
Meme Fitness and Memepool Sizes in Coevolutionary Memetic
Algorithms

Jim Smith

Abstract— This paper investigates the search efficiency of a
class of adaptive memetic algorithms where the pivot function,
depth, and definition of the local search operators are co-evolved
alongside a population of potential solutions to the problem in
hand. Such co-evolutionary mechanism requires a means for
assigning meme fitness based in some way on the improvement
they cause in solutions at a particular stage in the search
process. We examine schemes based on both the extremal and
mean improvement caused, and compare these to the implicit
self-adaptive scheme. Simultaneously we examine the effect of
using different fixed or adaptive pivot functions and depths
of search. Results show that provided the fitness is correctly
assigned the system successfully adapts the global/local search
trade-off via evolution of the memes’ search depth. The system
is also able to adapt the optimal choice of greedy or steepest
ascent. Unlike recent work on adaptive operator choice, results
suggest that a fitness based on a meme’s mean, rather than
extremal affect provides more reliably effective optimisation
results. Despite the close coupling between the two population,
the self-adaptive schemes which use implicit fitness assignment
are less successful than a well designed co-evolutionary scheme.
Finally we examine the effect of changing the size of the
meme pool and show that a surprisingly large number can
be processed and benefit evolution.

I. INTRODUCTION

Results from applications of meta-heuristics, and Evolu-
tionary Computation in particular, have led to the widespread
acknowledgement of two facts. The first is that evolutionary
optimisation can be improved by the use of local search
methods - so-called Memetic Algorithms (MAs). The second
is that there is no single ”best” choice of memetic operators
and parameters- rather the situation changes according to
both the problem and the particular stage of search. This
has created a growing interest in ”Adaptive” Memetic Algo-
rithms which combine a portfolio of local search operators
with some method to choose between them [1]. Taking
inspiration from Dawkins’ original concept of memes as
evolving entities which influence the behaviour of individuals
coded for by a population of genes, the COevolutionary
Memetic Algorithms framework (COMA) was designed as a
testbed for investigating a range of behaviours and effects.
Starting with simple fixed length pattern-matching memes,
and successively building in more complexity, experimental
results have shown significant performance benefits over
”fixed” MAs on a range of problems [2], [3], [4], [5], [6].

In this paper we address three outstanding issues:
• Increasing flexibility so that memes can evolve the

pattern matching, pivot rule (greedy or steepest ascent)
and depth of local search.

Jim Smith is with the Department of Computer Science, University of the
West of England, Bristol, BS16 1QY, UK; (email james.smith@uwe.ac.uk)

• Revisiting the issue of credit assignment in the light
of recent results from the field of Adaptive Operator
Selection, which have suggested that it may be better
to assign fitness rewards based on extreme, rather than
mean benefit caused.

• Evaluating different meme population sizes. Previous
results showed that rewarding memes according to their
effect on just one solution is too noisy which suggests
there is a trade-off in terms of the number of memes,
or learning strategies, that a population of solutions
can effectively support and exploit. On one hand a
small population is less diverse, but each meme can be
evaluated at many different points in space. In contrast a
larger population may be more diverse, but each meme
is evaluated in the context of fewer solutions.

II. BACKGROUND

A. MAs with Multiple LS Operators

There are several recent examples of the use of multiple
LS operators within evolutionary systems. Ong et al.[1]
present an excellent recent review of work in the field
of what they term “Adaptive Memetic Algorithms”. This
encompasses Krasnogor’s “Multi-Memetic Algorithms” [7],
[8], [9], [10], [11], Smith’s COMA framework [2], [3], [4],
[5], [6], Ong and Keane’s “Meta-Lamarkian MAs [12], and
Hyper-Heuristics [13], [14], [15], [16]. In another inter-
esting related algorithm, Krasnogor and Gustafson’s “Self-
Generating MAs” use a grammar to specify for instance
when local search takes place [17], [18]. Essentially all of
these approaches maintain a pool of LS operators available
to be used by the algorithm, and at each decision point
make a choice of which to apply. Ong’s classification uses
terminology developed elsewhere to describe adaptation of
operators and parameters in Evolutionary Algorithms [19],
[20], [21], [22]. This categorises algorithms according to the
way that these decisions are made. One way (”static”) is to
use a fixed strategy. Another (”Adaptive”) uses use feedback
of which operators have provided the best improvement
recently, and is further subdivided into “external”, “local”
(to a deme or region of search space), and “global” (to
the population) according to the nature of the knowledge
considered. Finally they note that LS operators may be linked
to candidate solutions (Self-Adaptive).

B. Credit Assignment in Co-evolutionary Systems

If selection is performed separately for the two popula-
tions, with memes’ fitness assigned as some function of the
relative improvement they cause in the “solution” population,

then we have a co-operative co-evolutionary system. Bull
[23] conducted a series of more general studies on co-
operative co-evolution using Kauffman’s static NKC model.
In [24] he examined the evolution of linkage flags in co-
evolving “symbiotic” systems and showed that the strategies
which emerge depend heavily on the extent to which the two
populations affect each others fitness landscape. In highly
interdependent situations linkage of the two species’ chro-
mosomes was preferred –which in our context is equivalent
to memes self-adapting as part of the solutions’ genotypes.
Bull also examined the effect of various strategies for pairing
members of different populations for evaluation [25], with
inconclusive results. This work has recently been revisited
and extended by Wiegand et al. with very similar findings
[26]. Wiegand’s work also considered on the number of
partners with which a member of either population should be
evaluated, which draws attention to the trade-off between ac-
curately estimating the value of an object (solution or meme),
and using up evaluations doing so. “Punctuated Anytime
Learning with samples” [27] is another recent approach to
the pairing problem which uses periodic sampling to estimate
fitness, but is more suited to cases where the populations
evolve at different rates.

