
Tweaking a Tower of Blocks Leads to a TMBL:

Pursuing Long Term Fitness Growth in Program Evolution

Tony E Lewis and George D Magoulas, Member, IEEE

Abstract— If a population of programs evolved not for a few
hundred generations but for a few hundred thousand or more,
could it generate more interesting behaviours and tackle more
complex problems?

We begin to investigate this question by introducing Tweak-
ing Mutation Behaviour Learning (TMBL), a form of evolu-
tionary computation designed to meet this challenge. Whereas
Genetic Programming (GP) typically involves creating a large
pool of initial solutions and then shuffling them (with crossover
and mutation) over relatively few generations, TMBL focuses
on the cumulative acquisition of small adaptive mutations over
many generations. In particular, we aim to reduce limits on long
term fitness growth by encouraging tweaks: changes which affect
behaviour without ruining the existing functionality. We use
this notion to construct a standard representation for TMBL.
We then experimentally compare TMBL against linear GP and
tree-based GP and find that TMBL shows strong signs of being
more conducive to the long term growth of fitness.

I. INTRODUCTION

One of the lessons from evolutionary biology is the

astounding amount of functional complexity that a cumu-

lative process can build using nothing but small, unguided

improvements and plenty of time.

Evolutionary Computation (EC) draws inspiration from

evolution to create algorithms that can harness some of its

benefits. Various forms of EC have been proposed for tack-

ling different sorts of problems. A Genetic Algorithm (GA)

entails evolving a string of characters. For this approach, the

implementer must design some suitable interpretation of the

string. For other application areas it may be unclear what

structure of solution is required or it may be obvious that

an algorithm or behaviour must be evolved. These problems

may be better suited to Genetic Programming (GP) which

entails evolving programs. The standard form of GP program

is akin to an arithmetic formula but there are many other

forms, some of which are Turing complete [13].

GA and GP share many similarities [16] and there is no

clear cutoff between the two (for example Cartesian Genetic

Programming (CGP) is a commonly used form of GP but it

could be viewed as a GA with a particularly sophisticated

fitness evaluation function). Still, it is helpful to use two

different names because GA and GP have different aims and

so suit different problem areas.

Although GP is often highly effective during the initial

generations, it typically stagnates quickly. Despite the ever

faster computation being delivered by processor technology,

GP remains unsuitable for problems that can only be solved

Both authors are with the Department of Computer Science, Birkbeck,
University of London, Malet Street, London, WC1E 7HX, United Kingdom
(emails: tony@dcs.bbk.ac.uk, gmagoulas@dcs.bbk.ac.uk).

through a long series of improvements. This suggests that

computational power may not be the main limit to the useful

complexity that GP can evolve. Understanding what that limit

is might make it possible to exploit evolution’s ability to

build deep functional complexity and hence attack new sorts

of problems.

This work introduces a new form of EC called Tweaking

Mutation Behaviour Learning (TMBL, pronounced “tum-

ble”). Like GP, it entails evolving programs; unlike GP, it

prioritises the long term growth of fitness above all else. This

may be at the expense of efficiency in the initial generations

if necessary.

Any technique for evolving programs will involve some

arrangement of instructions and registers. Given the many

proposed arrangements, any form of TMBL will inevitably

bear strong similarities to existing forms of GP. However

TMBL is about shifting the focus to long term fitness growth

as much as it is about specific techniques. For this reason,

TMBL appears here as a new form of EC, distinct from GP,

rather than as one of its flavours.

It is worth acknowledging that a method which pursues

long term fitness growth above all else will have to sacrifice

other aims:

• Any such method will typically require a lot of data. It

is unlikely to be good at generalising from sparse data

since the aim is to avoid bias towards simplicity.

• For similar reasons, any such method is likely to be too

messy to get perfect results on relatively simple ques-

tions. This suggests that it would not suit the “automatic

programming” view that is sometimes associated with

GP.

• The final result of any such method will hopefully be

highly complex which will make it difficult to interpret.

This cost is significant since a method that produces

results that humans can understand can be used in many

more situations than a method that can’t.

• Any such method will be computationally expensive.

In this context, computational efficiency (the amount of

work needed to achieve some pre-specified degree of

success) may be a less useful discriminator of methods

than the final quality of solution that can be obtained

given the maximum available computational resources.

Consequently even if TMBL achieves its goal perfectly, it

will still be less effective than GP for the majority of GP’s

current application areas. This is a sacrifice worth making

provided TMBL is able to make new progress on other

problems that can only be solved through a long series of

improvements.

