
ArchiMate® for Integrated Modelling Throughout the
Architecture Development and Implementation Cycle

Henk Jonkers
BiZZdesign

Enschede, the Netherlands
h.jonkers@bizzdesign.nl

Marc M. Lankhorst, Dick A.C. Quartel
Novay

Enschede, the Netherlands
marc.lankhorst@novay.nl

dick.quartel@novay.nl

Erik (H.A.) Proper
Public Research Centre Henri Tudor

Luxembourg-Kirchberg, Luxembourg
and

Radboud University Nijmegen
Nijmegen, the Netherlands

erik.proper@tudor.lu

Maria-Eugenia Iacob
University of Twente

Enschede, the Netherlands
m.e.iacob@utwente.nl

Abstract—The ArchiMate standard offers an integrated language
for enterprise architecture modelling. It allows for the descrip-
tion and visualization of different architecture domains, as well
as their underlying relationships and dependencies. Since its
adoption as a standard of The Open Group, the international
interest in ArchiMate has been growing rapidly. ArchiMate
complements TOGAF, the standard of The Open Group for de-
veloping enterprise architectures. To provide modelling support
throughout TOGAF’s architecture development and implemen-
tation cycle as defined by TOGAF, two extensions to the original
ArchiMate language have been proposed: a Motivation extension
and an Implementation and Migration extension.

Keywords – enterprise architecture; modelling; ArchiMate;
TOGAF;

I. INTRODUCTION
The ArchiMate language for enterprise architec-

ture modelling language has been developed with
the aim to provide a uniform representation for en-
terprise architecture (EA) descriptions [5][7]. It of-
fers an integrated architectural approach by which
organizations can describe and visualize different
architecture domains, as well as their underlying re-
lationships and dependencies.

Within larger organizations one can typically find
various architecture domains, such as: organizational
structures, products, business processes, information
systems, applications and technological infrastruc-
ture. Traditionally, each architecture domain em-
ploys specific models and visualizations, which
simplifies communication, discussion and analysis
within the domain. However, the relations between

these different domains are in many cases unclear.
Moreover, these domains tend to (at least partially)
overlap. Therefore, ArchiMate provides a unified
way to model enterprise architectures, while inte-
grating the various domains and describing them in
an easily readable way, as illustrated in Figure 1. In
addition, a distinction is made between a business
layer, an application layer, and a layer with the un-
derlying (IT) technological infrastructure.

The concept of service plays a central role in Ar-
chiMate [5][7]. Services are used to “bind” together
the layers (applications provide services to business
processes, while applications on heir turn use infra-
structure services). Furthermore, within a layer ser-
vices can be used as well to encapsulate behaviour.
This enables the use of a services oriented architec-
ture (SoA) style from business processes, via appli-
cations to the underlying infrastructures.

Since ArchiMate is positioned at the level of en-
terprise architecture, this also implies that the Ar-
chiMate language does not provide the level of de-
tail one would typically find in languages used at the
“design level” [11]. For example, while ArchiMate
features concepts such as business event and junc-
tion, it does not provide the rich detailed set of
gateways, et cetera as offered by a language such as
BPMN [10]. Similarly, in contrast to languages such
as UML [9], it does not provide concepts to model
the details of software applications. At the same

2011 IEEE Conference on Commerce and Enterprise Computing

978-0-7695-4535-6/11 $26.00 © 2011 IEEE

DOI 10.1109/CEC.2011.52

294

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 27,2021 at 14:07:54 UTC from IEEE Xplore. Restrictions apply.

time, refinement/abstraction mechanisms can be
used to maintain the connection between, e.g., a
BPMN or UML model and an ArchiMate model [5].

Figure 1. Integration of architectural domains

There are several content frameworks or meta-
models that define the types of “building blocks”
that are relevant in an enterprise architecture, e.g.,
the Integrated Architecture Framework [3],
TOGAF’s Content Metamodel [8], or defence
frameworks such as DoDAF and MODAF. While
we have drawn inspiration from these frameworks,
the ArchiMate language has been designed in a
more structured way, by defining a generic structure
that is made specific for the different architectural
layers (as will be explained in Section III). Also, Ar-
chiMate has a limited set of relation types that are
used throughout the metamodel. Finally, unlike
these other frameworks, ArchiMate provides a stan-
dard graphical notation for the modelling concepts
and relations (in this respect, it is more similar to the
detailed design languages such as BPMN and
UML).

