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Abstract

Using a recently proposed model for combinatorial land-
scapes, Local Optima Networks (LON), we conduct
a thorough analysis of two types of instances of the
Quadratic Assignment Problem (QAP). This network
model is a reduction of the landscape in which the nodes
correspond to the local optima, and the edges account for
the notion of adjacency between their basins of attraction.
The model was inspired by the notion of ‘inherent net-
work’ of potential energy surfaces proposed in physical-
chemistry. The local optima networks extracted from the
so called uniform and real-like QAP instances, show fea-
tures clearly distinguishing these two types of instances.
Apart from a clear confirmation that the search difficulty
increases with the problem dimension, the analysis pro-
vides new confirming evidence explaining why the real-
like instances are easier to solve exactly using heuristic
search, while the uniform instances are easier to solve ap-
proximately. Although the local optima network model
is still under development, we argue that it provides a
novel view of combinatorial landscapes, opening up the
possibilities for new analytical tools and understanding of
problem difficulty in combinatorial optimization.
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1 Introduction

In a series of papers we introduced a novel representation
for combinatorial landscapes that we called local optima
network [1, 2, 3]. This is a view of landscapes derived
from a previously proposed one for continuous energy
landscapes by Doye [4, 5] but it has been modified and
adapted to work for discrete combinatorial spaces. It is
based on the idea of compressing the information given
by the whole problem configuration space into a smaller
mathematical object which is the graph having as vertices
the optima configurations of the problem and as edges
the possible weighted transitions between these optima.
The methodology is intended to be a descriptive one in
the first place; for example, some measures on the optima
networks have been found to be related with problem dif-
ficulty. In the longer term, the methodology is expected
to be useful for suggesting improvements in local search
heuristics and perhaps even for suggesting new ones. In
recent work we have studied by this method the family
of Kauffman’s NK-landscapes [6], for which we have
shown that some optima network statistics can be related
to the tunable difficulty of these landscapes. Moreover,
since to obtain the local optima of the configuration space
we need to explore the corresponding basins, the above
graph is also a description of the basins and of their con-
nectivity. In this way we have been able to find previ-
ously known properties of these basins, as well as new
ones [2, 3]. However, although useful for classification
purposes, the NK family of landscapes is a highly artifi-
cial one. For this reason, in the present paper we study
the more realistic problem called the quadratic assign-
ment problem (QAP). The quadratic assignment problem,
as introduced by Koopmans and Beckmann [7] in 1957,
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is a combinatorial optimization problem which is known
to be NP-hard [8]. This paper presents preliminary re-
sults of an exhaustive analysis of small instances’ fitness
landscapes by means of extracting the networks of local
optima and evaluating their statistics.

The QAP deals with the relative location of units that
interact with one another. The objective is to minimize the
total cost of interactions. The problem can be stated in this
way: there are n units or facilities to be assigned to n pre-
defined locations, where each location can accommodate
any one unit; location i and location j are separated by a
distance aij , generically representing the per unit cost of
interaction between the two locations; a flow of value bij
has to go from unit i to unit j; the objective is to find and
assignment, i.e. a bijection from the set of facilities onto
the set of locations, which minimizes the sum of products
flow × distance. Mathematically it can be formulated as:

min
π∈P (n)

C(π) =

n∑
i=1

n∑
j=1

aijbπiπj
(1)

where A = {aij} and B = {bij} are the two n × n dis-
tance and flow matrixes, πi gives the location of facility i
in permutation π ∈ P (n), and P (n) is the set of all per-
mutations of {1, 2, ..., n}, i.e. the QAP search space. The
structure of the distance and flow matrices characterize
the class of instances of the QAP problem. Later in the
article it is explained which are the classes of instances
used in the present work.

The paper is structured as follows. The next section
gives a number of concepts, definitions and algorithms
used to obtain and describe the optima networks of the
QAP problem. Section 3 discusses the analysis of the net-
work data thus obtained. The discussion applies to both
the optima graph, as well as to the associated basins of
attraction. Finally, section 4 presents our conclusions and
suggestions for further work.