Our previous results using simple fitness improvement, or
memory based schemes using variants of Paredis’ ”LifeTime
Fitness Evaluation” [28], [29] were inconclusive [3], [6].
Results showed that simple co-evolutionary schemes suffered
from too much noise depending on the solution they were
partnered with, (especially with a greedy pivot), whereas the
memory based systems did not adapt quickly enough. Despite
inherent inefficiencies, the best results came from a scheme
which used each meme with two different solutions, and vice
versa, accepting only the best.

C. Credit Assignment in Adaptive Operator Selection

Since the beginnings of the field of Evolutionary Com-
putation, the question of how to assign the probabilities
of applying different operators, and the choice of associate
parameters has been a subject of intense and ongoing interest.
A wide range of different strategies have been proposed
for adapting the operator probabilities in response to their
perceived utility (the interested reader can find a recent
review in [22]). There are two principal categories: self-
adaptive schemes (where utility is implicitly assumed via
association with fitter solutions that survive selection) and
adaptive schemes that track the qualities of offspring pro-
duced by different operators and then recalculate proba-
bilities periodically. The use of the intrinsic evolutionary
processes to adapt mutation step sizes has long been used
in Evolution Strategies [30], and Evolutionary Programming
[31]. Similar approaches have been used to self-adapt muta-
tion probabilities [32], [33] and recombination operators[34],
[35] as well as more complex generating operators [36].
More recently Smith and Serpell have showed that self-
adaptation can very effectively govern both the choice and
parameterisation of different mutation operators for GAs with
permutation representations [37].

Recent work in the area of adaptive operator selection by
Schoenauer et al.[38], and Thierens [39], has divided the
problem into two areas - first how to assign a ”quality”
metric to an operator that changes responsively over time,
and second how to allocate probabilities to operators on that
evolving basis.A major result emerging from this stream of
work is that it appears beneficial to use extreme values -
i.e. the maximum positive difference between offspring and
parent fitness, rather than the mean value of the effect of
an operator. This is in the spirit of rewarding operators that
produce occasional large jumps in fitness rather than those
which produce steady, but small, fitness improvements.

In COMA the ”probability allocation” is dealt with by the
action of selection in the meme population.

Clearly it is beneficial to evaluate memes in the context of
more than one solution, and equally clearly this mechanism
needs to be responsive to the current (rather than historical)
state of the population of candidate solutions. Initial experi-
ments (not shown for reasons of space) show that the former
can be achieved by increasing the selection pressure in the
meme population - by using tournaments of size 5. Based
on the review above three possibilities can be identified for
assigning meme fitness. The first is implicit i.e use the fitness
of the attached solution. This does not necessarily imply self-
adaptation, since the selection processes could be decoupled,
but does imply the same-sized populations. The second is to
record the effect of every time meme is applied, and use
the mean improvement caused. This could be normalised by
either the number of solutions to which it is applied (”usage”)
or by the total number of calls to the fitness evaluations. The
third method is to use the maximum difference in fitness
observed when a meme is applied to a candidate solution.

III. A FRAMEWORK FOR SELF-ADAPTION AND

CO-EVOLUTION OF MEMES AND GENES

The pseudo-code in Figure 1 illustrates the algorithmic
framework developed to support this research. Note that
although this pseudo-code assumes synchronous evolution,
this need not in general be the case. The representation of
the memes is a tuple <Pivot, Depth, Pairing,Move>. The
representation of the tuple elements leads naturally to the
choice of evolutionary variation operators. The Pivot element
is naturally binary. The Depth element is mapped as an inte-
ger, which permits shows the maximum number of iterations
allowed. An arbitrarily large number is used to signify that
search should always progress until a local optima is reached.
The Pairing elements is one of {Self-Adaptive, Random,
Fitness Based} and determines how memes are created and
applied to solutions. As is illustrated in the pseudo-code, a
range of behaviours from self-adaptive, through collaborative
co-evolution to random meme drift can be obtained by fixing
the elements, and selectively allowing mutation to operate on
them creates various different adaptive schemes.

Note that for clarity we have omitted some of the pa-
rameters - for example Recombine(parent1, parent2) is
assumed to return a copy of the first parent with probability
1−Px (where Px is the probability of applying crossover).

COevolving Memetic Algorithm for Binary Coded Problems :
Begin

/* Given populations P of µs solutions and M of µm memes */
initialise P and M randomly ;
set generations = 0;
set evaluations = 0;
Repeat Until (run termination condition is satisfied)
Do

/* Create µs solution offspring and store parent ids */
For i := 1 To i = µs Do

set FirstParent[i] = Select One Parent(P);
set SecondParent[i] = Select One Parent(P);
set Offspring[i] = Recombine(FirstParent[i],SecondParent[i]);
Mutate(Offspring[i]);
set i = i +1;

Od

/* Create mum meme offspring according to pairing */
For i := 1 To i = µm Do

set Pairing = Get Pairing(M,i);
If (Pairing = SelfAdaptive) Then

set MemeParent1[i] = FirstParent[i];
set MemeParent2[i] = SecondParent[i];
/* note this requires µm = µs. */

Fi
Else If (Pairing = Fitness Based) Then

set MemeParent1[i] = Select One Parent(M);
set MemeParent2[i] = Select One Parent(M);

Fi
Else

set MemeParent1[i] = RandInt(1,µm);
set MemeParent2[i] = RandInt(1,µm);

Esle
set NewMemes[i] = Recombine(MemeParent1[i],MemeParent2[i]);
Mutate(NewMemes[i]);
set i = i+1;

Od

/* Apply local search to Offspring Using Memes */
For i := 1 To i = µs Do

set original fitness = Get Fitness(Offspring[i]);
If (Pairing = SelfAdaptive) Then

set meme = i;
Fi
Else

set meme = Select Random(NewMemes);
Esle
set Neighbours = Apply Rule To Offspring(Offspring[i],NewMemes[meme]);
Evaluate Fitness(Neighbours);
set Offspring[i] = Apply Pivot Rule(Neighbours);
set ∆fitness = Get Fitness(Offspring[i]) - original fitness;
Update Meme Fitness(NewMemes[meme], ∆fitness);
set evaluations = evaluations +1 + |Neighbours|;
set i = i +1;

Od
set P = Offspring;
set M = NewMemes;

Od
End.