II. WHAT LIMITS LONG TERM FITNESS GROWTH?

Consider a toy puzzle consisting of many cuboid blocks

that must be lined up in some specific order according to the

patterns on their surfaces. Assume that it is quite possible

to stack the blocks into a tall tower without them toppling.

Further assume that the puzzle is sufficiently tricky to require

a good deal of trial and error but that planning is forbidden.

Now imagine attempting to solve the puzzle by stacking the

blocks vertically in a single, free-standing column as depicted

for a small example in Figure 1(a). It is intuitively clear that

this single-stack, trial-and-error approach is doomed; given

a puzzle with enough blocks, the strategy will stagnate.

Why must this be so? This is because once initial progress

has been made, it becomes difficult to make changes without

ruining previous achievements. Once successful regions are

formed in the stack, it becomes extremely difficult to adjust

any blocks below without the successful region falling over.

Hence as progress is made and as successful regions are

formed, the cost of meddling with more and more of the

blocks increases and so each next step becomes harder.

There might be some easy improvements that can be made,

particularly near the top of the stack, but once these get used

up, the same problems remain. Eventually the attempt grinds

to a halt.

Note that this strategy’s attempts may consistently start

well and may consistently make moderate progress. Initially,

it would be easy to put one block on top of another or to

substitute this block for that. This should not mislead; the

strategy is limited.

(a) A small tower of blocks (b) A GP tree

Fig. 1. Illustrations of a small tower of blocks (a) and a GP tree (b). It is
claimed that these two challenges face similar limitations.

This analysis also illuminates the stagnation seen in GP.

Compare the tower of blocks to an upside-down GP tree as

depicted in Figure 1(b). In both cases, it becomes increas-

ingly difficult to improve the structure by a process of trial

and error because the more successful material that is built

on top of an item, the harder it becomes to change that item

without doing more harm than good. In the tower, the lower

blocks provide physical support for the blocks above; in the

inverted GP tree, the support is functional.

Then how are these processes able to make any progress at

all? The early solutions are unremarkable so progress can be

made by additions and occasional lucky random alterations.

This process continues and the solution collects components

built with the best luck seen so far. Consequently it becomes

increasingly rare that a new randomly trialed component is

better than the component it would replace, which represents

the best luck seen so far in that area. The closer to the

structure’s core that the candidate change would occur, the

more damage it is likely to do to the prior achievements and

so the more exceptional good luck is needed to succeed.

These arguments emphasise the problem with building

a single structure out of such highly interdependent units:

as the structure becomes increasingly elaborate, it becomes

increasingly difficult to modify the structure without ruining

prior achievements. Imagine if biology had somehow been

constrained to only allow one gene (translated to one protein

chain) per organism. As evolution added ever more functions

to this Swiss Army knife protein, new mutations would face

ever more formidable constraints to maintain the precise

structural configurations required to maintain all the previous

functions.

Given plentiful blocks or nodes, why can’t the process just

keep improving by adding at the fringes until the resources

dry up? For one thing, passable components congeal at the

heart of the structure and get buried until there is no practical

way to improve them. Each new layer of passable component

that establishes itself adds new limitations to what remains

practically achievable. That said, developing at the top of a

tower may continue to improve its value at the same rate

until the blocks are used up. For the GP tree, the outlook

is worse because most components will tend to restrict the

influence and scope of their neighbours further out from the

core.

As with the tower, consistent moderate progress in tree-

based GP should not mislead; all attention should remain on

the situation after the initial progress and on overcoming the

obstacles that arise then.

In reality, few players of the blocks game would persist

with building a single vertical tower for long before switch-

ing to a strategy of assembling the puzzle horizontally. Once

the puzzle is laid out flat, changes can easily be made without

ruining previous achievements, making better results easier.

This concept of a change which affects without ruining is at

the heart of this work and is given the name tweak. For

example, a sub-tree replacement mutation is not a tweak

because it completely removes the previous sub-tree and thus

requires the new random sub-tree to do a better job in that

position than the sub-tree it replaces.

When tweaks are prevented, a candidate alteration must

do a better job than the ”best luck” component it would

replace or damage. When tweaks are encouraged, a candi-

date alteration may alternatively succeed by making a new

contribution to an existing component whilst still allowing it

to remain and function as before.

The aims then, are to focus on the situation later on in the

run and to find a form of program evolution that is “laid out

flat” to encourage tweaks.

