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Examining the use of a Non-Trivial Fixed
Genotype-Phenotype Mapping in Genetic
Algorithms to Induce Phenotypic Variability over
Deceptive Uncertain Landscapes
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Abstract—In nature, living organisms can be viewed as the
product of their genotype-phenotype mapping (GP-map). This
paper presents a GP-map loosely based on the biological phe-
nomena of franscription and translation, to create a multi-layered
GP-map which increases the level of phenotypic variability. The
aim of the paper is to examine through the use of a fixed non-
trivial GP-map, the impact of increased phenotypic variability,
on search over a set of deceptive landscapes. The GP-map allows
for a non-injective genotype-phenotype relationship, and the
phenotypic variability of a number of phenotypes, introduced
by the GP-map, are advanced from the genotypes used to
encode them through a basic interpretation of transcription
and translation. We attempt to analyse the level of variability
by measuring diversity, both at a genotypic and phenotypic
level. The multi-layered GP-map is incorporated into a Genetic
Algorithm, the multi-layered mapping GA (MMGA), and runs
over a number of GA-Hard landscapes. Initial empirical results
appear to indicate that over deceptive landscapes, as the level of
problem difficulty increases, so too does the benefit of using the
proposed GP-map to probe the search space.

I. INTRODUCTION

Living organisms when viewed through the lens of evolution
can be seen as the result of the mapping from their genotype
to their phenotype. Evolution is the process of searching
the phenotypic space through the use of genetic operators
such as mutation, recombination and selection. While genetic
operators operate at the genotypic level, fitness-based selection
operators function at the phenotypic level. Because of this,
the relationship between the genotype and the phenotype can
be expressed as the Genotype-Phenotype Map (GP-map) [1].
The GP-map generates a phenotypic neighbourhood, which
very often differs form the idea of proximity which exists
between phenotypes when we consider them as a whole [2].
The relationship between the genes and the phenes (phenotypic
traits which have an influence on a phenotypes overall fitness)
is controlled by the GP-map [3]. Phenotypic plascitity [4] on
the other hand, describes how the instructions included in the
genotype for the creation of the phenotype are not complete in
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that there is an external influence which needs to be taken into
account. In other words, a number of phenotypes can result
from a given genotype as a result of the environment in which
the mapping takes place [5] and there exists an interaction
between learning and evolution [6].

When exploring the phenotypic space, it is critical to gain
an understanding of the variational topology in trying to
determining the shape of the landscape [7]. Many evolutionary
algorithms are composed using a fixed variation topology.
However, in nature phenotypic variation landscapes are not
fixed. These non-fixed phenotypic variation landscapes can be
referred to as a non-trivial in terms of their GP-map [7]. A
non-trivial GP-map can be viewed as having the following
characteristics: firstly, a phenotype can be encoded by many
genotypes and secondly, the phenotypic variability of a number
of phenotypes will depend on their genotype [3]. Therefore,
every genotype can be described as a combination of a
phenotype and any kind of neutral traits which exist within
the genotype, where different neutral traits associated with
the same phenotype give a different representation of the
phenotype in question [3]. As was pointed out by Toussaint in
[7], the introduction of an adaptable exploration is possible by
creating a fixed but non-trivial GP-map, which is achieved by
having neutral variations in the genotype space. The choice of
genetic representation, the primary structure, used to represent
a neutral set which encodes a phenotype will impact on the
phenotypic variability.

The motivation for attempting to create a multi-layered GA,
comes from the desire to create a fixed non-trivial GP-map
which introduces a more flexible phenotypic structure and a
higher degree of phenotypic variability through the use of
neutrality. The aim of this paper is to put forward a proposed
GP-map which includes a number of the features of a fixed
non-trival GP-map which operate using a binary representation
and to investigate whether the increased neutrality and level
of phenotypic variability can prove beneficial in searching a



series of fully deceptive landscapes. The main contribution is
to propose a model for exploring the effects of phenotypic
variability using a Genetic Algorithm with a binary represen-
tation. The paper is laid out as follows Section II examine past
research. Section III outlines the pseudo code and workings
of the multi-layered mapping GA (MMGA), while Section
IV describes the experiments conducted. Finally Section V
discusses the experiments and outlines possible future work.

II. BACKGROUND

Evolutionary Computation can be viewed as an exercise in
hillwalking over a fitness landscape, where peaks can be seen
as phenotypes with high levels of fitness and troughs as pheno-
types of low fitness values. Genetic operators such as mutation,
function by introducing diversity into the population, whereas
selection draws the search towards peaks [8]. By introducing
a more complicated GP-map the effect of operators, such as
mutation, can be magnified, in that the effect of a single
mutation on a phenotype can be increased as many alterations
at a genotypic level may occur and not be expressed at the
phenotypic level [9]. However, landscapes may contain local
peaks, which are sub-optimal points in the fitness landscapes
and once a population reaches a local optimum it can prove
very difficult to adapt further. Populations can occupy several
peaks at a given time and by recombining individuals from
different peaks, the search may continue [8].