Fig. 1. Pseudo-Code Definition of COMA algorithm

This framework is designed it be generic in the way that
move operators are described - for example they could be
GP-like expressions as per [40]. However while such richness
tends to lead to complexity of expression suitable for practi-
cal applications, it can make it analysis of evolved behaviour
more difficult. Therefore for the initial development work
a simpler format was used together with well-understood
test problems. In what follows, move operators are encoded
as condition:action pairs, which specify one pattern to be
looked for in the problem representation, and another to
replace it. The neighbourhood of a point i then consists of
i itself, plus all those points where the substring denoted by
condition appears in the representation of i and is replaced
by the action. To give an example, a rule 1#0 → 111
matches the binary string 1100111000 in the first, second,
sixth and seventh positions, and the neighbourhood is the
set {1100111000, 1110111000, 1111111000, 1100111100,
1100111110}.

Note that the string is not treated as toroidal, and the
neighbours are evaluated in a random order so as not to intro-
duce positional bias into the local search when greedy ascent
is used. Although this representation at first appears very
simple, it has the potential to represent highly complex moves
via the use of symbols to denote not only single/multiple
wild-card characters (in a manner similar to that used for
regular expressions in Unix) but also the specifications of
repetitions and iterations. Further, permitting the use of
different length patterns in the condition and action parts
of the rule gives scope for cut and splice operators working
on variable length solutions.

IV. TEST SUIT AND METHODOLOGY

A range of well understood test problems were used
to examine the performance of various self-adaptive and
coevolutionary MAs. Some of these are ”standard” testbed
functions for EAs, others were specifically designed to probe
and evaluate certain behaviours. The initial systems only
used rules where the condition and action patterns were of
equal length and were composed of values taken from the set
of permissible allele values of the problem representation,
augmented by a (#) symbol which is intepreted as “don’t
care” when it appears in the condition part of the rule
and as invert in the action. Each meme also contain an
integer rule length specifying the number of positions in the
pattern string to consider, as well as the Pairing, Depth and
Pivot elements. In [2] it was shown that mutation acting
on rule length permits successful evolution of rules with
the appropriate lengths to capture structural dependencies in
various different types of problems.

A. The Test Suite

The first set of problems used are composed of 16 sub-
problems of Deb’s 4-bit fully deceptive function [41]. The
fitness of each subproblem i is given by its unitation u(i),
that is the number of bits set to “one”:

f(i) =
{

0.6 − 0.2 · u(i) : u(i) < 4
1 : u(i) = 4 (1)

In addition to a “concatenated” version (4-Trap), a second
“distributed”version (Dist-Trap) was used in which the sub-
problems were interleaved i.e. sub-problem i was composed
of the genes i, i + 16, i+ 32, i+ 48. This separation ensured
that in a single application even the longest rules allowed in
these experiments would be unable to alter more than one
element in any of the sub-functions. A third variant of this
problem (Shifted-Trap) was designed to be more “difficult”
than the first for the COMA algorithm, by making patterns
which were optimal in one sub-problem, sub-optimal in all
others. Since unitation is simply the Hamming distance from
the all-zeroes string, each sub-problem can be translated by
replacing u(i) with the Hamming distance from an arbitrary
4 bit string. There were 16 sub-problems so the binary
coding of each ones’ index was used as basis for its fitness
calculation.

The Royal Road function used is a simple R1 type with
fitness rewards for groups of contiguous eight genes all set to
1. Watson’s highly epistatic H-IFF function rewards matching
pairs of adjacent bits in a solution s, i.e.

f1s =
l/2−1∑
i=0

1 − XOR(s2i, s2i+1) (2)

and this process is applied recursively, so that a problem
of size l = 2k has k levels. In each ascending level the
number of blocks is reduced by a factor of two, and the
fitness awarded for each matching pair is increased by a
constant factor, in our case 2. This problem has a number of
Hamming sub-optima, and two global optima corresponding
to the u(i) ∈ {0, 1}. Problem sizes l ∈ {32, . . . , 512, 1024}
were used, corresponding to 3 to 10 levels. Note that for
l >16 the length of the blocks to be identified at the highest
levels far exceeded the maximum rule length.

The Max-SAT problem is a classical combinatorial optimi-
sation problem, consisting of a number of Boolean variables
and a set of clauses built from those variables. A full
description and many examples can be found in [42]. For
lengths of 50 and 100 variables the first 25 were taken from
the sets of uniformly randomly created satisfiable instances
around the phase transition (in terms of hardness) where there
are approximately 4.3 clauses per variable.

B. Experimental set-up and terminology

For the population of candidate solutions a generational
genetic algorithm, with deterministic binary tournament se-
lection for parents and no elitism was used. Population
size µs was 400. One Point Crossover was applied with
probability 0.7 followed by self-adaptive mutation using the
scheme outlined in [43], [44], [45] . These choices were taken
as “standard”, and no attempt was made to tune them to the
particular problems at hand.