III. BACKGROUND

Previous discussions of stagnation in GP have tended to

focus on bloat and diversity. This work takes a different view

based on the considerations in Section II and, in particular,

tackles the issue by examining representation.

Many representations have been proposed for GP and there

are different schemes for classifying them. The most com-

monly used is based on the sort of structure that is typically

used to depict the representation: a line (of instructions), a

tree or a graph. Another scheme divides by what the given

representation’s diagram indicates: the flow of data between

locations or the flow of execution between instructions.

These schemes suffer the problem that they depend upon a

subjective choice in the way a representation was originally

presented. For instance, Parallel Algorithm Discovery and

Orchestration (PADO) [15] and GRAph structured Program

Evolution (GRAPE) [12] are usually thought of as graph-

based GP and yet they are functionally similar to Linear

Genetic Programming (LGP).

An alternative, more objective scheme is to distinguish

representations according to whether they use nodes, the

entities out of which standard GP trees are built. It is

normally sufficient to treat nodes as primitives that mean

“perform this node’s instruction on its inputs and then store

the result within the node to be made available to other

nodes”. However for the purposes of comparing node-based

systems with node-free systems, it helps to expose the

implied instruction and register under the node’s bonnet. A

node can be thought of as one instruction and one register

bound together in a pair such that the instruction only writes

to its partner register and is the only instruction that may do

so. After a node’s instruction has executed, the result held

in the node’s register may be used as the input to another

node’s instruction. Hence a node-based system is different

from a node-free system in that it imposes these constraints

on the relationship between instructions and registers.

Since most computer programs are lists of instructions,

the obvious representation for artificial program evolution

is a linear, node-free representation. Unfortunately, mutat-

ing code written in common programming languages often

invalidates the program. This may be solved by carrying

out appropriate repair or interpretation to ensure a valid

result, an approach taken by the TB [4] and “Pedestrians” [2]

representations. It is notable that the resulting structures are

node-based trees so the representation is a node-based tree

with a linear genotype. The Compiling Genetic Programming

System (CGPS) [10] representation directly manipulates lin-

ear machine code programs.

A possible extension is to allow the flow of execution to

branch based on certain decisions. With branches added, the

list of instructions can be teased out into a graph to help

illustrate the possible flows of execution. This is how PADO

[15], Genetic Network Programming (GNP) [7] and GRAPE

[12] are presented.

Any node-free system must choose how to handle the

data. For example PADO uses a stack from which inputs are

popped and onto which outputs are pushed whereas GRAPE

handles the data by carrying a data set around the graph

along with the point of execution. Another two node-free

representations, Linear-tree [5] and Linear-graph [6], have

been proposed which combine linear sections into larger tree

and directed acyclic graph structures respectively.

Despite the power of these branching node-free systems,

they are potentially brittle because they have a single point

of execution which traverses the instructions. A potential al-

ternative is to use a node-based system. Node-based systems

require the nodes to be connected to each other to determine

which nodes each node uses as its inputs. An illustration of

a node-based program typically represents these connections

with arrows.

A node-based architecture must also choose how to handle

the flow of execution. The most widely used representation

in GP researched is tree-based. This is a node-based rep-

resentation which constrains programs to be trees (meaning

there are no loops in the equivalent undirected graph) and

in which each node has the output of one node connected

to each of its inputs. These constraints define the flow of

execution because each node’s inputs may be calculated in

advance and any such ordering of execution gives the same

result (provided there are no nodes with side effects). This

also provides a simple crossover operation in which sub-trees

from two individuals are swapped over. Furthermore, trees

lend themselves to being interpreted by humans. Despite its

wide use, some have criticised the tree-based representation

for its lack of expressive power [15].

The Parallel Distributed Genetic Programming (PDGP)

[11] and CGP [9] representations allow more general struc-

tures by allowing the output of each node to be used by

more than one other further along in the program. The result

is a direct acyclic graph which is capable of reusing the

partial results. The drawback of this enhancement is that it is

less apparent how to construct a crossover operation. PDGP

solves this issue with sophisticated crossover operators that

swap sub-graphs and then repair the result as needed. The

issue is solved in CGP by an elegant mapping to the

graph phenotype from a genotype consisting of a string of

integers which means that GA operators can be used with

the genotype.

The papers for PDGP and CGP mention the possibility

of allowing loops and calculating the results by iteratively

updating the graph (so that each node updates based on the

inputs from the previous iteration). This is also the approach

taken by Neural Programming (NP) [14].