II. AN INTEGRATED APPROACH TO ENTERPRISE
ARCHITECTURE

Frameworks for enterprise architecture vary in
the types of support that they offer. They may have,
among others, any combination of the following in-
gredients:

• A process (“way of working” [12]) for creat-
ing architectures; this may be accompanied
by guidelines, techniques and best practices.

• A set or classification of viewpoints.

• A language for describing architectures (de-
fining concepts and relationships, but also a
notation).

• The concept of a (virtual) architecture reposi-
tory, possibly containing predefined architec-
tural artefacts and (reference) models.

The core of TOGAF is formed by its process, the
Architecture Development Method (ADM). It also
includes the identification of viewpoints, techniques
and reference models. However, it does not define
an actual modelling language. The TOGAF Archi-
tecture Content Framework does indeed identify
relevant architecture building blocks, but it does not
constitute a precisely defined language, nor does it
provide a notation for these building blocks. Archi-
Mate complements this by defining a fully worked
out (graphical) modelling language, including the
definition of relevant viewpoints. This language also
provides a concrete visualization of the views identi-
fied in TOGAF.

TOGAF and ArchiMate share their view on the
use of viewpoints, and the concept of an underlying
common repository of architectural artefacts and
models; i.e., they have a firm common foundation.
However, TOGAF and ArchiMate complement each
other with respect to the definition of an architecture
development process and the definition of an enter-
prise architecture modelling language. Together,
they make up a complete, integrated approach for
delivering enterprise architecture.

III. STRUCTURE OF THE ARCHIMATE LANGUAGE
In this section we briefly discuss the core structures
of the ArchiMate language. In [11] a more detailed
account is provided of the requirements on the lan-
guage, and the design decisions that underpin its
design.

A. Core Concepts
To arrive at a language that is easy to learn and

understand, a conscious decision was made to limit
the set of core modelling. Therefore, a small number
of generic modelling concepts have been created
that essentially re-appear (in different variations) on
the various layers of the language. First, we distin-
guish between the structural or static aspect and the
behavioural or dynamic aspect. Behavioural con-
cepts are assigned to structural concepts, to show
who or what displays the behaviour. In addition to

295

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 27,2021 at 14:07:54 UTC from IEEE Xplore. Restrictions apply.

active structural elements (the business actors, ap-
plication components and devices that display actual
behaviour, i.e., the ‘subjects’ of activity), we also
recognize passive structural elements, i.e., the ob-
jects on which behaviour is performed.

Second, we make a distinction between an exter-
nal view and an internal view on systems. When
looking at the behavioural aspect, these views reflect
the principles of service orientation as introduced in
the previous section. The service concept represents
a unit of essential functionality that a system ex-
poses to its environment. For the external users, only
this external functionality, together with non-
functional aspects such as the quality of service,
costs etc., are relevant. Services are accessible
through interfaces, which constitute the external
view on the structural aspect.

Figure 2 summarizes the resulting generic core
concepts of the language, as well as their main rela-
tionships

Figure 2. Core Concepts of the ArchiMate Language

B. Services as a Linking Pin Between Layers
In ArchiMate, the concept of service is defined as

the externally observable behaviour of a system 1
that may have some added value for that system’s
environment. It is therefore natural to expect that, in
the case of architecture layers, higher layers use the
services supplied by the lower layers, since higher
layers can be seen as the “environment” of the lower
layers (see Figure 3). The enterprise’s environment
is the “end-user” of the services offered by the busi-
ness layer of the enterprise. The business layer
makes use of the services exposed by application
layer (e.g., in order to support and automate its busi-
ness processes). The application layer uses the ser-
vices supplied by the technology layer (e.g., to make
use of the physical resources – servers, networks etc.
- in order to run its applications).

1 System in the general sense, and not just as a synonym to application

Figure 3. Services

In addition to the types of services mentioned
above, the ArchiMate language distinguishes within
each layer between internal and external services.
Internal services are the services (added values)
supplied to entities within the same layer. External
services are the services made available to entities
from outside that layer.