Initially, and always for the self-adaptive variants, the
size of the meme population was set to µm = 400. As
suggested in Figure /reffig:COMA the self-adaptive variants
used as parent the meme that was previously associated
with the relevant solution. The fitness-based variants used

binary tournaments based on meme fitness to implement
Select One Parent(). No crossover was used in the meme
population, so memes were produced by copying selected
parents and then applying mutation to the rules with a allele-
wise probability of 0.0625 - the inverse of the maximum
rule length allowed to the adaptive version. If subject to
mutation, the depth was flipped with probability 0.01. Rule
lengths were randomly initialised in the range [1,16], and
during mutation, with probability 0.01 a N(0, 2) Gaussian
deviate was added subject to staying in range. The depth
of search was mutated in the same way if adaptive. The
various variants of self- and co-adaptive algorithms that can
be instantiated within this framework are denoted as CAB-D-
E where A denotes the pairing and is one of S (Self-adaptive),
or T (Tournament - variants of fitness based coevolution). B
denotes the pivot function and is one of Greedy, Steepest or
Adaptive. D denotes the depth of search and is ’1’ , L (to local
optima) or -Adaptive. E denotes the reward function and is
one of M (mean improvement per evaluation used), U (mean
improvement per ”raw” solution), or X (best improvement).

For each problem, 50 runs were made, each continuing
until the global optimum was reached, subject to a maximum
of 500,000 evaluations. For this paper we have focussed on
the effectiveness of the search algorithm as measured by
the Success Rate (SR) which is the number of runs finding
the global optimum. The reason for the large cut-off value
was to try and avoid skewing results as can happen with an
arbitrarily chosen lower cut-off, rather than to be indicative
of the amount of time available for a “real world” problem.
Note that since one iteration of a local search may involve
several evaluations, this allows more generations to the GA,
i.e. algorithms are compared strictly on the basis of the
number of calls to the evaluation function.

V. RESULTS

A. Calculation of meme fitness

Tables I and II shows the results of various fixed and adap-
tive co-evolutionary schemes with 400 memes, compared
with the self-adaptive scheme, a simple GA, and four simple
MAs. As can be seen all methods outperform the simple
GA and MAs. Despite the large computational budget, on
most of problems the steepest ascent is unsuccessful on the
longer problems, since the neighbourhoods are potentially
huge, upsetting the global/local search balance. Elsewhere
[4] we have noted the opposite effect, but in each case the
adaptive scheme is as good as, or nearly as good as, the
better of the two pivot rules.

The self-adaptive schemes using implicit fitness assign-
ment are less successful than the schemes which take explicit
fitness gains into account, except on the Shifted Trap and
SAT problems. One likely reason is that the original solution
is considered part of the neighbourhood induced by a meme.
Thus a meme can survive via association with a fit candidate
solution, even if it no longer matches any positions in the
candidate solution, or it does but its effect is always rejected
as creating less fit solutions.

Interestingly the ”Usage” based fitness evaluation is no-
tably more successful than taking the number of fitness
evaluations into account on the SAT problems - e.g for
SAT-100, CTG-L-U succeeds 692 times vs. 186 for CTG-
L-M and 180 for CTG-L-X. Since there is no structure to
be exploited here, this suggests that methods that ignore
the cost of unused evaluations - so being more prone to
reward occasional ”lucky” changes may be more successful
at preserving meme diversity on these problems.

The Onemax and Royal Road (and to a lesser extent
HIFF) functions were specifically chosen to require local
and global search respectively. This is reflected in the better
results for depth L vs. 1 on Onemax, and vice versa on the
other problems. In both cases the results suggests that the
adaptive depth mechanism, despite its simplicity, has been
able to successfully balance the trade-off between local and
global search, provided that information regarding the size
of the neighbourhood searched is considered (i.e. CTZ-A-
M rather than CTZ-A-U). The results also suggest that the
mean improvement CTZ-A-M is slightly more effective than
the extreme value CTZ-A-X.

Notably the Steepest ascent CTS- methods typically per-
form less well than the Greedy or Adaptive versions (CTG-,
CTA-) as the size of the problem, and hence the potential
neighbourhoods for local search increase. Despite this trend,
the 10 thousand bit Onemax problems are still solved to
optimality every time for adaptive depth CTS-A- - showing
the strength of the robustness of meme adaptation.

Finally we note different between mean and extreme
reward strategies is more evident for steepest ascent (see. e.g.
the 1024 bit Royal Road and HIFF functions). This suggests
that the steepest ascent may be more prone to noise from
one particularly ”lucky” combination of meme and solution,
which will be more distinct with X than M.

B. Size of Memepool

Tables III and IV shows the effect of changing the
mempool size for the CTA– coevolutionary algorithm with
adaptive pivot and either mean or extreme fitness reward. The
greedy and steepest ascent variants are omitted for reasons
of space, but show similar patterns of results.

It might be expected that with small populations, where
each meme is evaluated in the context of multiple solutions,
and extreme value might be needed to provide sufficient
information for selection. In practice, this difference is nor
observed - again where there are differences the M strategy
slightly outperforms X.

However two distinct trends can be observed. On the SAT,
Trap and OneMax functions the success rate increases as
the number of memes is increased. However on the Shifted-
trap, HIFF and Royal Road problems the opposite trend is
observed - performance on these is worse with 400 memes
than with fewer.

VI. CONCLUSIONS

This paper set out to answer three questions: (i) do simple
co-evolutionary models provide enough information to adapt

