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Abstract—This paper describes the design of Laran, an intelligent player for the iterated prisoner’s dilemma. 

Laran is based on an evolutionary algorithm, but instead of using evolution as a mean to define a suitable 

strategy, it uses evolution to model the behavior of its adversary. In some sense, it understands its opponent, 

and then exploits such knowledge to devise the best possible conduct. The internal model of the opponent is 

continuously adapted during the game to match the actual outcome of the game, taking into consideration all 

played actions. Whether the model is correct, Laran is likely to gain constant advantages and eventually win. A 

prototype of the proposed approach was matched against twenty players implementing state-of-the arte 

strategies. Results clearly demonstrated the claims. 
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 Introduction 

The prisoner’s dilemma is a simple puzzle of paramount importance. The simplicity of its rules is paired by the 

enormous amount of research performed on it. The iterated prisoner’s dilemma, a slightly modified version of the 

puzzle, has been studied in many different fields, such as game theory, economics, and biology. In the past two 

decades, evolutionary computation scholars showed a remarkable interest in it.  

This paper proposes the design of an intelligent player for the iterated prisoner’s dilemma exploiting evolutionary 

computation. Differently from traditional approaches, it does not focus on the evolution of a fixed strategy, able to 

win against a generic opponent. On the contrary, it aims at devising a player that adapts its strategy considering the 

opponent. Such a player internally builds a reliable model of its opponent, and then determines the optimal strategy 

to defeat it. Borrowing the terminology from evolvable hardware, the strategy of the player is not evolved off line, but 

rather on line.  

In the pioneering days of evolutionary computation, Lawrence Fogel defined intelligence as the composite ability 

to make predictions in an environment coupled with the translation of each prediction into a suitable response in light 

of a given goal [1]. Adopting his view, this paper proposes a methodology to build an intelligent player, able to foresee 

the behavior of its opponent and to take advantage of it. 

The approach has been tested on the iterated prisoner’s dilemma, but it may be used  on different games as well. 

Moreover, instead of maximizing the strength, the ability to foresee opponent moves may be used to increase the 

gaming experience of a human player. 



The paper is organized as follows: Section II and III introduce the prisoner’s dilemma and the idea of adaptive 

opponent modeling. Section IV describes Laran, the proposed player. Section V describes the experimental 

evaluation. Section VI concludes the paper. 

The Prisoner’s Dilemma 

The prisoner’s dilemma is a nonzero-sum game for two players. The term “nonzero-sum” indicates that whatever 

benefit accrues to one player does not necessarily imply a similar penalty imposed on the other player. The prisoner’s 

dilemma can also be defined as non-cooperative, to indicate that no communication is permitted between the players 

apart from game actions. However, this term is quite misleading, because the analysis of “cooperation” and emerging 

cooperative behaviors are usually one of the objectives of the game. 

In its essential form, the game describes a situation faced by two players where there are only two possible 

behaviors: the first can be labeled as cooperative and the other selfish. If both players choose to cooperate, they can 

earn a high reward; on the other side, if both act selfishly, they will get only a low reward. But, if one is selfish and the 

other cooperative, the former obtains a very high reward and the latter endures a very low reward or no reward at all.  

Let R be the payoff for mutual cooperation (reward) and P the payoff if both act selfishly (punishment). When only 

one player acts selfishly its payoff is denoted with T (temptation), and the payoff of its opponent with S (sucker). The 

requirement of the puzzle can be easily formalized (Equation 1). Additionally, the reward for mutual cooperation 

should be greater than the average of the payoff for the temptation and the sucker (Equation 2).  

T > R > P > S (1) 

2 ⋅ R > S + T (2) 

Puzzles with the above structure were devised and discussed by Merrill Flood and Melvin Dresher in 1950 as part 

of the RAND Corporation
1
 investigations into game theory and its possible applications to global nuclear strategy [2]. 