2 Definitions and Algorithms
Given a fitness landscape for an instance of the QAP prob-
lem, we have to define the associated optima network by
providing definitions for the nodes and the edges of the
network. The vertexes of the graph can be straightfor-
wardly defined as the local minima of the landscape. This

work is a first step toward the network characterization
of QAP landscapes: we present the analysis of small in-
stances (see Sect. 3.1). For these instances, it is feasible
to obtain the nodes of the graph exhaustively by running a
best-improvement local search algorithm from every con-
figuration of the search space as described below. Before
explaining how the edges of the network are obtained, a
number of relevant definitions are summarized.

A Fitness landscape [9] is a triplet (S, V, f) where S is
a set of potential solutions i.e. a search space, V : S −→
2S , a neighborhood structure, is a function that assigns to
every s ∈ S a set of neighbors V (s), and f : S −→ R is
a fitness function that can be pictured as the height of the
corresponding solutions. For the QAP problem, a search
space configuration is a permutation of the facility loca-
tions of length n, therefore the search space size is n!. The
neighborhood of a configuration is defined by the pair-
wise exchange operation, which is the most basic opera-
tion used by many meta-heuristics for QAP. This opera-
tor simply exchanges any two positions in a permutation,
thus transforming it into another permutation. The neigh-
borhood size is thus |V (s)| = n(n − 1)/2. Finally the
fitness value of a solution can be simply set to be equal to
the opposite of the assignment cost defined in eq. 1.

TheHillClimbing algorithm used to determine the lo-
cal optima and therefore define the basins of attraction,
is given in Algorithm 1. It defines a mapping from the
search space S to the set of locally optimal solutions
S∗, where a local optimum is a solution s∗ such that
∀s ∈ V (s∗), f(s) < f(s∗).

Algorithm 1 Hill-Climbing
Choose initial solution s ∈ S
repeat

choose s
′ ∈ V (s) such that f(s

′
) =

maxx∈V (s) f(x)

if f(s) < f(s
′
) then

s← s
′

end if
until s is a Local optimum

The basin of attraction of a local optimum i ∈ S is the
set bi = {s ∈ S |HillClimbing(s) = i}. The size of the
basin of attraction of a local optimum i is the cardinality
of bi. Notice that for non-neutral fitness landscapes, the



basins of attraction as defined above produce a partition of
the configuration space S. Therefore, S = ∪i∈S∗bi and
∀i ∈ S ∀j 6= i, bi ∩ bj = ∅.
We can now define the edge of a weight that connects two
feasible solutions in the fitness landscape. For each pair
of solutions s and s

′
, p(s → s

′
) is the probability to pass

from s to s
′

with the given neighborhood structure. For
the search space of permutations of n elements, and the
pairwise exchange operation, there are n(n− 1)/2 neigh-
bors for each solution, therefore:
if s
′ ∈ V (s) , p(s→ s

′
) = 1

n(n−1)/2 and

if s
′ 6∈ V (s) , p(s→ s

′
) = 0.

The probability to pass from a solution s ∈ S to a solution
belonging to the basin bj , is defined as:

p(s→ bj) =
∑
s′∈bj

p(s→ s
′
)

Notice that p(s → bj) ≤ 1. Thus, the total probability
of going from basin bi to basin bj is the average over all
s ∈ bi of the transition probabilities to solutions s

′ ∈ bj :

p(bi → bj) =
1

]bi

∑
s∈bi

p(s→ bj)

]bi is the size of the basin bi.
Now we can define a Local Optima Network (LON) G =
(S∗, E) as being the graph where the nodes are the local
optima, and there is an edge eij ∈ E with weight wij =
p(bi → bj) between two nodes i and j if p(bi → bj) > 0.
Notice that since each maximum has its associated basin,
G also describes the interconnection of basins.
According to our definition of edge weights, wij =
p(bi → bj) may be different than wji = p(bj → bi).
Thus, two weights are needed in general, and we have an
oriented transition graph. Clearly, different move opera-
tors and thus different neighborhood structure will induce
different LONs.

3 Analysis of the local optima net-
work

3.1 Experimental settings
In order to perform a statistical analysis, a sufficient num-
ber of instances have to be considered. Well-known

benchmark instances producing two distinct categories
of QAP problems are those of Knowles and Corne [10]
which have been adapted and used here for the single-
objective QAP.