TABLE II

NUMBER OF SUCCESSFUL RUNS (OUT OF 50, 1250 FOR SAT) WITH DIFFERENT CREDIT MECHANISMS ON DIFFERENT FUNCTIONS, 400 MEMES

Algorithm Royal Road
64 256 512 1024

CSA-1 49 6 0 0
CSA-A 50 4 1 0
CSA-L 49 5 0 0
CSG-1 50 4 0 0
CSG-A 50 14 2 0
CSG-L 50 13 0 0
CSS-1 50 0 0 0
CSS-A 49 13 0 0
CSS-L 50 3 0 0
CTA-1-M 50 50 50 25
CTA-1-U 50 29 0 0
CTA-1-X 50 49 46 18
CTA-A-M 50 49 48 13
CTA-A-U 50 34 1 0
CTA-A-X 50 49 47 8
CTA-L-M 50 50 49 6
CTA-L-U 50 38 0 0
CTA-L-X 50 50 48 1
CTG-1-M 50 50 50 43
CTG-1-U 50 42 0 0
CTG-1-X 50 48 48 30
CTG-A-M 50 50 49 23
CTG-A-U 50 40 8 0
CTG-A-X 49 50 46 18
CTG-L-M 50 50 50 11
CTG-L-U 50 45 9 0
CTG-L-X 50 50 48 3
CTS-1-M 50 50 50 40
CTS-1-U 50 16 0 0
CTS-1-X 50 48 41 9
CTS-A-M 50 50 50 15
CTS-A-U 50 26 1 0
CTS-A-X 50 50 43 2
CTS-L-M 50 50 49 1
CTS-L-U 50 28 2 0
CTS-L-X 50 50 46 0
GA 15 0 0 0
SMA-G-1 50 0 0 0
SMA-G-L 50 0 0 0
SMA-S-1 50 0 0 0
SMA-S-L 50 0 0 0

HIFF
32 64 128 256 512 1024
50 50 33 4 0 0
50 50 50 36 3 0
50 50 50 28 1 0
50 46 35 15 1 0
50 50 50 49 21 4
50 50 50 49 20 1
50 47 34 4 0 0
50 50 50 10 0 0
50 50 50 11 0 0
50 49 47 46 39 34
50 49 48 29 0 0
50 47 35 36 27 22
50 50 50 49 46 1
50 50 50 14 4 0
50 50 48 43 42 0
50 50 50 50 6 2
50 50 50 13 0 2
50 50 50 50 8 2
50 50 46 46 45 41
50 50 47 45 42 38
50 49 39 38 28 32
50 50 50 49 45 39
50 50 50 50 29 5
50 50 49 46 47 37
50 50 50 50 50 39
50 50 50 50 30 2
50 50 50 50 50 44
50 50 43 43 37 28
50 49 48 33 1 0
50 47 39 24 11 9
50 50 48 46 6 2
50 50 50 2 0 2
50 50 46 39 2 2
50 50 50 50 1 1
50 50 50 4 1 1
50 50 50 46 1 1
33 2 0 0 0 0
49 24 1 0 0 0
50 32 0 0 0 0
50 39 0 0 0 0
50 47 0 0 0 0

OneMax
500 1000 2500 5k 10k
0 0 0 0 0
50 50 50 50 0
50 50 50 50 0
22 0 0 0 0
50 50 50 50 0
50 50 50 50 0
0 0 0 0 0
50 50 50 50 0
50 50 50 50 0
50 50 2 0 0
7 0 0 0 0
50 46 0 0 0
50 50 50 50 50
50 50 50 50 50
50 50 50 50 50
50 50 50 50 50
50 50 50 50 50
50 50 50 50 50
50 50 4 0 0
50 47 0 0 0
50 47 0 0 0
50 50 50 50 50
50 50 50 50 50
50 50 50 50 50
50 50 50 50 50
50 50 50 50 50
50 50 50 50 50
50 50 0 0 0
1 0 0 0 0
49 29 0 0 0
50 50 50 50 50
50 50 50 50 50
50 50 50 50 50
50 50 50 50 50
50 50 50 50 50
50 50 50 50 50
50 34 0 0 0
50 50 0 0 0
50 50 50 50 50
0 0 0 0 0
50 50 50 50 50

SAT
50 100
768 106
1121 376
1145 380
669 94
1134 573
1162 589
782 103
1120 214
1128 194
747 120
866 122
694 93
774 105
1188 385
692 78
905 183
1196 355
928 202
773 110
784 117
689 98
747 106
1182 668
679 75
907 186
1184 692
931 180
646 93
882 132
618 93
642 71
1174 162
667 90
819 137
1198 158
797 125
221 20
784 87
1219 737
869 45
1225 52

the local-global search trade-off via the the encoded depth
of local search; (ii) is extreme-valued reward preferable
to mean improvement, and (iii) is a small population of
memes needed to provide sufficiently accurate evaluation of
a meme’s value at multiple points in the search space.

While the results strongly support a positive answer to the
first question, and to a lesser extend a negative answer to
the second, the third question is less conclusively answered.
On some problems the use of the mean improvement-based
fitness clearly supports a larger and more diverse population
of memes, and this is reflected in improved success rates. On
others the pattern is different, and this does not appear to be
directly related to the number of local optima (viz. OneMax
in the first group and Trap in the second) or the ”richness”
of the search space- for example neither the 50-variable SAT
problems nor the Shifted-Trap possess repeating exploitable
structures but e.g. the CTA-A- algorithms perform better on
the former and worse on the latter when the meme pool
is increased from 200 to 400 memes. Clearly this requires

further investigation.

REFERENCES

[1] Y. Ong, M. Lim, N. Zhu, and K. Wong, “Classification of adaptive
memetic algorithms: A comparative study,” IEEE Transactions on
Systems Man and Cybernetics Part B, vol. 36, no. 1, 2006.

[2] J. Smith, “Co-evolution of memetic algorithms: Initial investigations,”
in Proceedings of the 7th Conference on Parallel Problem Solving
from Nature, ser. Lecture Notes in Computer Science, J. M. Guer-
vos, P. Adamidis, H.-G. Beyer, J.-L. Fernandez-Villacanas, and H.-P.
Schwefel, Eds., no. 2439. Springer, Berlin, Heidelberg, New York,
2002, pp. 537–548.

[3] ——, “Protein structure prediction with co-evolving memetic algo-
rithms,” in 2003 Congress on Evolutionary Computation (CEC’2003).
IEEE Press, Piscataway, NJ, 2003, pp. 2346–2353.

[4] ——, “The co-evolution of memetic algorithms for protein structure
prediction,” in Recent Advances in Memetic Algorithms, W. Hart,
N. Krasnogor, and J. Smith, Eds. Springer, Berlin, Heidelberg, New
York, 2004, pp. 105–128.