A. Deception

In order to examine the performance of the multi-layered
GA against a simple GA (SGA), a problem environment needs
to be chosen to enable a comparison to be made. With regard
to testing the performance of GAs a number of authors have
used a class of problem considered GA-Hard. A problem is
considered hard in many cases if it is difficult for the GA to
find the optimum, in other words we are looking for single
optimum point surrounded by points which have a relatively
low fitness level. Problems are often created by taking advan-
tage of the GA so as to allow selection to deliberately lead the
search away from the optimum. By using a binary encoding of
a solution, GAs can search complex landscapes by sampling
hyperplanes in an n-dimensional hypercube. GAs alter the
rates of sampling of hyperplanes in relation to encodings of the
solution space. In relation to deceptive problems hyperplanes
drive the search away from the the global optimum and
towards a local optimum [10].

Previous research into the use of deceptive problems with
GAs include Goldberg [11], Tanese [12], Grefenstette [13] and
Whitley [14]. A Minimal Deceptive Problem was introduced
by Goldberg [15], based upon previous work carried out by
Bethke [16], in order to develop an enhanced understanding of
problems which are likely to prove difficult for a GA to solve.
The schema theory [17] helps explain how GAs search difficult
search spaces by altering the rate of sampling of hyperplanes
[17][18] and describes how low level building blocks relate
to the hyperplanes which are recombined, moving the search

String | Fitness | String | Fitness

£(000) 28 £(010) 22

f(110) 0 f(101) 0

£(001) 26 £(100) 14

f(011) 0 f(111) 30
TABLE I

FULLY DECEPTIVE ORDER-3 PROBLEM

String | Fitness | String | Fitness

f(111) 28 f(101) 22

£(010) 0 £(100) 0

f(110) 26 f(011) 14

f(001) 0 £(000) 30
TABLE II

REVERSED FULLY DECEPTIVE ORDER-3 PROBLEM

towards a solution which is above the average fitness of the
population.

A fully deceptive problem of order-N can be viewed as
being deceptive when all of the lower-order hyperplanes lead
away from the global optimum and towards a deceptive
attractor [14]. To illustrate deception, let us consider a fully
deceptive order-3 function, where the information about the
hyperplane which the order-1 and order-2 schemata represent
in the search space direct the search away from the global
optimum towards a deceptive attractor [14]. If the bits 111
represent the global optimum and the bits 000 represent the
deceptive attractor, then a full order-3 deception would be
similar to that defined by Goldberg, Korb and Deb [11] which
is illustrated in Table I and shows the fitness values for each
bit string.

B. Variational Topology

We can view evolution as operating on the genotype space
and when exploring the search space evolution, through recom-
bination and mutation defines the search space’s variational
topology. When discussing variational topology we need to
examine both genotypic variational topology and phenotypic
variational topology. Nature uses a complex GP-map to ad-
vance a relatively simple genotype space variational topology
to an extremely complex phenotypic variational topology.
Toussaint [19] argues that the phenotype space is what should
in fact be viewed as the search space for evolution rather than
the genotype space. With this in mind, the GP-map is the key
to understanding phenotypic variability and it also allows us
to gain an insight into how evolution can adapt the search on
the phenotype space.

The genotype is a collection of items which are inherited
and define the possible distribution of offspring. The phe-
notype on the other hand, comprises all of the phenotypic
traits of an individual that contribute to the overall fitness of
that individual. The GP-map sets out a blue print for moving
from genotype to phenotype. By viewing a phenotype as the
combination of all of the traits an organism and the genotype
as the genetic encoding of this phenotype, then we will also



assume that there exists a genotypic neighbourhood and a
phenotypic neighbourhood. Two genotypes can be considered
equivalent if they represent the same phenotype, however their
variational topologies can differ [20]. The GP-map “induces
a variational topology on the phenotype space depending on
the topology of the genotype space” [19].If we allow for
a non-injective GP-map, then the same phenotype can be
encoded by a number of genotypes. One major advantage of
allowing a many-to-one non-trivial GP-map is that it enables
the changing of the genotype representation without changing
the phenotype.