The first generator produces uniformly random in-
stances where all flows and distances are integers sampled
from uniform distributions in [1, fmax] and [1, dmax] re-
spectively; this leads to the same kind of problem known
in literature as Tainna, being nn the problem dimen-
sion [11]1. Distance matrix entries are, in both cases, the
Euclidean distances between points in the plane.

The second generator permits to obtain clusters of 1 to
K points that are uniformly distributed in small circular
regions of radius m, with these regions distributed in a
larger circle of radius M . In this case then, the flow en-
tries are non-uniform random values, controlled by two
parameters, A and B, with A < B, and B > 0. Let X
be a random variable uniformly distributed in [0, 1], then
a flow entry is given by integer rounding 10(B−A)∗X+A.
When the values ofA is negative, the flow matrix is sparse
and non-zero entries are non-uniformly distributed. This
procedure, detailed in [10], follows the one introduced
by Taillard [11] and produces random instances of type
Tainnb which have the so called “real-like” structure.

For the following analysis, 30 random uniform and
30 random real-like instances have been generated for
each problem dimension in {5, ..., 10}; as for the distance
matrix, values of 100 for dmax in the first case and of
(0, 1, 100) for (M,K,m) in the second have been cho-
sen2; as for the flow matrix, the parameters used have
been fmax = 100 for the uniform instances, A = −10
and B = 5 for the others. The latter choice, in partic-
ular, results in a flow matrix with roughly two thirds of
out-diagonal zeros in the real-like case.

3.2 General network features
3.2.1 Nodes and Edges

Figure 1 (top) reports, for each problem dimension, the
average number of nodes found in the local optima net-
works. The search difficulty of these landscape is ex-
pected to increase with the number of local optima, and

1there, though, random values are uniformly distributed in [0, 99]
2with this choice for units position distribution, real-like instances

really differ from uniform one only from the flow matrix point of view.



this value grows exponentially with the problem dimen-
sion. Real-like instances, though, result in much smaller
networks (small number of vertexes); the size difference
between the two classes of QAP also grows almost expo-
nentially with the problem dimension.

Figure 1 (bottom) shows a similar growth for the aver-
age number of edges. Indeed, the graphs are almost fully
connected, i.e. the number of oriented edges is close to
the squared number of nodes.

3.2.2 Basins of attraction

Figure 2 depicts the average size of the basin of attraction
of the global optimum divided by the size of the search
space. This value decreases exponentially with the prob-
lem dimension for both considered classes of QAP in-
stances. The real-like instances present larger global opti-
mum basins, which can be explained by their smaller lo-
cal optima networks (this suggested explanation is further
elaborated below). The relative size of the global opti-
mum basin gives the probability of finding the best solu-
tion with a hill-climbing algorithm from a random starting
point. The exponential decrease confirms that the higher
the problem dimension, the lower the probability for a
stochastic search algorithm to locate the basin of attrac-
tion of the global minimum. Considering the separation
between the curves in fig. 2, it looks surprisingly easier
to solve exactly a real-like instance rather than a uniform
one.

The distribution of basins sizes is very asymmetrical,
thus the median and maximum sizes are used as represen-
tatives3. These statistics are divided by the search space
size and plotted against the number of local optima (fig-
ure 3) in order to convey a view independent of problem
dimension and LON cardinality.

The median and maximum basin sizes follow a power-
law relationship with the number of local optima. The
difference between the two values tends to diverge expo-
nentially with the LON size. This suggests that the land-
scapes are characterized by many small basins and few
larger ones. The correlation coefficients of the real-like
and uniform instances are similar. Both instance classes
seem to have the same size distribution with respect to the
local optima network cardinality. This fact, coupled with

3the average basins size, equal to the number of possible configura-
tion in the search space divided by the number of local optima, is not
informative

the different number of local optima but a similar distri-
bution of basin sizes, can explain how real-like instances
have larger global optimum basin compared to uniform
instances of the same problem dimension.

Figure 4 plots the correlation coefficients between the
logarithm of local optima basin sizes and their fitness
value. There is a strong positive correlation. In other
words, generally the better the fitness value of an opti-
mum, the wider its basin of attraction. It is worth notic-
ing, however, that the relative size of the global optimum
(to the search space dimension), decreases exponentially
as the problem size increases (see fig.2). Real-like and
uniform instances show a similar behavior but the former
present higher variability and slightly lower correlation
figures.