Two representations, Multiple Interacting Programs

(MIPs) [1] and Recurrent Network consisting of Trees (RTN)

[17] provide distinctive variations by combining evolving

trees into a larger graph. Another representation, Tangle Rep-

resenting Execution And Data (TREAD), involves several

additional features including an if-condition associated with

each node to determine whether or not it executes [8].

IV. A TMBL FORM TO AVOID LIMITATIONS

Section II recommends focusing on the situation later on

in the evolutionary process. The path taken to that position

is secondary; the primary concern is what can be done to

encourage further development once there. Consider what

this situation tends to look like. At this point, the population

fitness has typically made substantial progress and the best

individuals have a lot to lose from a bad mutation. The

initial flurry of improvements has waned and few generations

see the population best improve. The individual that most

recently improved the population best is likely to be domi-

nating the population through its descendants. Other lineages

that do not match the fitness of this top individual disappear

quickly and descendants with deleterious mutations rarely

last more than a few generations.

For these reasons, there is unlikely to be much diversity

in the enduring core of the population, just minor variations

on one form of solution. This means there is little for a

crossover operator to work with, so although it may or may

not confer some additional benefit, it isn’t the significant

source of functional inventiveness. Instead, the evolutionary

process must rely on mutation to provide most adaptive steps.

It was also argued in Section II that to improve long term

fitness growth, the focus should be on finding a structure that

encourages tweaks (changes which affect behaviour without

ruining existing functionality).

What sorts of properties of a program representation might

encourage tweaks? Firstly, a change to one component of the

program should be able to affect the behaviour of another part

of the program without it being necessary to also change that

other part. Compare this to the way that a newly evolved

gene’s product can interact with a pre-existing biological

process carried out by other genes’ products. This suggests

that the program should be built out of actions that affect

other entities rather than static components that present their

results for use by another part of the program. Instead of the

overall behaviour arising from a single structure, it should

arise from many parts which evolve to make their own

contributions. Secondly, each component should have as few

ties with functionally unrelated components as possible. This

suggests that the design should not force components of the

program to share aspects globally.

This analysis can be used to design a standard form for

TMBL. Note that this is just one of many possibilities and

other researchers are encouraged to propose their alternative

suggestions for meeting the aims of TMBL. The method-

ology used here is to review the properties that divide the

various GP representations and, at each stage, use a fresh

focus on tweaks to make a choice.

A. Choosing whether to use nodes

Using nodes makes it hard to modify the behaviour of

a program without damaging existing functional behaviour.

In other words, using nodes hinders tweaks. This is because

the changes affecting the behaviour of a node-based program

will involve changes to active nodes (nodes which currently

affect the output) but this involves disrupting the contribution

that node and its active children were already making to the

output.

Changes at the boundary between active and inactive nodes

may minimise the number of useful nodes that are disrupted.

Unfortunately, such changes at the fringes of the functional

structure tend to have restricted influence and tend to create a

new fringe with even less influence. As argued in Section II,

building at the fringes does not solve the problems under

consideration.

Nodes undermine the stated aim of building programs out

of actions which can directly affect the behaviour of other

parts of the program. Without nodes, it is relatively easy

to change an instruction to modify some register without

disrupting other instructions that are already using it. For

these reasons, nodes will not be used in this representation.

B. Choosing the structure of memory

What structure of memory seems most likely to encourage

tweaks? Until now, the word “register” has been used to

refer to any part of an EC program’s memory. From now on

it is worth being more precise because in addition to plain

registers, GP systems may alternatively arrange the memory

into a stack or indexed memory.

In register-based memory, each instruction is tied to

specific registers which it uses for its output and inputs.

Unlike when using nodes, each register may be read from

or written to by multiple instructions. This means that

the instructions must be placed in some order to ensure

consistency and to avoid access clashes. Non–node-based

GP systems more commonly use stack-based memory. This

involves each instruction popping enough data off the stack

for its inputs, performing its calculation and then pushing

the result back onto the stack. Indexed memory involves

providing read/write functions that allow a program to use

a run time argument to indicate which slot of memory to

access.

The stack approach seems likely to be the most brittle. As

a stack-based program develops, it will become increasingly

tricky for mutations to affect behaviour (in any way which

involves the stack) whilst still preserving the state of the stack

well enough to avoid damaging already functioning parts. A

stack is too global in the sense that all separate computations

in a program are forced to share the same stack.

Indexed memory is a potentially suitable approach which

appears less brittle than a stack because it is relatively easy

for newly mutated parts of a program to access one area

of indexed memory without affecting already functioning

parts of the program which access another area. However,

since indexed memory is more complicated than register-

based memory and requires more of its instructions, it is not

included in the scope of this investigation.