IV. CREATING ARCHITECTURE MODELS WITH
ARCHIMATE

The primary use of ArchiMate in the context of
TOGAF will be the representation of architecture
models. TOGAF distinguishes four architectures:
the Business Architecture (created in Phase B of the
ADM), the Application Architecture and Data Ar-
chitecture (both part of the Information Systems Ar-
chitecture, Phase C) and the Technology Architec-
ture (Phase D). In all of these phases, baseline (“as
is”) and target (“to be”) architectures are created. In
Phase A (Architecture Vision) of the ADM, first
global versions of these architectures are already
sketched; for this, ArchiMate may also be suitable.

We illustrate the different architectures with a
small example based on a fictitious insurance com-
pany. ArchiSurance is a merger of three previously
independent companies: Home & Away for home
and travel insurances, PRO-FIT for car insurances,
and Legally Yours for legal aid insurances. The new
company has a single Front Office and three sepa-
rate Back Offices. ArchiSurance intends to rational-
ize their application portfolio, by integrating legacy
applications with similar functionality from the old
companies that are still in use. Note that these ex-
amples give an impression of the ArchiMate lan-

296

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 27,2021 at 14:07:54 UTC from IEEE Xplore. Restrictions apply.

guage, but do not show all the concepts. For a com-
plete overview of the language, please refer to [7].

A. Business Architecture
The Business Architecture provides the context

for system development trajectories, showing,
among others, the main business processes, the ac-
tors (or roles) performing these processes, and the
information (objects) exchanged between the proc-
esses.

Figure 4. Baseline and Target Business Architecture

Figure 4 shows an example of a Business Archi-
tecture expressed in ArchiMate. We assume that the
business architecture of ArchiSurance does not
change in the application rationalization process.

B. Application Architecture
The Application Architecture shows the applica-

tions or application components, their relationships
and their functionality. Figure 5 shows the baseline
Application Architecture of ArchiSurance. The
functionality that the applications offer to their envi-
ronment is modelled with services. The service con-
cept plays a central role in ArchiMate, also in the
Business Architecture and the Technology Architec-
ture (although this is not shown in our example), and
in particular as a linking pin between the different
architectures.

Figure 5. Baseline Application Architecture

Figure 6 shows the target Application Architec-
ture of ArchiSurance, in which the legacy applica-
tions have been replaced by a single back-office sys-

tem and a single CRM system for the whole com-
pany.

Figure 6. Target Application Architecture

In ArchiMate, separate views can be used to
show the relationships between the different archi-
tectures. As an example of this, Figure 7 shows how
the services from the Application Architecture are
used in the processes of the Business Architecture.

Figure 7. Business-Application Alignment (Target)

C. Data Architecture
The Data Architecture shows the main data object
used within the applications, as well as their rela-
tionships. Figure 8 shows the Data Architecture of
ArchiSurance, which we assume will not change in
the application rationalization process.

Figure 8. Baseline and Target Data Architecture

D. Technology Architecture

The Technology Architecture shows, among oth-
ers, the devices and system software on which appli-
cations run, the networks connecting devices, and
artefacts that form the physical implementation of
application components or data objects. Figure 9

297

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 27,2021 at 14:07:54 UTC from IEEE Xplore. Restrictions apply.

shows the baseline Technology Architecture of Ar-
chiSurance. There are separate application servers
for the different back-office applications.

Figure 9. Baseline Technology Architecture

In the target Technology Architecture, as shown
in Figure 10, some of these application servers be-
come redundant. However, to increase reliability and
availability, an additional backup server is intro-
duced.

Figure 10. Target Technology Architecture

E. Gap Analysis
An important step in Phases B, C and D of the

TOGAF ADM is a gap analysis, which reviews the
differences between the baseline and target architec-
ture. It shows which building blocks are carried over
from baseline to target, which building blocks are
new in the target architecture (which can be used as
a basis to decide whether to buy or build these build-
ing block), and which elements have been elimi-
nated from the baseline architecture (on purpose or
accidentally; i.e., a gap analysis can also be used as
a mechanism for validation of the target architec-
ture). Phases E, F and G of the TOGAF ADM then
deal with the implementation of the proposed target
architecture.