From what has been studied, real-like instances are eas-
ier to solve exactly using heuristic search. However, Merz
and Freisleben [12] have shown that the quality of local
optima decreases when there are few off-diagonal zeros in
the flow matrix: the cost contributions to the fitness value
in eq.1 are in that case more interdependent, as there was
a higher epistasis. Thus it should be easier to find a sub-
optimal solution for a uniform instance than for a real-
like one. To confirm this result in another way, figure 5
shows the proportion of solutions from whose a best im-
provement hill-climbing conducts to a local optima within
a 5% value from the global optimum cost. As problem
size grows, sub-optimal solutions are distinctively easier
to reach in the uniform case, i.e. uniform instances are
easier to be solved approximatively. This also agrees with
the fact that for large enough instances, the cost ratio be-
tween the best and the worst solution has been proved to
converge to one in the random uniform case [13].

3.2.3 Transition probabilities

Figure 6 (top) reports for each problem dimension the av-
erage weight wii of self-loop edges. These values rep-
resent the one-step probability of remaining in the same
basin after a random move. The higher values observed
for real-like instances are related to their fewer optima but
bigger basins of attraction. However, the trend is gener-
ally decreasing with the problem dimension. This is an-
other confirmation that basins are shrinking with respect
to their relative size.

A similar behavior characterizes the average weight



wij of the outgoing links from each vertex i, as figure 6
(bottom) reports. Since j 6= i, these weights represent
the probability of reaching the basin of attraction of one
of the neighboring local optima. These probabilities de-
crease with the problem dimension. The difference be-
tween the two classes of QAP could be explained here by
their different LON size.

A clear difference in magnitude between wii and wij
can be observed. This means that, after a move operation,
it is more likely to remain in the same basin than to reach
another basin. Moreover, the decreasing trend with the
problem dimension is stronger for wij than for wii, espe-
cially for the uniform QAP (whose LON grows faster with
the problem dimension). Therefore, even for these small
instances, the probability of reaching a particular neigh-
boring basin becomes rapidly smaller than the probability
of staying in the same basin, by an order of magnitude.

3.2.4 Weighted connectivity

In weighted networks, the degree of nodes is extended by
defining the node strength si as the sum of all the weights
wij of the links attached to it. This value gathers infor-
mation from both the connectivity of a node and the im-
portance of its links [14]. In our definition, the out-going
weights always sum up to 1, so the out-going strength is
just 1 − wii. Therefore, a study of si associated to the
in-coming links would be more informative.

Figure 7 reports the average vertex strength for connec-
tions entering the considered basin. The increase with the
problem dimension and the separation between the two
QAP classes should come as no surprise since strength is
related to vertex degree (which is higher for bigger LONs,
given that they are almost complete). In particular, if the
distribution of weights were independent of topology, the
strength would be simply equal to the vertex degree multi-
plied by the mean edge weight. These expected curves are
plotted in dotted form and, although there is some clear
correlation, the actual strengths are distinctively lower.

Figure 8 shows the aggregated average of si with re-
spect to the vertex in-degree ki for all the instances of
dimension 10. As the figure suggests, a fit with the law
s = w ∗ k does not hold. Given the high connectivity of
these LONs, the degree values are all close to the max-
imum possible for each network. Thus, the strength of
vertexes must grow much faster than their degree in order

to give the averages seen in fig. 7. It can be observed that,
for uniform QAP instances, the scatter plot of fig. 8 is
constituted by several curves that are almost vertical even
in log-log scale. Real-like instances, on the contrary, have
so smaller and densely connected LONs that an analogue
behavior can not be spotted. However, for both instance
classes, fig. 8 clearly suggests that the strength is far from
being simply proportional to the vertex degree. Therefore,
we have a confirmation that the distribution of weights, as
we have defined them, strongly depends on the network
topology.