[5] ——, “Co-evolving memetic algorithms: A review and progress re-
port,” IEEE Transactions in Systems, Man and Cybernetics, part B,
vol. 37, no. 1, pp. 6–17, 2007.

[6] ——, “Credit assignment in adaptive memetic algorithms,” in Pro-
ceedings of Gecco, the ACM-SIGEVO conference on Evolutionary
Computation, 2007, pp. 1412–1419.

TABLE IV

NUMBER OF SUCCESSFUL RUNS (OUT OF 50, 1250 FOR SAT) AS A FUNCTION OF MEMEPOOL SIZE, DEPTH AND CREDIT FUNCTIONS

Algorithm Royal Road
64 256 512 1024

CTA-1-M-50 50 40 39 30
CTA-1-M-100 50 48 46 39
CTA-1-M-200 50 49 49 41
CTA-1-M-400 50 50 50 25
CTA-1-X-50 50 37 24 16
CTA-1-X-100 50 47 44 20
CTA-1-X-200 50 49 45 34
CTA-1-X-400 50 49 46 18
CTA-A-M-50 50 46 33 31
CTA-A-M-100 50 44 44 40
CTA-A-M-200 50 48 48 35
CTA-A-M-400 50 49 48 13
CTA-A-X-50 50 37 18 6
CTA-A-X-100 49 44 33 23
CTA-A-X-200 50 49 47 20
CTA-A-X-400 50 49 47 8
CTA-L-M-50 50 45 34 29
CTA-L-M-100 50 48 48 36
CTA-L-M-200 50 50 49 33
CTA-L-M-400 50 50 49 6
CTA-L-X-50 50 44 30 10
CTA-L-X-100 50 47 44 24
CTA-L-X-200 50 49 47 23
CTA-L-X-400 50 50 48 1

HIFF
64 128 256 512 1024
46 45 40 30 30
50 48 47 38 40
50 48 41 37 36
49 47 46 39 34
44 43 41 26 19
49 42 39 35 26
49 46 38 38 39
47 35 36 27 22
47 37 39 23 8
50 45 41 33 6
50 47 46 34 4
50 50 49 46 1
49 44 40 29 6
49 45 35 23 6
50 48 45 32 5
50 48 43 42 0
49 50 38 16 4
50 50 45 19 1
50 50 50 13 2
50 50 50 6 2
50 47 43 11 3
50 49 46 14 1
50 50 50 10 2
50 50 50 8 2

OneMax
500 1000 2500 5000 10000
50 48 1 0 0
50 50 1 0 0
50 50 3 0 0
50 50 2 0 0
38 15 0 0 0
45 37 0 0 0
49 47 0 0 0
50 46 0 0 0
50 46 37 33 33
50 49 43 48 41
50 50 50 50 49
50 50 50 50 50
48 40 38 34 34
50 48 43 48 41
50 50 50 50 49
50 50 50 50 50
50 47 47 45 47
50 50 48 49 49
50 50 50 50 50
50 50 50 50 50
49 46 47 45 47
50 50 48 49 49
50 50 50 50 50
50 50 50 50 50

MAXSAT
50 100
494 52
610 82
715 107
747 120
579 61
623 100
685 103
694 93
514 32
633 76
726 92
774 105
559 66
642 86
694 85
692 78
476 45
568 68
764 119
905 183
549 65
567 78
742 109
928 202

[7] N. Krasnogor, “Coevolution of genes and memes in memetic al-
gorithms,” in Proceedings of the 1999 Genetic and Evolutionary
Computation Conference Workshop Program, A. Wu, Ed., 1999.

[8] N. Krasnogor and J. Smith, “A memetic algorithm with self-adaptive
local search: TSP as a case study,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2000), D. Whitley,
D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, and H.-G. Beyer,
Eds. Morgan Kaufmann, San Francisco, 2000, pp. 987–994.

[9] ——, “Emergence of profitable search strategies based on a simple in-
heritance mechanism,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), L. Spector, E. Goodman,
A. Wu, W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo,
S. Pezeshk, M. Garzon, and E. Burke, Eds. Morgan Kaufmann, San
Francisco, 2001, pp. 432–439.

[10] N. Krasnogor, “Studies in the theory and design space of memetic
algorithms,” Ph.D. dissertation, University of the West of England,
2002.

[11] N. Krasnogor, B. Blackburne, E. Burke, and J. Hirst, “Multimeme
algorithms for protein structure prediction,” in Proceedings of the 7th
Conference on Parallel Problem Solving from Nature, ser. Lecture
Notes in Computer Science, J. M. Guervos, P. Adamidis, H.-G.
Beyer, J.-L. Fernandez-Villacanas, and H.-P. Schwefel, Eds., no. 2439.
Springer, Berlin, Heidelberg, New York, 2002, pp. 769–778.

[12] Y. Ong and A. Keane, “Meta-lamarckian learning in memetic al-
gorithms,” IEEE Transactions on Evolutionary Computation, vol. 8,
no. 2, pp. 99–110, 2004.

[13] P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach
to scheduling a sales summit,” Lecture Notes in Computer Science,
vol. 2079, pp. 176–95, 2001.

[14] E. Burke and A. Smith, “Hybrid evolutionary techniques for the main-
tenance scheduling problem,” IEEE Transactions on Power Systems,
vol. 15, no. 1, pp. 122–128, 2000.

[15] G. Kendall, P. Cowling, and E. Soubeiga, “Choice function and random
hyperheuristics,” in Proceedings of Fourth Asia-Pacific Conference on
Simulated Evolution and Learning (SEAL), 2002, pp. 667–671.

[16] E. Burke, G. Kendall, and E. Soubeiga, “A tabu search hyperheuristic
for timetabling and rostering,” Journal of Heuristics, vol. 9, no. 6,
2003.