TOGAF suggests the use of a gap matrix as a
technique for gap analysis. However, ArchiMate
models also form a useful starting point for gap

analysis, and the results can also be presented as an
ArchiMate view. Figure 11 shows an example of
this for the Technology Architecture.

Figure 11. Technology Architecture Gap Analaysis

V. EXTENDING ARCHIMATE’S TOGAF
COVERAGE

As described in the previous sections, ArchiMate
version 1.0 chiefly supports modelling of the archi-
tectures in Phases B, C and D in the TOGAF ADM,
as is illustrated in Figure 12. The resulting models
are used as input for the subsequent ADM phases.
However, modelling concepts specifically aimed at
the other phases – e.g., concepts for modelling prin-
ciples, goals and requirements, or concepts to sup-
port migration planning – are still missing in the
language. This observation points in a direction for
language extensions of ArchiMate. Currently, a pro-
posal for ArchiMate version 2.0 is under review at
The Open Group, which provides two extensions:
for describing motivation (e.g. stakeholders, con-
cerns, requirements) and for implementation and
migration planning. The next subsections outline
these two extensions.

Figure 12. TOGAF ADM and ArchiMate

A. Motivation Extension
ArchiMate 1.0 does not include concepts for de-

scribing the reasoning behind the various architec-

298

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 27,2021 at 14:07:54 UTC from IEEE Xplore. Restrictions apply.

tural decisions. The proposed motivation extension
[1] adds such concepts for business requirements
management. They can be used the identification,
description, analysis and validation of requirements
at business level and their realization in enterprise
architecture models as described with the current
ArchiMate concepts.

The proposed motivational concepts, based on
sources such as OMG’s business motivation model
[13], architecture principles [14], [15] and goal
driven requirements engineering [16], [17], [18] are
used to model the motivations, or intentions, that
underlie the design of an enterprise architecture.
These intentions influence, guide and constrain the
design. Intentions are pursued by stakeholders,
which can be individuals or groups such as a project
team, enterprise or society. In addition, intentions
may be organized into certain areas of interest,
called concerns, such as customer satisfaction, com-
pliance to legislation or profitability. Assessments of
these concerns are needed to decide whether existing
intentions need to be adjusted or not.

Figure 13. Stakeholders, Goals, Requirements and Architecture Artifacts

The actual intentions are represented by goals,
principles and requirements. Goals represent some
desired result – or end – that a stakeholder wants to
achieve; e.g., increasing customer satisfaction with
10 percent. Principles and requirements represent
desired properties of solutions – or means – to real-
ize the goals. Principles represent desired properties
that are required from all possible solutions in a
given context; requirements represent desired prop-
erties of specific, individual solutions. For example,
the requirement “Use a single CRM system” is a
specialization of the principle “Data should be
stored only once” by applying it to the current or-
ganization’s architecture in the context of the man-
agement of customer data. The top side of Figure 13
shows the relationship between stakeholders, con-
cerns, assessments, goals and requirements; the bot-
tom side shows the relationship with the architecture
artifacts that should realize these requirements.
B. Implementation & Migration Extension

The Implementation and Migration Extension
proposes several additional concepts that make pos-
sible the modelling of the architecture change proc-
ess and increase the insight into these changes as
well as their manageability in terms of portfolio and
project management and the decision making. By
defining concepts such as program, project, activity,
result, gap, and plateau it is possible to connect Ar-
chiMate with program and project management
standards and best practices, such as MSP [19],
PRINCE2 [21] and PMBoK [20]. The central behav-
ioural concept in the implementation and migration
extension is a project. A project is basically a man-
agement environment that has a clearly defined be-
ginning and end date, and aims to deliver a well-
defined set of goals or results.

Figure 14. Programs, Projects, Project Roles and Project Results

299

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 27,2021 at 14:07:54 UTC from IEEE Xplore. Restrictions apply.

Figure 14 shows an example of the use of pro-
jects and related concepts. A project may be subdi-
vided into a hierarchy of project activities. A project
activity may also be further subdivided in finer-
grained project activities. Multiple projects which
are managed together coherently, and which all con-
tribute to a common outcome, can be grouped into a
program. A program may also contain sub-
programs. Projects and project activities produce
project results (or deliverables). These may be re-
sults of any kind, e.g., reports, papers, services,
software, physical products, etc. A project result
may also be (a part of) an architecture, or a solution
that implements (a part of) an architecture. To each
program, project or project activity, one or more
project roles can be assigned. Project roles may be
fulfilled by specific project actors. A single actor
may be assigned to multiple roles, although there
may be some restrictions on the roles that may be
combined.

