of the

DE algorithm to evolve the personal experience speeds up

convergence and in most of the cases improves the success

rate (F1, F3, F4, F5, F6). It has to be noted that in cases

where the original PSO algorithm fails to converge, the

hybrid variants improve the convergence rates (local version

in F2, global version in F3 and F4). Another interesting

observation is that the lPSO:DE/current-to-best/1 variant

exhibits the best success performance in almost every bench-

mark functions. The first experimental results show that the

exploitive DE mutation strategies, i.e. DE/best/1, DE/current-

to-best/1, DE/best/2, and TDE/rand/1 exhibit better success

performance.

Furthermore, the second experimental set includes exten-

sive simulations over the remaining six shifted high dimen-

sional benchmark functions. Bellow, we report experimental

results for three different dimensions, i.e. n = 50, 100,
and 500. Hence, for the case of 50-dimensional functions,

we report results in Table III. More specifically, for each

algorithm and each benchmark, the best solution achieved

after a budget of (5000·n) function evaluations was recorded

along with its function value. The obtained function values

were analyzed statistically in terms of their mean value

and standard deviation averaged over the 50 independent

experiments. Moreover, Fig. 3 and Fig. 4 illustrate boxplots

for the 100-dimensional and 500-dimensional benchmark

functions based on the best fitness value that have reached

within the available budget (5, 000 ·n). In Figs. 3 and 4, the

labels of the x-axis correspond to the following PSO variants:

label 1 represent the lPSO, labels 2–7 the PSO hybrids with

DE mutation strategies (Eqs. (3)–(8)), label 8 the gPSO and

9–14 the hybrids with DE mutation strategies (Eqs. (3)–(8)).

Table III, as well as Figs. 3 and 4 clearly illustrate the su-

perior performance of the proposed hybrid PSO-DE variants.

It has to be noticed that although the function dimensionality

increases the hybrid approaches efficiently evolve the social

and cognitive experience resulting in superior performance

against the corresponding original PSO versions.

Furthermore, hypothesis tests were conducted for all ex-



TABLE III

EXPERIMENTAL RESULTS FOR ALL PSO VARIANTS OVER THE SIX SHIFTED 50-DIMENSIONAL BENCHMARK FUNCTIONS (F7 − F12)

Algorithm F7 Function F8 Function F9 Function
Mean St.D. Mean St.D. Mean St.D.

lPSO local 1490.930 384.833 -445.116 1.413 403.897 29.539

lPSO:DE/best/1 870.261 524.258 -441.640 2.542 391.755 1.999
lPSO:DE/rand/1 790.364 432.002 -449.945 0.015 390.784 1.308
lPSO:DE/current-to-best/1 742.221 459.075 -444.860 1.982 390.706 1.449
lPSO:DE/best/2 896.027 458.625 -449.907 0.027 390.811 1.548
lPSO:DE/rand/2 796.772 398.621 -449.409 0.111 403.587 20.682
lPSO:TDE/rand/1 722.300 423.164 -449.968 0.009 391.431 2.112

gPSO global 2672.500 1105.130 -447.362 1.513 392.328 3.253

gPSO:DE/best/1 877.294 392.263 -438.602 3.068 391.276 1.878
gPSO:DE/rand/1 878.014 436.157 -449.972 0.010 390.683 1.483
gPSO:DE/current-to-best/1 1015.170 399.525 -442.894 2.555 392.426 9.694
gPSO:DE/best/2 932.834 459.471 -449.917 0.035 391.043 1.763
gPSO:DE/rand/2 898.407 464.747 -449.755 0.066 391.347 1.850
gPSO:TDE/rand/1 847.355 432.280 -449.982 0.007 390.817 1.613

Algorithm F10 Function F11 Function F12 Function
Mean St.D. Mean St.D. Mean St.D.