This can be achieved through neutral mutations which allow
for the changing in the phenotypic neighbourhood and assists
in the search. In other words, neutrality enables phenotypic
variability to adapt and vary, whereby the GP-map itself
doesn’t need to evolve, neutrality in the phenotypic variational
space allows changes to occur in the gene interaction which
introduces a different phenotypic variability. Therefore, by
introducing neutrality in a non-trivial mapping, the phenotypic
neighbourhood depends on the genotypic representation of
the phenotype and major alterations of the genotypic rep-
resentation mean changes in the phenotypic neighbourhood
[19]. “The notion of fitness landscapes is sometimes also used
to describe a fitness function over the phenotype space in
the case of a non-trivial genotype-phenotype mapping” [19],
but by introducing a fixed (non-trivial) GP-map you can still
achieve adaptable exploration through “neutral variations in
the genotype space” [19].

Trivial neutrality can be defined as a situation where “the
evolution of phenotypes can be understood (i.e., modelled)
without referring at all to genotypes, in particular, neutral
traits are completely irrelevant for the evolution of pheno-
types” [19]. In a non-trivial mapping a single gene is associated
with a number of features in the phenotype, when this gene
mutates the features vary in accordance [19].

For a GP-map to be non-trivial there are a number of
conditions which must be met. Firstly, there is a non-injective
relationship between genotype and phenotype and secondly,
for a number of the phenotypes, the phenotypic variability
generated depends on the genotype from which it has emerged
and the genotype contains neutral traits, which implies that you
can have different genetic representations for the phenotype
[3].

The locality of represenation defines the degree of corre-
lation which exists between the neighbouring genotypes and
neighbouring phenotypes. If there is a high level of correlation
between neighbouring genotypes and neghbouring phenotypes,
then the locality of representation is high. However, when
representations change the distance between corresponding
genotypes and phenotypes, they also change the locality of
reference [21]. The GP-map proposed by the authors decreases
the locality of reference by introducing a form of neutrality as
the search moves from the genes to phenes and also increases
the level of phenotypic variability, measured in this paper by
the level of diversity within the population.

III. MULTI-LAYERED MAPPING GA

The central dogma of molecular biology states that in-
formation which is located in DNA is copied, through a
process known as transcription, to RNA. Following this a
process known as translation takes place which uses RNA
to assemble proteins. Transcription transforms a gene into
an RNA molecule that is complementary to one strand of
the DNA double helix. Following this, translation uses the
information stored in three types of RNA to manufacture a
protein by combining specified animo acids. RNA acts as
a link between gene and protein and is complementary to
one strand of the double helix, called the template strand,
with the other strand being the coding strand. The Multi-
layered Mapping Genetic Algorithm (MMGA) GP-map moves
from genes to phenes by using a basic interpretation of
the processes of transcription and translation. The MMGA
operates using a binary representation which allows the use
of standard genetic operators such as crossover and mutation.
The MMGA differs from a simple GA in that it introduces
a more flexible phenotypic structure by including a basic
interpretation of transcription and translation, which introduces
neutrality through the proposed GP-map. This in turn allows
for changes in the phenotypic neighbourhood, where phenes
are created through various combinations of amino acids,
based on translation tables (see Tables IV and V) and are
in turn combined to create a phenotype. The pseudocode for
the process is outlined in Algorithm 1, where P represents the
population and g represents the generation.

The GP-map enables the encoding of a phenotype of length
l by a genotype of length [ + n, where n is the number of
bits required to represent k symbols, with k being the size of
the alphabet being used by the MMGA. As all the genotypes
bits have an effect on the evolution of the phenotype there is
no redundancy and neutrality is not trivial. The MMGA also
offers the ability to alter the alphabet size and to implement
a neighbourhood map which allow for different types of
neutral traits represented in the genotype to represent the same
phenotype.

The MMGA, has the advantage of allowing flexibility to
exist in the phenotypic variational topology when moving
between genotype and phenotype. To achieve this the size of
the alphabet to be created (four in this case) and the number of
representations required must be set. The multiple mappings
are created by the MMGA and the size of the genome required
to achieve this is then calculated by the MMGA. The MMGA
randomly initialises the binary genome string and this in turn
is converted using a series of mappings to convert genes into
a combination of amino acids which are then combined and
examined for neighbourhood equivalence to create a phene.
An important point to note is that these neighbourhoods are
designed to introduce variation into the phenotypic topology.
Thereby allowing a phenotype to be encoded by a number
of genotypes and that the phenotypic evolution can only be
understood by monitoring the neutral traits. The phenes are
then combined to form the phenotype.