[17] N. Krasnogor, “Self-generating metaheuristics in bioinformatics: The
protein structure comparison case,” Genetic Programming and Evolv-
able Machines. Kluwer academic Publishers, vol. 5, no. 2, pp. 181–
201, 2004.

[18] N. Krasnogor and S. Gustafson, “A study on the use of “self-
generation” in memetic algorithms,” Natural Computing, vol. 3, no. 1,
pp. 53–76, 2004.

[19] J. Smith and T. Fogarty, “Operator and parameter adaptation in genetic
algorithms,” Soft Computing, vol. 1, no. 2, pp. 81–87, 1997.

[20] R. Hinterding, Z. Michalewicz, and A. Eiben, “Adaptation in evo-
lutionary computation: A survey,” in Proceedings of the 1997 IEEE
Conference on Evolutionary Computation. IEEE Press, Piscataway,
NJ, 1997.

[21] A. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in
evolutionary algorithms,” IEEE Transactions on Evolutionary Compu-
tation, vol. 3, no. 2, pp. 124–141, 1999.

[22] A. Eiben, Z. Michalewicz, M. Schoenauer, and J. Smith, “Param-
eter Control in Evolutionary Algorithms,” in Parameter Setting in
Evolutionary Algorithms, ser. Studies in Computational Intelligence,
Fernando G. Lobo, Cláudio F. Lima, and Zbigniew Michalewicz, Eds.
Springer Verlag, vol. 54, pp. 19–46, 2007.

[23] L. Bull, “Artificial symbiology,” Ph.D. dissertation, University of the
West of England, 1995.

[24] L. Bull and T. Fogarty, “Horizontal gene transfer in endosymbiosis,”
in Proceedings of the 5th International Workshop on Artificial Life :
Synthesis and Simulation of Living Systems (ALIFE-96), C. Langton
and K.Shimohara, Eds. MIT Press, Cambridge, MA, 1997, pp. 77–84.

[25] L. Bull, “Evolutionary computing in multi agent environments: Part-
ners,” in Proceedings of the 7th International Conference on Genetic
Algorithms, T. Bäck, Ed. Morgan Kaufmann, San Francisco, 1997,
pp. 370–377.

[26] R. Wiegand, W. Liles, and K. D. Jong, “An empirical analysis of
collaboration methods in cooperative coevolutionary algorithms,” in
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), L. Spector, E. Goodman, A. Wu, W. Langdon, H.-
M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. Garzon, and
E. Burke, Eds. Morgan Kaufmann, San Francisco, 2001, pp. 1235–
1245.

[27] G. Parker and H. Blumenthal, “Varying sample sizes for the co-
evolution of heterogeneous agents,” in Proceedings of the Congress
on Evolutionary Computation (CEC 2004). IEEE Press, 2004, pp.
766–771.

[28] J. Paredis, “The symbiotic evolution of solutions and their representa-
tions,” in Proceedings of the 6th International Conference on Genetic
Algorithms, L. Eshelman, Ed. Morgan Kaufmann, San Francisco,
1995, pp. 359–365.

TABLE I

NUMBER OF SUCCESSFUL RUNS (OUT OF 50) WITH DIFFERENT CREDIT

MECHANISMS ON TRAP FUNCTIONS, 400 MEMES

4Trap - length Dist Shift
Algorithm 40 80 120 160 200 400 -Trap -Trap
CSA-1 50 50 47 42 25 0 50 27
CSA-A 50 47 41 37 26 5 49 35
CSA-L 50 50 43 41 27 5 50 27
CSG-1 50 50 49 48 38 6 50 25
CSG-A 50 50 48 48 38 24 50 48
CSG-L 50 50 48 45 47 28 50 48
CSS-1 50 50 47 33 19 0 50 24
CSS-A 50 48 34 25 25 1 50 19
CSS-L 50 49 43 34 21 0 50 29
CTA-1 50 50 50 50 50 50 50 14
CTA-1-U 50 50 50 50 48 5 50 2
CTA-1-X 50 50 50 50 50 50 50 3
CTA-A-M 50 50 50 50 50 50 50 0
CTA-A-U 50 48 40 40 30 5 50 0
CTA-A-X 50 50 50 50 50 50 50 0
CTA-L-M 50 50 50 50 50 46 50 0
CTA-L-U 50 50 48 44 37 13 50 0
CTA-L-X 50 50 50 50 50 44 50 1
CTG-1-M 50 50 50 50 50 50 50 15
CTG-1-U 50 50 49 39 34 15 50 3
CTG-1-X 50 50 50 50 50 50 50 5
CTG-A-M 50 50 50 50 50 50 50 0
CTG-A-U 50 48 49 47 45 39 50 1
CTG-A-X 50 50 50 50 50 50 50 0
CTG-L-M 50 50 50 50 50 49 50 1
CTG-L-U 50 50 48 48 47 38 50 0
CTG-L-X 50 50 50 50 50 50 50 0
CTS-1-M 50 50 50 50 50 50 50 16
CTS-1-U 50 50 50 49 49 9 50 0
CTS-1-X 50 50 50 50 50 48 50 4
CTS-A-M 50 50 50 50 50 43 50 2
CTS-A-U 50 45 42 26 16 3 50 0
CTS-A-X 50 50 50 50 50 36 50 0
CTS-L-M 50 50 50 50 50 5 50 4
CTS-L-U 50 49 43 30 18 0 50 0
CTS-L-X 50 50 50 50 50 1 50 1
GA 34 0 0 0 0 0 9 0
SMA-G-1 40 7 0 0 0 0 11 0
SMA-G-L 39 0 0 0 0 0 1 0
SMA-S-1 50 44 0 0 0 0 49 0
SMA-S-L 50 0 0 0 0 0 4 0

[29] ——, “Coevolutionary algorithms,” in Handbook of Evolutionary
Computation, T. Bäck, D. Fogel, and Z. Michalewicz, Eds. Institute of
Physics Publishing, Bristol, and Oxford University Press, New York,
1998.