Plain registers encourage tweaks because they make it easy

for changes to instructions to affect registers being used by

other instructions without ruining the actions of those other

instructions. Furthermore, different parts of a program can

easily avoid sharing resources by using separate registers.

Systems using registers often use relatively few, and an

analysis of LGP found that 16 registers was suitable [3].

The consequence of this is to force growth to be vertical in

the sense that programs develop their fitness by extending

the list of instructions that cooperate in sequence on a small

set of registers. That sort of growth is important and may

be essential for developing some of the complex parts of

an algorithm, but it involves building a complex network of

interactions and so makes tweaks increasingly difficult. For

this reason it should be complemented by horizontal growth

in which programs can develop their fitness by developing

new groups of instructions and registers which make (fairly)

independent contributions. This suggests that TMBL should

use substantially more registers than are normally used in

LGP.

C. Choosing the type of flow control

Programs that require conditional behaviour should permit

some form of flow control in the representation. The most

common forms of flow control in non–node-based GP use a

single point of execution which flows through the program

and jumps to different locations in the program depending on

the result of an evaluation each time it reaches certain branch

points. This approach is too global for TMBL because it re-

quires that all components of a program must collaborate on

a shared flow of execution. As programs develop complexity,

it becomes increasingly hard for new parts to exploit their

programs’ flow control systems without damaging other parts

already relying on them.

To encourage tweaks, the TMBL representation should

instead use a more local system in which each instruction

can determine its own execution status. This is achieved

by allowing each instruction to potentially have its own if-

condition test. An instruction with an active if-condition is

only executed when the value at the if-socket is positive. This

system can still be used to generate sophisticated behaviours

by repeating the execution through the program for multiple

iterations. Similar systems have been discussed for LGP that

allow multiple, nested if-conditions [3].

D. Choosing the type of instructions

In a final step to encourage tweaks, the instructions are

constrained to always have the target register as the first

input register. Whereas instructions are normally of the form

“overwrite register C with the result of adding register A and

B”, this constraint restricts them to the form “add register A

to register B”. This encourages instructions to modify the

values in registers without destroying any information that

they previously hold and so encourages changes that affect

without ruining.

V. A SUMMARY OF TMBL’S STANDARD FORM

The resulting representation is somewhere between a linear

(node-free) representation and a cyclic graph-based (node-

based) representation. Like a linear representation, the in-

structions and registers are not paired together. A stack is

not used as is often the case in linear representations and

more registers are used than is normally the case (for those

linear representations that use them). Like a cyclic graph-

based representation, the evaluation is iterated and all nodes

are evaluated each iteration (except those that opt out via

their if-conditions) rather than there being a single point of

execution as is often the case in linear genetic programming.

The instructions are constrained to be of the form “add

the value in register A to the value in register B”. The

implementation can be summarised as follows:

• Each individual consists of an ordered list of instructions

and two numbers indicating the number of registers and

iterations to be used when evaluating the individual.

• Each instruction contains an if-switch, an if-socket, an

input-socket, an output-socket and an operation.

• The if-switch is a Boolean value indicating whether the

if-condition is to be used.

• Each of the sockets contains the index of a register or

of a dimension of the test case. The output-socket may

only refer to a register (because instructions should not

write to test cases).

• Before evaluation, the registers are all initialised to zero.

• In each iteration, each instruction is evaluated in turn.

• If an instruction has an active if-condition, the instruc-

tion is skipped whenever the value pointed to by the

if-socket is negative.

• Executing an instruction involves reading the value

pointed to by the input-socket and using the operation to

apply that value to the register indicated by the output-

socket.

• After the last iteration is complete, the output is taken

from the last register.

In addition to the standard functions, a TMBL program

has the functions SetValue and Copy. The SetValue function

sets the target register to some floating point number held

within the instruction (which is open to mutation). The

Copy function copies the input to the output. It would be

simple to modify this representation to allow for operations

with arity other than two (although some thought may be

required to construct operators that act on a register rather

than overwriting it).

Crossover could easily be applied but was not used in these

experiments. The mutation operator varies each component

of each instruction with some small probability and moves

an instruction to some other location in the execution list

with some small probability. The probabilities are set such

that each individual has a 0.95 probability of having at least

one mutation.