The name “prisoner’s dilemma” was chosen by Albert Tucker, who wanted to make Flood and Dresher’s ideas more 

accessible to psychologists. He imagined two criminals arrested for an offence and placed in separate isolation cells. 

Each villain could opt to cooperate with his accomplice by negating any involvement in the crime, or defect by 

confessing to the police and betraying the (ex-)partner [3]. Since the final goal was to minimize the prison sentence 

instead of maximize the reward, equations (1) and (2) are reversed. But the underlying structure of the puzzle is the 

same. 

Disregarding moral considerations, the more convenient behavior is always the selfish one. If one player 

cooperates, the most profitable action for the other one is to exploit the good faith being selfish. On the other hand, if 

one player is selfish, the best action for the other is, again, being selfish too, minimizing the damage. However, if the 

puzzle is indefinitely iterated the situation becomes far more interesting. On the long run, the most convenient 

strategy is to come to an agreement with the other player and adopt a cooperative behavior. Such version, called 

iterated prisoner’s dilemma, was discussed from the time the game was first devised, but interest accelerated after 

the publications of Robert Axelrod [4] [5].  

In 1979, Axelrod organized the first important iterated prisoner’s dilemma tournament, soliciting strategies from 

game theorists who had published in the field [6]. The 14 entries were competed along with a fifteenth one which 

                                                           

1
 The Research ANd Development Corporation is a nonprofit global policy think tank first formed in 1948 to offer research and analysis to 

the United States armed forces. 



cooperates or defects with equal probability. Each strategy was played against all others over a sequence of 200 

moves. The winner of the tournament was submitted by Anatol Rapoport, a Russian-born American mathematical 

psychologist. His strategy was named “Tit for Tat”: cooperate on the first move, and then mimic whatever the other 

player did on the previous move. 

Subsequent analysis indicated that this Tit for tat strategy is robust because it never defects first and is never 

taken advantage of for more than one iteration at a time. Tit for tat is not an evolutionarily stable strategy. 

Nevertheless, in a second tournament, Axelrod collected 62 entries and, again, the winner was Tit for tat.  

The interest in the game blown and never faded away in subsequent years. On the one hand, the desire to find a 

winning strategy, on the other hand, the attempt to study why and how cooperative behaviors emerge or does not 

emerge kept scholars aroused. 

The iterated prisoner’s dilemma has also deeply studied in the evolutionary computation community. Axelrod 

himself tried to evolve a population of strategies in the early 1980s using a genetic algorithm and representing 

strategies as bit vectors. Later, finite state machines (FSMs) became common to represent strategies [7], since they 

can behave like complex Markov models. Subsequent attempts also considered different paradigms, such as 

evolutionary programming and neural networks [8].  

The interested reader may find many volumes devoted to game theory and the prisoner’s dilemma, as well as 

academic papers on the subject. A book by Axelrod [9] reproduces some of his papers published from 1986 to 1997, 

together with a new commentary. The works also consider the use a genetic algorithm, but more recent results taking 

advantage of evolutionary computation can be found in [10]. 

Adaptive Opponent Modelling   

In game playing, it is often assumed that the opponent is perfectly rational and uses a strategy similar to our one. 

This led John von Neumann to develop the famous Minimax procedure in 1928 [11]. Several improvements and 

optimizations have been proposed in subsequent years, and some variants also tried to take into account deception 

or impulsiveness to improve the gaming experience. However, the fundamental goal is to maximize the reward 

against an opponent seeking the very same objective. 

In zero-sum games, where the payoff to one player is taken away from the other, the ideas of maximizing the 

rewards and minimizing the damage sustained can be assumed equivalent. In more complex nonzero-sum game, 

however, they may be conflicting objectives. Additionally, in these cases not all players seek to minimize the 

maximum damage that the opponent can do. Some players are risk takers, rather than being risk averse. For instance, 

a player that always acts selfishly cannot be beaten, but it will probably earn a very low payoff in all its games. 