lPSO local -261.306 12.841 -175.420 1.207 -137.895 0.551

lPSO:DE/best/1 -324.311 2.252 -179.386 0.278 -139.998 0.001
lPSO:DE/rand/1 -325.496 2.063 -179.270 0.282 -139.997 0.002
lPSO:DE/current-to-best/1 -322.051 3.385 -179.384 0.272 -139.998 0.001
lPSO:DE/best/2 -324.128 2.664 -179.154 0.234 -139.997 0.002
lPSO:DE/rand/2 -323.308 2.984 -179.133 0.239 -139.998 0.002
lPSO:TDE/rand/1 -326.161 2.008 -179.216 0.292 -139.997 0.003

gPSO local -248.717 19.044 -172.514 3.036 -135.075 1.481

gPSO:DE/best/1 -320.930 4.453 -179.288 0.304 -139.997 0.005
gPSO:DE/rand/1 -325.703 2.318 -179.090 0.284 -139.997 0.003
gPSO:DE/current-to-best/1 -312.281 6.236 -179.275 0.235 -139.997 0.005
gPSO:DE/best/2 -322.159 5.431 -179.058 0.224 -139.996 0.008
gPSO:DE/rand/2 -321.910 3.382 -178.940 0.222 -139.997 0.003
gPSO:TDE/rand/1 -325.014 2.382 -179.129 0.257 -139.996 0.007

perimental results to evaluate and ensure their statistical

significance. Therefore, for each benchmark function, each

hybrid PSO-DE variant was compared against its correspond-

ing original PSO version using the nonparametric Wilcoxon

rank-sum test. The null hypothesis in each test was that

the samples compared originate from the same continuous

distributions with equal medians. Due to lack of space,

we report that almost all simulation results reject the null

hypothesis in a 95% level of significance.

Finally, to provide a cumulative comparison over all the

local and global PSO variants, we have utilized the Empirical

Cumulative probability Distribution Function (ECDF) [37] of

the best fitness values for all 500-dimensional benchmark

functions. Fig. 5 illustrates the ECDF of the best fitness

values of the original global PSO versus its hybrid PSO-

DE variants (top) and the ECDF of the best fitness values

of the original local PSO versus its hybrid PSO-DE vari-

ants (bottom). More successful approaches have low best

fitness values and large values of the empirical cumulative

probability distribution. In other words, the algorithm having

the maximum area under its curve exhibits the best success

performance over all benchmark functions. Studying the

figures, it becomes evident that the original PSO variants

are significantly improved by the evolution of the social

and cognitive experience over all benchmark functions. All

hybrid PSO-DE variants have improved their corresponding

original PSO schemes with the most promising hybrids to

be the gPSO:DE/rand/1 and gPSO:TDE/rand/1 for the global

PSO version and lPSO:DE/rand/1 and lPSO:TDE/rand/1 for

the local PSO version.

VII. CONCLUSIONS

In the present study, a hybrid approach of the Particle

Swarm Optimization and the Differential Evolution algorithm

has been presented. Motivated by the tendency of PSO to

distribute the best personal positions of the swarm near to

the vicinity of problem’s optima, we evolve the social and

cognitive experience of the swarm with the DE algorithm

to further enhance the original PSO convergence character-

istics. To achieve this, after each PSO evolution step, we

evolve the best personal experience of the particles that have

changed position during the previous step, with one of the six

well known DE mutation strategies. Extensive experimental

results on twelve high dimensional multimodal benchmark

functions, indicate that the hybrid PSO variants are very

promising, since always outperform and improve the original

PSO algorithm. Future investigation should employ other

evolutionary algorithms, more recent DE mutation strate-



Fig. 3. Experimental results for all PSO variants over the six shifted 100-dimensional benchmark functions (F7 − F12)

Fig. 4. Experimental results for all PSO variants over the six shifted 500-dimensional benchmark functions (F7 − F12)

gies [23], [38], as well as a self adaptive strategy selection

technique to alleviate the hybrid approach of selecting a

prespecified mutation strategy.
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