VI. THE PROBLEM AND EXPERIMENTAL SETUP

To begin the investigation of this TMBL representation, it

was tested on its ability to learn many simple pieces of infor-

mation — a simple task that presents a significant obstacle

to GP. To make this problem suitable, it was expressed as

a form of binary classification problem as follows. At the

start of a run, a set of test cases are created and each of

them is randomly assigned to one of two classes, positive

or negative, with equal probability. An individual’s fitness is

the number of test cases for which the individual outputs a

value of the correct sign when evaluated on the test case.

Zero is included in the positive class.

Early experiments used consecutive integers for the test

cases but this made it difficult to get a feel for the re-

sulting behaviours. To make the behaviours more visually

interesting, a second dimension was added and the test cases

were chosen randomly from a uniform distribution over

[−100, 100]× [−100, 100].
Early experiments also highlighted that the lack of feed-

back from the fitness function was slowing down the evolu-

tionary process to no useful end. To provide feedback on the

incorrect results, the fitness function was modified to award

two points per test case if an output x has the correct sign and

1.001−|x| otherwise. This means that all correct answers are

awarded the same but incorrect answers are awarded more

for being less wrong (ie for having a smaller magnitude).

Common Settings

Objective Learn a function which duplicates
the sign of test cases randomly
distributed in [−100, 100] ×

[−100, 100]
Fitness As described in the main text
Functions +, -, * and % (protected divide)
Number of generations 10000
Population size 1000 (four demes of 250)
Number of instructions 150
Number of instructions executions 150 ∗ 20 iterations
Selection Tournament
Tournament size fraction 0.3
Number of test cases 512
Gap between deme transfers 30 generations
Deme transfer topology Ring
Deme transfer mechanism Best replaces random

TMBL specific settings

Number of registers 150
Additional functions SetValue and Copy (see text)
Operators Mutation as described in the text

LGP specific settings

Number of registers 16
Operators Mutation (similar as for TMBL)

Tree-based GP specific settings

Genetic operators Crossover, hoist mutation, sub-
tree mutation, constant mutation

TABLE I

A SUMMARY OF THE KEY PARAMETERS USED FOR THE EC RUNS

GROUPED INTO COMMON SETTINGS AND SETTINGS SPECIFIC TO EACH

TECHNIQUE.

More formally, let n be the number of test cases, let

(xi, yi)i=1...n be the test cases where each xi and yi are

drawn from the uniform distribution U(−100, 100) and let

(ai)i=1...n be the correct answers where each ai is randomly

chosen to be either −1 or +1 with equal probability. Then

the fitness of an individual I(,) is defined as:

n
∑

i=1

f(ai, I(xi, yi))

where f(ai, I(xi, yi)) is defined as:

2 if
I(xi,yi)

ai

> 0

2 if I(xi, yi) = 0 and ai = 1

1.001−|I(xi,yi)| otherwise

For the experiment, TMBL was compared against LGP,

perhaps the closest form of GP, and tree-based GP. A form of

register-based LGP was constructed that is similar to TMBL

but which had a few differences to make it fit in with standard

LGP practice. It has fewer registers than TMBL (16 rather

than 150). It has instructions with two inputs that overwrite

the output. Finally, rather than if-conditions, it has branching-

conditions that allow the point of execution to jump to any

other instruction in the program.

Table I gives more details of the parameters of the runs.

Each experiment was repeated three times.

VII. RESULTS

Figure 2 shows the best fitness for each technique for

10000 generations averaged over three runs. It is encouraging

that TMBL finishes with the highest fitness. It is even more

encouraging that the graph indicates that TMBL is doing a

better job of avoiding stagnation than the other techniques.

Note that TMBL is the worst near the start of the runs and

only takes the lead after nearly 3000 generations.

For LGP and TMBL, Figure 3 shows the behaviour of

a best individual in the final generation. The behaviours are

both fairly complex; there is perhaps some indication that the

latter shows slightly more ability to construct independent

solid blocks away from the origin but it is not clear that this

is significant.

VIII. CONCLUSION

This work introduces TMBL, a style of EC of programs

which prioritises the long term growth of fitness through

a slow process of accumulating small improvements. To

achieve this, the emphasis is placed on finding a represen-

tation that encourages tweaks, mutations which are able to

affect an individual without ruining its previous functionality.

A representation was identified to suit this aim and it was

empirically compared to the most similar form of GP. The

results are encouraging: TMBL had the highest mean best

fitness at the final generation and TMBL’s fitness growth

looks much more promising for the long term growth of

fitness.

There follows an outline of some of the potential criticisms

of this work with the corresponding responses and indications

of possible avenues for further research.