Moreover, it must be considered that some players may have irrational motives to act in a specific way. This is 

particularly true in a game with direct moral implications, such as the prisoner’s dilemma. 

 

Figure 1. Adaptive Opponent Modeling 



The immediate consequence is that in complex scenarios, it is advisable to consider that the opponent may be 

using a strategy different from our one. Thus, the Minimax algorithm is not immediately usable. The knowledge of the 

intent and strategy of the opponent is essential to play effectively. Indeed, the idea of modeling the opponent has 

been proposed from the beginning of game-playing by computers in the 1950s. Several playing algorithms have been 

proposed that incorporate such a knowledge, but none were ever applied truly successfully [12]. 

The proposed approach is based on the concept of adaptive opponent modeling. That is, the player is split in two 

loosely coupled blocks: a replicator sub-system able to model the current opponent as an FSM; a player sub-system 

that exploits the model to find the best next move.  

The goal of the replicator sub-system is to devise a model able to explain past actions, and reliably predict future 

ones. It observes the game, recording the sequence of actions performed by the player itself and the counteractions 

taken by the opponent. Such information is eventually used to create an internal model of the strategy. The model is 

updated whenever new data is available, i.e., after each turn during the game.  

The sub-system is based on an evolutionary algorithm. Thus, a population of different candidate models is 

cultivated. Evolutionary algorithms have been demonstrated able to cope with difficult problems, exhibiting the 

ability to adapt themselves to changing scenarios and are perfectly suited for the task. 

The internal model is continuously modified and it is likely to change at every turn. The diversity of internal 

population must be preserved in order to avoid premature convergence. This sort of over-fitting problem would 

inhibit future adaptation.  Thus, in each step the number G of generations performed by the evolutionary algorithm 

should be quite low. Indeed, running a limited number of generation also increase the global responsiveness of the 

player.  

The player sub-system exploits the opponent model to find the optimal action. It considers the possible 

continuations of the game, selects the optimum one and plays the first action of it. The calculation needs to be 

repeated at every turn.  

Since the opponent model is fully deterministic, the sub-system uses a very simple brute force approach: it 

generates all possible 2
n
 sequences of N moves, and picks the one leading to the best result. Obviously, since the 

opponent model is updated after recording the opponent action, the foreseen continuation may be proven inexact. 

The depth of the brute force analysis N is the only parameter of the player sub-system. It directly influences the 

amount of resources required to select an action. Since the opponent model is an approximation and may change, 

calculating long sequences of moves is not useful.  

Laran: Adaptive Opponent Modelling for the Iterated Prisoner’s Dilemma 

This paper describes a player for the iterated prisoner’s dilemma taking advantage of the adaptive opponent 

modeling. The proposed approach was named was named Laran, after the god of war in Etruscan mythology.  

Laran represents a strategy as a Moore machine, that is, an FSM whose output value is determined only by its 

current state and not by the value of its input. Other works on the prisoner’s dilemma uses FSMs where the output is 

a function of the current state and of the input, called Mealy machines. In our opinion, Moore machines better 

convey the idea of the game: a player first decides its action, and after that gets the opponent’s move. Anyway, 

Moore and Mealy machines are equivalent: it is trivial to translate the former in the latter, and it is always possible to 

translate the latter in the former by adding new states.  

Figure 2 shows a Moore machine describing the Tit for tat strategy. There are two states numbered with “0” and 

“1”. The output of the state is revealed by its border color: in light states the player cooperates, in dark ones defects. 

State transitions are indicated with arrows labeled with the opponent move: “c” for cooperation and “d” for 

defection. The starting state is marked with an arrow. 



 

Figure 3. The Moore machine describing Tit for tat 

Not surprisingly, the evolutionary algorithm embedded in the replicator closely resembles the pioneering work of 

Fogel in the choice of operators and overall structure. Some details, however, have been mutated from different 

evolutionary algorithms. 