Figure 9 reports the correlation coefficients between the
in-coming strength of a vertex and the fitness value of its
local optimum. The correlation is positive and strong,
which suggests that basins with high fitness generally
have more heavy weighted connectivity. Our explanation
to this observation is the following: with our definition of
transition probabilities, basin sizes have an influence on
weight values. Also, there is a high correlation between
the logarithmic size of a basin and its fitness value (see
fig. 4).The same considerations made there still hold here,
with the difference that the link between strength and fit-
ness seems less tight as the size of problem grows. This
could add to the search difficulty.

3.3 Advanced network features

3.3.1 Transitivity

Transitivity measures the probability that the adjacent ver-
texes of a vertex are connected [15], this feature is mea-
sured with the so called clustering coefficient. The tra-
ditional definition of this coefficient does not consider
weights, thus, it has been extended in several ways to a
weighted clustering coefficient [14]. Since our studied
LONs from the QAP instances are close to be complete
graphs, we selected the simplest definition. All the in-
stances were found to have a transitivity value higher than
0.90: real-like instances have a value above 0.99, whereas
uniform instances present a slight decrease with respect to
the size of the problem. We also observed that this mea-
sure has a lower variability when compared to the other
networks statistics. Thus, a very high clustering coeffi-
cient appears to be an instance independent characteristic
of QAP with the given definition of LON.



3.3.2 Disparity

Another network statistic, which measures how heteroge-
neous are the contributions of the edges of a node i to its
strength si, is disparity [14]. Disparity could be defined
as Y2(i) =

∑
j 6=i(

wij

si
)2 and could be averaged over the

nodes with the same degree k. If all the weights wij are
close to si/ki, then Y2(i) ≈ 1/ki for nodes of degree ki.

Figure 10 reports the simple mean of disparity coeffi-
cient averaged on all instances of both classes with respect
to problem dimension. The decreasing trend could render
the fact that as the size of the problem rises, the out-going
transition to different optima neighbors tend to become
equally probable and the search becomes more random.
That could be more evident for uniform instances whose
LONs have higher cardinality. Real-like instances, actu-
ally, appear to maintain a disparity value less close to the
random curve of 1/k.

In figure 11 the aggregate average of Y2(i) to ki is plot-
ted on double logarithmic scale. Here just instances of
problem dimension 10 have been considered. Disparity
as a function of the node out-degree seems to follow a
power-law, but as seen in fig. 10 that law is not the simple
1/ki. Thus it can be observed that, even if the weights
wij are not all equal to si/ki, it remains difficult to spot
an out-going connection whose probability dominates the
others, except for really small problem instances4. Ac-
cording to the disparity measure, the real-like instances
are not more difficult than uniform instances. No direc-
tion is pointed out by the weights distribution, and it must
be considered to design efficient heuristics for QAP.

3.3.3 Shortest paths

A distance between two neighboring local optima i and j
can be computed as the inverse of the transition probabil-
ity between them: 1/wij . This value can be interpreted
as the expected number of random moves needed to hop
from basin i to basin f j. The average path length can
then be calculated as the average of all the shortest paths
between any two nodes (see figure 12 (top)).

Figure 12 (bottom), reports a related measure, namely
the mean shortest distance from each node to the global
optimum. This metric can be more interesting from the

4the one connection who really could rise disparity figures is the self-
loop, but that has to be excluded by definition from the calculation of Y2

point of view of a stochastic local search heuristic trying
to solve the considered QAP instance. The clear trend
is that this path, as any other, increases with the prob-
lem size. Values are noticeable higher for the uniform
instances, which have a larger number of local optima
than the real-like instance for the same problem dimen-
sion. The figures confirm that the search difficulty in-
creases with the domain size and the ruggedness of the
fitness landscape (i.e. the number of local optima).

4 Discussion and Conclusions
We have used the recently proposed Local Optima Net-
work (LON) model to analyze the landscape of the well-
known Quadratic Assignment Problem (QAP). Two types
of instances: uniform and real-like, were analyzed and
compared. The comparative analysis, show features
clearly distinguishing these two types of QAP instances.
Apart from a clear confirmation that the search difficulty
increases with the problem dimension, the results provide
new confirming evidence explaining why the real-like in-
stances are easier to solve exactly, while the uniform in-
stances are easier to solve approximately using stochastic
local search.