• Insufficiently Thorough Investigation. This work has

presented a prima facie case with some initial support-

ing evidence but there is much more work to be done

to make the case fully convincing (such as introducing

more repetitions, longer runs and more varieties of GP

and TMBL).

• Bias of Problem. The test was chosen to identify

whether TMBL has an ability to learn more pieces of

 780

 800

 820

 840

 860

 880

 900

 920

 0 2000 4000 6000 8000 10000

F
itn

es
s

Generation Number

 TMBL
 LINEAR

 TREE

Fig. 2. For each technique, this figure shows the mean best fitness from three runs at each generation. The baseline of the graph is set to 768 which
is the expected fitness for an individual which always outputs zero. The maximum possible fitness is 1024. The shaded areas represent values within one
estimated standard error of the corresponding mean.

(a) The behaviour of an individual generated using LGP with fitness
897.899 and 386 of the 512 (≈ 75.39%) test cases correct

(b) The behaviour of an individual generated using TMBL with
fitness 916 and 404 of the 512 (≈ 78.91%) test cases correct

Fig. 3. Each figure shows how the fittest individual after 10000 generations divides the square between the two classes: negative (black) and non-negative
(white). In training, each of the individuals is only assessed on 512 points within this square but here the behaviour of each individual is plotted on (a fine
grid of points over) the full range [−100, 100]× [−100, 100], not just the points that the individual was trained on. The sub-figures are labelled with the
number of test cases correctly assigned but they do not show the locations of any of the test cases, correctly assigned or otherwise. Since the test cases
are randomly created at the start of each run, each of the individuals shown here was trained on different data.

information than standard forms of GP. However, it

might be argued that the resulting problem is too well

tuned to the proposed representation, perhaps because

the problem is biased in favour of if-conditions. This is

an area for further research and identifying the right sort

of problem may well be vital to the success of TMBL.

Readers are encouraged to offer their suggestions or to

try using TMBL themselves.

• Poor Generalisation of Solutions. This work has

shown that TMBL produces messy solutions which are

unlikely to be effective generalisers for problems such

as data mining. This was an anticipated cost of this

approach as discussed in Section I.

• Computational Requirements. The runs involved in

this work took a substantial amount of time because they

involve over 15 million million instruction evaluations

each. Some might argue that this renders the approach

impractical.

That view may be short sighted. Work on accelerating

the TMBL runs using a (reasonably old) Graphics

Processing Unit (GPU) have been very effective and as

processors develop, these computational demands are

likely to seem increasingly reasonable.

Those interested in tackling more complex problems

will have to accept the need for more computation.

The question is not which methods avoid the need for

substantial computational power but which methods can

do the most when such power is made available.

• Inadequate Avoidance of Local Optima. One further

line of potential criticism worth anticipating is an argu-

ment from fitness landscape intuitions. Some may argue

that because TMBL uses a slow, steady process which

does little to preserve diversity and which focuses on

relatively small mutations, the method will inevitably

get stuck in the fitness landscape’s local optima.

This sort of argument appeals to intuitions drawn from

a two dimensional fitness landscape. In two dimensions,

a landscape is either relatively trivial or is made up

of enough local optima to require diverse populations.

However, it should not be assumed that this intuition

translates to a very high dimensionality landscape. Per-

haps some problems are hard, not because the landscape

has no smooth path ascending the fitness landscape

but because the path is exceedingly hard to navigate

in a space with vast dimensionality. Notwithstanding

phenomena such as horizontal gene transfer and sex-

ual reproduction, natural selection has built astonishing

functional complexity despite its inability to plan ahead

or take large regressive steps to achieve greater aims.

REFERENCES

[1] P. J. Angeline. Multiple interacting programs: A representation for
evolving complex behaviors. Cybernetics and Systems, 29(8):779–806,
1998.

[2] W. Banzhaf. Genetic programming for pedestrians. In S. Forrest,
editor, Proceedings of the 5th International Conference on Genetic
Algorithms, ICGA-93, page 628, University of Illinois at Urbana-
Champaign, 17-21 July 1993. Morgan Kaufmann.

[3] M. Brameier and W. Banzhaf. Linear Genetic Programming. Number
XVI in Genetic and Evolutionary Computation. Springer, 2007.

[4] N. L. Cramer. A representation for the adaptive generation of simple
sequential programs. In J. J. Grefenstette, editor, Proceedings of an
International Conference on Genetic Algorithms and the Applications,
pages 183–187, Carnegie-Mellon University, Pittsburgh, PA, USA, 24-
26 July 1985.