Evolutionary Algorithm 

The evolutionary algorithm uses a steady-state approach, with a population of I individuals. The initial population 

is randomly generated. Then, in each generation O parents are randomly selected and a genetic operator is applied to 

each of them. The genetic operator is chosen randomly in a pool of four: change initial state; add node; delete node; 

and modify transition. No recombination operators have been implemented. 

Change initial state clones the parent, and then modifies the initial state of the FSM selecting randomly a new 

node. Add node clones the parent, then adds a new node and connects it randomly to existing ones. Delete node 

selects a random node and creates two new individuals without it: in the first, the predecessor is connected to the 

successor in case of cooperation; in the second, the predecessor is connected to the successor in case of defection. 

Modify transition clones the parent, and then adds a new node and connects it randomly. All genetic operators are 

equally probable. 

Parents are selected through a tournament of size two: two individuals are randomly picked out, compared and 

eventually one is chosen as the parent. To avoid bloating, a fitness hole is used [13]. With probability p, the selection 

criterion for tournaments is not the fitness, but the size of the individuals: the smallest individual is chosen for 

reproduction, not the fittest one. The name fitness hole derives from the fact that this is a hole in the probability 

distribution that rules selection. 

Survival selection is a purely deterministic process. The worst individuals are removed until the population size 

comes back to I. 

Fitness Function 

As mentioned above, the goal of the replicator sub-system is to devise a model able to explain past actions and 

predict future ones. In order to fulfill both requirements, the model of the opponent must be able to play reasonably 

well. A simple FSM able to reproduce all past opponent actions may have no predicting ability. Thus, it is necessary to 

take into account the strength of the models, and not only their ability to reproduce the past records.  



 

Figure 2. Fitness calculation  

In order to achieve this objective, the evolutionary algorithm splits the evaluation of each candidate model in two 

steps (Figure 2): first, the ability to replay the past actions of the game is evaluated. The candidate gets a score 

measuring how many times the strategy specified correctly the actions that have been played in the game. Then, the 

candidate is confronted against a set of standard opponents. The goal of the second evaluation is to assess the 

strength of the strategy.  

The set of standard opponents is never modified, nor does it take part of the evolutionary process. It is merely 

used to give a quantitative evaluation of the candidate strength. In theory, it could be replaced by a static analysis or 

other suitable tool. 

TABLE 1: LARAN PARAMETERS 

Parameter Meaning Value 

G Generations  in the replicator 10 

N Brute-force depth 6 

I Population size 50 

O Offspring size 10 

p Fitness hole probability 0.05 

 

In the proposed implementation, the importance of the first contribution overwhelms the importance of the 

second one, thus strategies are de facto required to be fully coherent with the history.  

Experimental Evaluation 

The proposed player was implemented in about 1,500 lines of C++. Internal parameters are summarized in Table 1.  

Table 2 summarizes the payoff of the prisoner’s dilemma. According to Tucker, they are expressed as years of jail 

sentence. Thus, the goal is to minimize the total outcome. 

TABLE 2: PRISONER’S DILEMMA PAYOFF (YEARS OF JAIL SENTENCE) 



Parameter Meaning Value 

T Temptation 0 

R Reward 1 

P Penalty 6 

S Sucker 7 

 

For the sake of comparison, Laran was matched against 16 players implementing well-known strategies, and 4 

dummy players: 

• AC (Always Coop): a simplistic player that always cooperates. 

• AD (Always Defect): a simplistic player that always defects.  

• BA (Brainless Alternation): a simple player that blindly alternates “cooperate” and “defect” actions, in this order.  

• E-BA (Evil Brainless Alternation): a simple player that blindly alternates “defect” and “cooperate” actions, in this 

order.  

• G (Grudger): a player that cooperates until the opponent first defects. Then it relentlessly defects until the end of 

the game. 

• SG (Soft Grudger): a player that cooperates unless the opponent defects. In this case, it punishes the behavior with 

a sequence of four defections. Then, it offers a peace agreement with two consecutive moves of cooperation.  