[30] H.-P. Schwefel, Numerical Optimisation of Computer Models. Wiley,
New York, 1981.

[31] D. Fogel, “Evolving artificial intelligence,” Ph.D. dissertation, Univer-
sity of California, 1992.

[32] T. Bäck, “Self adaptation in genetic algorithms,” in Toward a Practice
of Autonomous Systems: Proceedings of the 1st European Conference
on Artificial Life, F. Varela and P. Bourgine, Eds. MIT Press,
Cambridge, MA, 1992, pp. 263–271.

[33] J. Smith and T. Fogarty, “Self adaptation of mutation rates in a steady
state genetic algorithm,” in Proceedings of the 1996 IEEE Conference
on Evolutionary Computation. IEEE Press, Piscataway, NJ, 1996, pp.
318–323.

[34] J. Schaffer and A. Morishima, “An adaptive crossover distribution
mechanism for genetic algorithms,” in Proceedings of the 2nd Inter-
national Conference on Genetic Algorithms and Their Applications,
J. Grefenstette, Ed. Lawrence Erlbaum, Hillsdale, New Jersey, 1987,
pp. 36–40.

[35] J. Smith and T. Fogarty, “Recombination strategy adaptation via evo-
lution of gene linkage,” in Proceedings of the 1996 IEEE Conference
on Evolutionary Computation. IEEE Press, Piscataway, NJ, 1996, pp.

TABLE III

NUMBER OF SUCCESSFUL RUNS (OUT OF 50) WITH DIFFERENT MEME

POOL SIZES ON TRAP FUNCTIONS

4Trap Dist Shift
Algorithm 40 80 120 160 200 400 -Trap -Trap
CTA-1-M-50 49 44 47 42 46 33 49 3
CTA-1-M-100 50 50 48 49 49 47 49 9
CTA-1-M-200 50 50 50 50 50 49 50 8
CTA-1-M-400 50 50 50 50 50 50 50 14
CTA-1-X-50 50 49 44 46 46 33 49 17
CTA-1-X-100 50 50 50 48 47 46 50 17
CTA-1-X-200 50 50 50 49 50 49 50 23
CTA-1-X-400 50 50 50 50 50 50 50 3

CTA-A-M-50 49 47 45 46 45 34 48 4
CTA-A-M-100 50 49 49 47 47 38 49 2
CTA-A-M-200 50 48 50 49 49 47 50 0
CTA-A-M-400 50 50 50 50 50 50 50 0
CTA-A-X-50 49 48 37 43 43 29 49 7
CTA-A-X-100 50 50 47 46 46 38 50 7
CTA-A-X-200 50 50 50 49 47 46 50 4
CTA-A-X-400 50 50 50 50 50 50 50 0

CTA-L-M-50 50 45 46 44 37 26 50 1
CTA-L-M-100 50 48 46 43 47 35 49 3
CTA-L-M-200 50 50 48 48 48 43 50 0
CTA-L-M-400 50 50 50 50 50 46 50 0
CTA-L-X-50 49 47 48 47 41 24 49 12
CTA-L-X-100 50 50 49 45 41 33 50 5
CTA-L-X-200 50 50 50 48 49 37 50 1
CTA-L-X-400 50 50 50 50 50 44 50 1

826–831.
[36] ——, “Adaptively parameterised evolutionary systems: Self adaptive

recombination and mutation in a genetic algorithm,” in Proceedings
of the 4th Conference on Parallel Problem Solving from Nature,
ser. Lecture Notes in Computer Science, H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, Eds., no. 1141. Springer, Berlin,
Heidelberg, New York, 1996, pp. 441–450.

[37] M. Serpell and J. Smith, “Self-adaption of mutation operator and
probability for permutation representations in genetic algorithms,”
Evolutionary Computation, vol. in press, 2010.

[38] J. Maturana, Á. Fialho, F. Saubion, M. Schoenauer, and M. Sebag,
“Extreme Compass and Dynamic Multi-Armed Bandits for Adaptive
Operator Selection,” in IEEE Congress on Evolutionary Computation,
Trondheim Norvège, 2009.

[39] D. Thierens, “Adaptive strategies for operator allocation,” in Pa-
rameter Setting in Evolutionary Algorithms, F. Lobo, C. Lima, and
Z. Michalewicz, Eds. Springer, Berlin, 2007, pp. 77–90.

[40] A. Fukunaga, “Automated discovery of local search heuristics for
satisfiability testing,” Evolutionary Computation, vol. 16, no. 1, pp.
31–61, 2008.

[41] T. Bäck, D. Fogel, and Z. Michalewicz, Eds., Handbook of Evolution-
ary Computation. Institute of Physics Publishing, Bristol, and Oxford
University Press, New York, 1997.

[42] “Satlib: http://www.satlib.org.”
[43] C. Stone and J. Smith, “Strategy parameter variety in self-adaption,”

in Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO-2002), W. Langdon, E. Cantú-Paz, K. Mathias,
R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph,
J. Wegener, L. Bull, M. Potter, A. Schultz, J. Miller, E. Burke, and
N. Jonoska, Eds. Morgan Kaufmann, San Francisco, 9-13 Jul. 2002,
pp. 586–593.

[44] J. Smith, “Modelling GAs with self-adaptive mutation rates,” in
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), L. Spector, E. Goodman, A. Wu, W. Langdon, H.-
M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. Garzon, and
E. Burke, Eds. Morgan Kaufmann, San Francisco, 2001, pp. 599–606.

[45] ——, “Parameter perturbation mechanisms in binary coded gas with
self-adaptive mutation,” in Foundations of Genetic Algorithms 7,
Rowe, Poli, DeJong, and Cotta, Eds. Morgan Kaufmann, San
Francisco, 2003, pp. 329–346.