A comparison of the LON of QAP against those of the
previously studied NK landscapes [1, 2, 3], suggests that
the distributions of basin sizes, including the global opti-
mum basin, are similar for comparable instances of QAP
and NK. The main difference lies in the connectivity:
whereas the LON is nearly a complete graph for QAP,
this is not the case for NK landscapes. This could be
due to the larger neighborhood size in the permutation
space, as compared with the binary space. With the cur-
rent move operations, the probability of exploring another
basin from a solution by a random move is higher for com-
parable QAP and NK instances. This suggests that the
most efficient local searcher (based on those moves), for
each problem should be different: the tradeoff between
exploration and exploitation should not be the same. The
aforementioned comparison could also permit to better
explain the parallel between some flow matrix character-
istics of QAP and the epistasis value of NK. In particu-
lar, the influence of flow dominance, a metric often used
to characterize QAP instances, has not been directly ad-
dressed in this paper, and it surely deserves more attention



and space. There may be also a connection between the
present work and the concept of elementary landscapes,
as QAP spaces or parts thereof might be spectrally de-
composable in such way [9].

There are several directions for future work. Our cur-
rent definition of transition probabilities, although very
informative, may produce highly connected networks,
which are not easy to study. Therefore, we are currently
considering alternative definitions based on threshold val-
ues for the connectivity. A high variability (across in-
stances) on some metrics was observed, especially for the
real-like class. Therefore, further analysis may need to be
focused on particular instances, instead of on a statistical
aggregation of a set of instances of (arguably) the same
class. Moreover, our current methodology is only appli-
cable to small problem instances. Good sampling tech-
niques are required in order to extend the applicability of
the model. The consideration of a permutation space in
this article, opens up the possibility of analyzing other
permutation based problems such as the traveling sales-
man and the permutation flow shop problems. In addi-
tion, it would be useful to compare results based on LON
representation with those arising from theoretical analy-
ses such as [16].

Finally, although the local optima network model is still
under development, we argue that it offers an alternative
view of combinatorial fitness landscapes, which can po-
tentially contribute to both our understanding of problem
difficulty, and the design of effective heuristic search al-
gorithms, including evolutionary algorithms.
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Figure 1: Average number of nodes (top) and edges (bot-
tom) on log-lin scale. Triangular points correspond to
real-like problems, rounded points to uniform ones; bars
show 95% Wald C.I. on the means; for each problem
dimension, averages from 30 independent and randomly
generated instances are shown.
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Figure 2: Average relative size of the global optimum
basin-of-attraction on log-lin scale. Triangular points cor-
respond to real-like problems, rounded points to uniform
ones; bars show 95% Wald C.I. on the means; for each
problem dimension, averages from 30 independent and
randomly generated instances are shown.
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Figure 3: Relative size of the largest (top) and of the me-
dian (bottom) basin of attraction vs number of nodes. Tri-
angular points correspond to real-like instances, rounded
points to uniform ones. Each figure reports in dotted form
the regression lines of the other.



5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Problem Dimension

F
it.

V
al

ue
 v

s 
lo

g1
0 

B
as

.S
iz

e 
C

or
re

la
tio

n 
C

oe
ffi

ci
en

t

●

●

●

● ● ●

Figure 4: Average Fit.Value vs Bas.Size Correlation Co-
efficient. Triangular points correspond to real-like prob-
lems, rounded points to uniform ones; bars show 95%
Wald C.I. on the means; for each problem dimension, av-
erages from 30 independent and randomly generated in-
stances are shown.
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Figure 5: Proportion of search space whose solutions
climb to a fitness value within 5% from the global best
value. Triangular points correspond to real-like problems,
rounded points to uniform ones; for each problem dimen-
sion, averages from 30 independent and randomly gener-
ated instances are shown.
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Figure 6: Average weights wii for self-loop (top) and
wij for out-going links (bottom). Triangular points cor-
respond to real-like instances, rounded points to uniform
ones; bars show 95% Wald C.I. on the means; for each
problem dimension, averages from 30 independent and
randomly generated instances are shown.
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points to uniform ones; bars show 95% Wald C.I. on the
means; dotted lines report the mean in-coming degree
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dimension, averages from 30 independent and randomly
generated instances are shown.