• TFT (Tit For Tat): probably the most famous and successful strategy for the iterated prisoner’s dilemma. The player 

starts cooperating, and then replicates the opponent previous action. 

• E-TFT (Evil tit for tat): a slightly more malicious version of Tit for tat. The player starts defecting, and then replicates 

the opponent previous action. The strategy is also known as Suspicious Tit For Tat. 

• A-TFT (Anti Tit For Tat): an apparently illogical variant of Tit for tat. The player starts cooperating, and then 

chooses the opposite of the opponent previous action.  

• TF2T (Tit For Two Tats): yet another variant of Tit for tat. The player cooperates until the opponent plays two 

consecutive defections. At this point, it defects and keeps on defecting until the opponent cooperates two times in 

a row. Then it starts cooperating again, and so on.  

• 5TM (Five is Too Much): similarly to Tit for tat, if the opponent defects the player revenges itself in the next turn. 

However, when the opponent cooperates five times in a row, it deefects twice.  

• GC (General Cooperator): if the opponent defects while the strategy cooperates the player seeks revenge in the 

next turn as Tit for tat. However, whether both defect simultaneously, it forgives and cooperates on the next turn. 

• P (Pavlov): it starts with a cooperative move. Then, the player repeats the last action if it was profitable, i.e., if it 

brought an advantage over the opponent. Otherwise, it changes actions.  

• 2TT (Two to Trust): the player cooperates unless the opponent defects, but then it starts defecting. It requires two 

consecutive moves of cooperation to forgive the rudeness and start cooperating again. It is also known as two to 

forgive. 

• E-2TT (Evil Two to Trust): the player defects unless the opponent plays two consecutive moves of cooperation, 

then it starts cooperating. But if the opponent defects once, it starts defecting as in the beginning. It is equivalent 

to two to trust, but with a different starting state. 

• 2TB (Two To Betray): the player cooperates unless the opponent defects twice in a row, then it starts defecting. 

However, it is eager to forgive and it starts cooperating again as soon as the opponent cooperates once. 



• E-2TB (Evil Two To Betray): the player defects until the opponent cooperates once. Subsequently it acts as two to 

betray: it cooperates unless the opponent defects twice in a row. Then it defects unless the opponent cooperates 

once. 

• TTP (Three Then Punish): the player cooperates unless the opponent defects three times, then it punishes the 

misbehavior with a sequence of three defections. After that, if the opponent cooperates, it forgives and starts 

cooperating again. 

• T/D (Trust/Distrust): the player internally ranks the trustfulness of the opponent on a scale of 1 to 4. When the 

opponent cooperates, the trustfulness is increased; when defects, it is decreased. Such internal value determines 

the action of the player: defection on 1 or 2, cooperation on 3 or 4. 

• EGET (Evil Good Evil Trust): the player starts with a sequence of cooperation-defection-cooperation. If the 

opponent replies by cooperating all three times, it thinks that it can be trusted and keeps on cooperating. 

Table 3 reports the results of the evaluations. Laran played 100 turns of the iterated prisoner’s dilemma against 

each opponent. The Table 3 reports, for each opponent, the cumulative jail sentence sustained by Laran, and the 

cumulative jail sentence imposed to the opponent. The minimum, maximum and average values over 10 runs are 

shown. The minimum average value is marked in boldface. 

In a 100-turn match, Laran defeats its opponent in 12 cases out of 20 and draw once. It must be noted that a short 

game, or the first portion of a long one, is the most revealing test. Since the proposed approach builds an internal 

model of the opponent, on the long run it is always likely to win. 

In fact, Laran is able to correctly model the Soft grudger strategy and after the first 100 turns its performance 

becomes systematically better than its opponent’s. However, filling the initial disadvantage takes about 400 turns. Tit 

for two tats is correctly modeled in about 200 turns; also Two to trust and Evil two to trust are correctly modeled in 

almost the same time. In all these cases, the initial handicap is fully recovered in less than 1,000 turns. 