An important premise in TOGAF is that the vari-
ous architectures are described for different stages in
time. In each of the Phases B, C, and D of the ADM,
a Baseline Architecture and Target Architecture are
created, describing the current situation and the de-
sired future situation. In Phase E, “Opportunities
and Solutions”, Transition Architectures are defined,
showing the enterprise at incremental states reflect-
ing periods of transition between the Baseline and
Target Architectures. Transition Architectures are
used to allow for individual work packages and pro-
jects to be grouped into managed portfolios and pro-
grams, illustrating the business value at each stage.
In order to support this, the plateau concept was in-
troduced.

Relationships can be established between the en-
terprise architecture models created at different mo-
ments in time and the migration models. Subse-
quently, analysis tools can be used to emphasize the
differences between the different versions of models
trough the linked plateaus. These differences are
captured by the concept of gap. A gap is an impor-
tant outcome of a gap analysis in Phases B, C, and D
of the TOGAF ADM, and forms an important input
for the subsequent implementation and migration
planning. The gap concept is linked to two plateaus
(e.g., baseline and target architecture, or two subse-
quent transition architectures), and represents the
differences between these plateaus (Figure 15),

Figure 15. Migration Concepts

VI. CONCLUSIONS AND FUTURE DIRECTIONS
TOGAF is a leading enterprise architecture

method of The Open Group. ArchiMate has recently
been adopted as an Open Group standard for model-
ling enterprise architectures. TOGAF and Archi-
Mate share their view on the use of viewpoints, and
the concept of an underlying common repository of
architectural artefacts and models; i.e., they have a
firm common foundation. However, they comple-
ment each other with respect to the definition of an
architecture development process and the definition
of an enterprise architecture modelling language.
ArchiMate provides a concrete visualization for the
architectures and views proposed in TOGAF.

From the previous sections, it is clear that
TOGAF and ArchiMate can be used in conjunction
and cover much of the same ground. TOGAF itself
provides no guidance on creating a consistent over-
all model of the architecture, but refers to tools that
should provide this support ([8], Chapter 31):

“In order to achieve the goals of completeness
and integrity in an architecture, architecture views
are usually developed, visualized, communicated,
and managed using a tool.

In the current state of the market, different tools
normally have to be used to develop and analyze
different views of the architecture. It is highly desir-
able that an architecture description be encoded in a
standard language, to enable a standard approach
to the description of architecture semantics and
their re-use among different tools.” (Emphasis
ours).

This is where ArchiMate nicely complements
TOGAF: it provides a vendor-independent set of
concepts that would help to create a consistent, inte-
grated model “below the waterline”, which can be
depicted in the form of TOGAF’s views.

300

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 27,2021 at 14:07:54 UTC from IEEE Xplore. Restrictions apply.

Presently, The Open Group is actively pursuing a
closer integration between ArchiMate and TOGAF.
An outline of this convergence is given by [4]. Some
parts of TOGAF are not yet covered by ArchiMate
concepts, and extensions to the language have been
defined (and included in a proposal for version 2 of
the standard) to fill these gaps. In particular, these
concern on the one hand concepts for modelling the
goals, motivations, principles and requirements used
as inputs in defining an architecture, and on the
other hand concepts for TOGAF’s implementation
and migration phases. With these two extensions, a
next version of ArchiMate will have full coverage of
TOGAF. Thus, these two complementary open stan-
dards will reinforce each other and help to advance
the enterprise architecture discipline in general.

Future research is concerned with potential addi-
tional extensions of the language in other directions.
In the practical use of ArchiMate, a number of fields
have been identified in which such future extension
of the language may be advisable: e.g., concepts for
modelling business policies, decisions and rules,
concepts for better support of the design process, or
concpets that provide the link to (business) models
at a more strategic level.

REFERENCES
[1] W. Engelsman, H. Jonkers and D.A.C. Quartel, ArchiMate® Extension

for Modeling and Managing Motivation, Principles, and Requirements
in TOGAFTM, White Paper, The Open Group, Feb. 2011.