●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●●●●

●

●

●
●

●

●
●

●
●
●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●
●

●
●
●

●

●

●

●

●●●

●

●●
●

●

●

●
●

●

●
●●

●

●

●

●

●
●●●

●

●

●
●
●

●

●

●

●
●●

●

●
●●

●

●●

●

●●
●
●●
●
●
●

●●
●

●

●

●

●

●
●
●

●
●●
●
●●●

●

●●
●

●

●

●●

●
●
●

●

●

●

●

●●
●
●
●●●
●
●●●
●

●
●

●●

●

●
●
●

●
●
●

●

●

●

●

●●
●

●
●
●

●

●

●●

●

●

●●
●
●

●

●
●

●●●

●

●

●

●

●

●
●

●
●
●
●
●

●●
●

●

●

●

●

●

●

●●

●

●●

●
●
●

●
●

●

●●
●

●
●

●

●

●

●

●

●●
●●
●
●
●
●

●

●●
●●●
●
●●
●
●
●
●
●

●

●●

●
●●
●
●
●
●●

●

●●●

●
●
●
●

●

●●●

●

●●
●
●

●●
●●

●

●

●

●

●

●

●
●
●
●
●
●

●

●●
●

●

●●

●
●

●
●

●

●
●●
●

●●

●
●
●

●
●
●●

●

●

●
●

●
●
●

●
●
●●●●
●●

●
●

●

●
●●

●

●

●
●●
●●
●●
●●

●
●●

●

●

●
●
●
●●

●
●

●
●

●

●●
●●
●●●
●
●●●●
●
●
●
●
●●

●

●
●

●

●
●
●●
●
●
●
●●
●

●

●●

●
●●
●●
●
●●

●
●

●
●

●

●●●●

●
●●●

●
●●

●

●

●

●

●
●●
●●
●

●
●

●●
●●
●●

●●

●
●●
●

●●●●

●

●

●

●●
●●
●●

●
●
●

●●●
●●●

●●
●●
●

●

●

●

●
●
●●
●

●

●●
●

●

●

●●
●
●

●

●

●●

●

●
●
●
●

●●

●

●●●
●●
●●●●
●●●
●●●●●●
●●●
●
●
●
●●●
●

●
●●
●●●●●●
●
●
●
●

●●●
●●●
●
●
●●●●
●
●●●●●
●
●●
●●●●●
●●
●●●
●
●

●
●

●●

●●
●●

●

●

●●
●●●

●
●

●

●
●●
●●●●●●●●
●●●●
●●●
●●●●●●●●●●●●
●●
●
●

●
●
●●●●●
●
●●

●
●
●
●
●
●

●

1 5 10 50 100 500 1000

1e
−

03
1e

−
02

1e
−

01
1e

+
00

1e
+

01

In−Degree

In
−

S
tr

en
gt

h

Figure 8: Aggregated average of in-strength to vertex in-
degree on log-log scale. Triangular points correspond to
real-like problems, rounded points to uniform ones; all 30
independent and randomly generated instances of prob-
lem dimension 10 are shown. Dotted lines report the
s = w ∗ k relation.
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Figure 9: Average Fit.Value vs In-Strength Correlation
Coefficient. Triangular points correspond to real-like
problems, rounded points to uniform ones; bars show 95%
Wald C.I. on the means; for each problem dimension, av-
erages from 30 independent and randomly generated in-
stances are shown.
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Figure 10: Average disparity coefficient. Triangular
points correspond to real-like instances, rounded points to
uniform ones; bars show 95% Wald C.I. on the means; for
each problem dimension, averages from 30 independent
and randomly generated instances are shown.
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Figure 11: Aggregated average of disparity coefficient to
vertex out-degree. Triangular points correspond to real-
like instances, rounded points to uniform ones; all 30 in-
dependent and randomly generated instances for problem
size 10 are shown. Dotted lines report the inverse of the
out-going degree.
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Figure 12: Average path length (top) average shortest
path to global optimum (bottom). Triangular points cor-
respond to real-like problems, rounded points to uniform
ones; bars show 95% Wald C.I. on the means; for each
problem dimension, averages from 30 independent and
randomly generated instances are shown.
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