TABLE 3: CUMULATIVE JAIL SENTENCES (100 TURNS) 

Opponent 
Sustained Imposed 

Min Max Avg Min Max Avg 

AC 0 1 0.3 694 700 698.0 

AD 600 605 602.0 570 600 588.6 

BA 303 348 323.3 362 632 510.0 

E-BA 300 348 318.0 362 650 542.0 

G 697 600 598.3 565 583 575.0 

SG 198 226 208.3 184 212 196.5 

TFT 134 344 209.0 141 351 216.0 

E-TFT 190 285 243.3 190 285 243.3 

A-TFT 0 14 4.7 686 700 695.3 

TF2T 591 595 592.7 560 584 574.4 

5TM 201 298 265.3 368 633 543.0 

GC 212 276 242.7 408 584 492.3 

P 139 194 165.7 146 201 172.7 

2TT 223 598 472.3 202 589 456.4 

E-2TT 559 606 588.7 496 594 551.3 

2TB 402 588 486.7 458 602 553.3 

E-2TB 89 126 108.7 189 349 293.0 

TTP 160 268 204.3 265 492 360.7 

T/D 310 590 404.3 292 595 444.0 

EGET 168 531 310 147 524 284.7 

 

Laran is able to quickly model the strategy of Always defect, and consequently starts defecting. But the initial loss 

will be never smoothed out. Similarly, when the Grudger starts defecting it is not possible to recover. Interestingly, 

Laran always draws when playing against Evil tit for tat. 

The opponent playing the Evil good evil trust strategy is the most problematic. After 1,000 turns some experiments 

show a slight prevalence of it, while in some others Laran is winning. But results are not definite. 

To conclude, when the prisoner’s dilemma is iterated for 1,000 or more turns the final outcome is: 16 wins, 1 draw 

(Evil tit for tat), 2 losses (Always defect and Grudger) and 1 uncertain result (Evil good evil trust). A quite good result, 

especially considering that against Always defect and Grudger is not possible to win. 

Player Analysis 

To exemplify the efficacy of the proposed algorithm, Figure 3 details a game against Trust/Distrust. The graph plot 

the difference between the cumulative jail sentences imposed to the opponent and the cumulative jail sentences 

sustained by Laran. Thus, a positive value is a good result for the proposed methodology.  



 

Figure 3. Progress of a game against Trust/distrust  

The graph shows clearly three different phases: in the first turns, Laran is playing almost randomly. Then it starts 

building an incorrect model and the performances quickly drops. At about the 50
th

 turns, it finds an (almost) correct 

model of the Trust/distrust strategy. From this point, it systematically increases its advantage. 

Figure 4 shows an FSM implementing the Trust/distrust strategy (above), and the model built by Laran internally 

after the 100th turn. Disregarding some spurious nodes, it perfectly matches the opponent. 

Conclusions and Future Works 

As predicted, Laran was demonstrated able to correctly model and, on the long run, outperform standard 

strategies. The objectives of the first phase of the research are fulfilled; now it could be interesting to extend the 

approach. 

Authors are actually working on using the methodology in different scenarios, in particular when the strategy is 

not fully deterministic or changes during the game. It could be interesting to apply the adaptive opponent modeling 

whenever the opponent is not, and cannot be, modeled as an FSM.  

Furthermore, the idea to adapt a model of the opponent using an evolutionary algorithm could be applied to 

different domain, and with different objectives. Significantly, it could be used to increase the gaming experience in 

commercial game. 

Finally, not relying on the Minimax procedure, authors are trying to test the approach with games that stresses 

cooperation rather than competition, such as Antoine Bauza’s Hanabi [14]. 
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Figure 4. The FSM describing Trust/distrust (sbove), and the internal model devised by Laran at the end of game (below) 
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