[5] W. Kantschik and W. Banzhaf. Linear-tree GP and its comparison
with other GP structures. In J. Miller, M. Tomassini, P. L. Lanzi,
C. Ryan, A. G. B. Tettamanzi, and W. B. Langdon, editors, Genetic
Programming: 4th European conference, pages 302–312, Berlin, 2001.
Springer.

[6] W. Kantschik and W. Banzhaf. Linear-graph GP—A new GP structure.
In J. A. Foster, E. Lutton, J. Miller, C. Ryan, and A. G. B. Tettamanzi,
editors, Genetic Programming, Proceedings of the 5th European Con-
ference, EuroGP 2002, volume 2278 of LNCS, pages 83–92, Kinsale,
Ireland, 3-5 Apr. 2002. Springer-Verlag.

[7] H. Katagiri, K. Hirasawa, J. Hu, and J. Murata. Network structure
oriented evolutionary model-genetic network programming-and its
comparison with genetic programming. In E. D. Goodman, editor,
2001 Genetic and Evolutionary Computation Conference Late Breaking
Papers, pages 219–226, San Francisco, California, USA, 9-11 July
2001.

[8] T. E. Lewis and G. D. Magoulas. TREAD: A new genetic pro-
gramming representation aimed at research of long term complexity
growth. In M. Keijzer, G. Antoniol, C. B. Congdon, K. Deb, B. Doerr,
N. Hansen, J. H. Holmes, G. S. Hornby, D. Howard, J. Kennedy,
S. Kumar, F. G. Lobo, J. F. Miller, J. Moore, F. Neumann, M. Pelikan,
J. Pollack, K. Sastry, K. Stanley, A. Stoica, E.-G. Talbi, and I. Wegener,
editors, GECCO ’08: Proceedings of the 10th annual conference on
Genetic and evolutionary computation, pages 1339–1340, Atlanta, GA,
USA, 12-16 July 2008. ACM.

[9] J. F. Miller and P. Thomson. Cartesian genetic programming. In
R. Poli, W. Banzhaf, W. B. Langdon, J. F. Miller, P. Nordin, and T. C.
Fogarty, editors, Genetic Programming, Proceedings of EuroGP’2000,
volume 1802 of LNCS, pages 121–132, Edinburgh, 15-16 Apr. 2000.
Springer-Verlag.

[10] P. Nordin. A compiling genetic programming system that directly
manipulates the machine code. In K. E. Kinnear, Jr., editor, Advances
in Genetic Programming, chapter 14, pages 311–331. MIT Press, 1994.

[11] R. Poli. Evolution of graph-like programs with parallel distributed
genetic programming. In T. Back, editor, Genetic Algorithms: Proceed-
ings of the Seventh International Conference, pages 346–353, Michigan
State University, East Lansing, MI, USA, 19-23 July 1997. Morgan
Kaufmann.

[12] S. Shirakawa, S. Ogino, and T. Nagao. Graph structured program
evolution. In H. Lipson, editor, Genetic and Evolutionary Computation
Conference, GECCO 2007, Proceedings, London, England, UK, July 7-
11, 2007, pages 1686–1693. ACM, 2007.

[13] A. Teller. Turing completeness in the language of genetic programming
with indexed memory. In Proceedings of the 1994 IEEE World
Congress on Computational Intelligence, volume 1, pages 136–141,
Orlando, Florida, USA, 27-29 1994. IEEE Press.

[14] A. Teller. Algorithm Evolution with Internal Reinforcement for Signal
Understanding. PhD thesis, School of Computer Science, Carnegie
Mellon University, Pittsburgh, USA, 5 Dec. 1998.

[15] A. Teller and M. Veloso. PADO: A new learning architecture for
object recognition. In K. Ikeuchi and M. Veloso, editors, Symbolic
Visual Learning, pages 81–116. Oxford University Press, 1996.

[16] J. Woodward. GA or GP? that is not the question. In R. Sarker,
R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and
T. Gedeon, editors, Proceedings of the 2003 Congress on Evolutionary
Computation CEC2003, pages 1056–1063, Canberra, 8-12 Dec. 2003.
IEEE Press.

[17] T. Yabuki and H. Iba. Genetic programming using a Turing complete
representation: recurrent network consisting of trees. In L. N. de Castro
and F. J. Von Zuben, editors, Recent Developments in Biologically
Inspired Computing, chapter 4, pages 61–81. Idea Group Publishing,
2004.