[2] H. Jonkers, H. van den Berg, M.-E. Iacob & D. Quartel, ArchiMate®
Extension for Modeling the TOGAFTM Implementation and Migration
Phases, White Paper, The Open Group, Dec. 2010.

[3] J. van ’t Woud, M. Waage, H. Hartman, M. Stahlecker and A. Hofman,
The Integrated Architecture Framework Explained, Springer, 2010.

[4] H. Jonkers, E. Proper, M. Turner, TOGAF and ArchiMate: A Future
Together. A Vision for Convergence & Co-Existence. Whitepaper, The
Open Group, Nov. 2009.

[5] M.M. Lankhorst et al., Enterprise Architecture at Work – Modelling,
Communication and Analysis, Second Edition, Springer, 2009.

[6] D.A.C. Quartel, W. Engelsman, H. Jonkers, M. J. van Sinderen, A Goal-
Oriented Requirements Modeling Language for Enterprise Architecture.
In: Proceedings of the 13th IEEE International EDOC Enterprise
Computing Conference, Auckland, New-Zealand, Sept. 2009, pp. 3-13.

[7] The Open Group, ArchiMate® 1.0 Specification, Van Haren Publishing,
2009. Also available on http://www.archimate.org

[8] The Open Group, TOGAFTM Version 9, Van Haren Publishing, 2009.
Also available on http://www.togaf.org

[9] Object Management Group, Unified Modeling Language: Superstructure
v2.0. OMG Document Number formal/05-07-04, August 2005

[10] Object Management Group, Business Process Modeling Notation, v1.1.
OMG Document Number formal/2008-01-17, January 2008.

[11] M.M. Lankhorst, H.A. Proper, and H. Jonkers. The anatomy of the
archimate language. International Journal of Information System
Modeling and Design (IJISMD), 1(1):1-32, 2010.
10.4018/jismd.2010092301

[12] P.S. Seligmann, G.M. Wijers, and H.G. Sol. Analyzing the Structure of
I.S. Methodologies, an alternative approach. 1989.

[13] Business Motivation Model (BMM) Specification. Technical Report
dtc/06-08-03, Object Management Group, Needham, Massachusetts,
August 2006.

[14] D. Greefhorst and H.A. Proper. Architecture Principles - The
Cornerstones of Enterprise Ar-chitecture. Enterprise Engineering Series.
Springer, Berlin, Germany, 2011. ISBN-13 9783642202780

[15] H.A. Proper and D. Greefhorst. The Role of Principles in Enterprise
Architecture. In H.A. Proper, M.M. Lankhorst, M. Schönherr, J. Barjis,
and S.J. Overbeek, editors, Proceedings of the 5th Workshop on Trends
in Enterprise Architecture Research, TEAR 2010, Delft, The
Netherlands, volume 70 of Lecture Notes in Business Information
Processing, pages 57-70. Springer, Berlin, Germany, November 2010.

[16] E.S.K. Yu and J. Mylopoulos. Understanding ‘why‘ in software process
modelling, analysis, and design. In Proceedings of the 16th international
conference on Software engineering, Sorrento, Italy, Los Alamitos,
California, pages 159-168, Los Alamitos, California, 1994. IEEE. ISBN-
10: 081865855X

[17] G. Regev and A. Wegmann. Where do goals come from: the underlying
principles of goal-oriented requirements engineering. In In Proc. of the
13th IEEE International Conference on Requirements Engineering
(RE05), Paris, France, August, 2005.

[18] A. Van Lamsweerde. Goal-Oriented Requirements Engineering: A
Guided Tour. In Proc. RE’01: 5th Intl. Symp. Req. Eng., 2001.

[19] Programme Management Based on MSP: A Management Guide, Jane
Chittenden and Jan Van Bon. Van Haren Publishing, 2006. ISBN-13:
978-9077212677

[20] Project Management Body of Knowledge. Technical report, The Project
Management Institute, November 2001.

[21] Managing Successful Projects with PRINCE2. The Stationery Office,
2009. ISBN-13: 9780113310593

301

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 27,2021 at 14:07:54 UTC from IEEE Xplore. Restrictions apply.