Initialize MMGA,;
for Number of runs do
Initialise Individual Genomes P(g);
Transcribe Genome to Amino Acids (g);
Translate Amino Acids to Phenotype P(g);
Evaluate P(g) (Phenotype fitness);
for Number of Generations do
for All members of P do
Select P(g) from P(g-1);
Crossover P(g) genotype level;
Mutation P(g) genotype level,
Transcribe Genome to Amino Acids P(g);
Translate Amino Acids to Phenotype P(g);
Evaluate P(g) (phenotype fitness);
end

end
end
End MMGA;

Algorithm 1: MMGA Pseudecode

To begin, the basic interpretation of transcription and trans-
lation used by the MMGA produces two kinds of phenes, ‘0’
or ‘1’ (as we want to use a binary representation), each made
up of combinations of four amino acids represented by A, C, G
and U. These phenes are then combined to create a phenotype
which is evaluated for fitness. Beginning with a binary string,
which represents the genotype, the MMGA maps pairs of
binary bits into one of four characters A, C, G or T. These
characters represent the first phase of the transcription phase
where a template strand is created. Following this, the template
strand maps onto a coding strand and the final stage of the
transcription phase maps the coding strand onto RNA. Using
a four letter alphabet (A, C, G and T), the RNA sequence
is complementary to that of the DNA template strand and
therefore is the same sequence as the DNA coding strand,
with uracil (U) in place of thymine (T). Table III outlines
the mapping process used by the MMGA to implement the
transcription stage.

Transcription Stage
Template Strand Map | Coding Strand Map | RNA Map
00 — A A—T T—U
01 — C C—G G—G
10— G G—C C—C
11—-T T— A A— A
TABLE III
TRANSCRIPTION STAGE CONSISTING OF TEMPLATE MAP, CODING MAP
& RNA MaP

Once the transcription phase is completed and the alphabetic
characters have been combined, the translation stage uses the
information and maps it against the translation tables created
by the MMGA to examine neighbourhood equivalence to
manufacture a phene, the MMGA can adjust the number of
bits required to make up a phene, however in this paper the

authors have used a simplistic interpretation whereby a phene
is represented by either a 0 or a 1. Tables IV and V are extracts
from the the translation tables created by the MMGA. Table
IV contains translation mappings for phene 0, while Table
V contains translation mappings for phene 1. The number of
different translation phase mappings used by the MMGA in
this paper are one hundred and twenty eight for each phene
(this can be adjusted if required, as one may wish to alter the
level of neutrality present). The translation tables created by
the MMGA introduce the phenotypic variability by ensuring
that neutral traits exist and that each genotype can be viewed
as a pairing of a phenotype and a genotypes neutral traits
which allows for different neutral traits to be associated with
the same phenotype.

Extract of Translation Table for Phene O
AAAA | AAAC | AAAG | AAAU | AACA
AACC | AACG | AACU | AAGA | AAGC
AAGG | AAGU | AAUA | AAUC | AAUG
ACAA | ACAU | ACCA | ACUG

TABLE IV

EXTRACT OF TRANSLATION TABLE FOR PHENE 0

Extract of Translation Table for Phene 1
CAAA | CAAC | CAAG | CAAU | CACA
CACC | CACG | CACU | CAGA | CAGC
CAGU | CAUA | CAUC | CAUG | CAUU
CCAC | CCAG | CCAU | cccc

TABLE V

EXTRACT OF TRANSLATION TABLE FOR PHENE 1

Table VI illustrates the mappings from genotype strings
which are transcripted and translated into phenes for a three
bit problem. We begin with a genome string, which is mapped
to the template strand using the template mappings in Table
III. This is then converted to derive the coding strand using
the coding mappings in Table III. Once the coding strand has
been created the next phase in the transcription stage is to
create RNA. This is achieved by using the RNA mappings in
Table III. Once we have created the RNA, the transcription
stage is now complete. Translation now begins and the RNA
is compared to the values contained in the translation Tables
IV and V, which check for neighbourhood equivalence and
then map to phenes. Once the phenes have been created they
are then combined together to create a three-bit phenotype as
illustrated Table VI .

One interesting feature of the transcription phase, is that
the mapping is a form of complementing. This is an attempt
to, in a basis way, recreate the bridging between the gene
and the phene, as in natural RNA which is complementary
to the template strand. Therefore, the mappings are included
to mimic more closely, but still at a basic level, naturally
occurring phenomenon and will be explored more in future
work. The translation phase on the other hand, takes the output



Transcription & Translation - A Basic Interpretation
Genome 11100001 | 11101100 | 10110001
Template Strand TGAC TGTA GTAC
Coding Strand ACTG ACAT CATG
RNA ACUG ACAU CAUG
Phene 0 0 1
Phenotype 001
TABLE VI

TRANSCRIPTION-TRANSLATION MAPPING

from transcription and maps it to a phene through neighbour-
hood equivalence with the translation tables generated by the
MMGA. This allows for neutral traits to be included and are
of importance as they allow increased redundancy and induce
phenotypic variability.

IV. EXPERIMENTS

To examine the performance differences between a SGA
and the MMGA, experiments were conducted over a number
of fully deceptive landscapes which fall into the class of GA-
hard problems. The landscapes chosen consist of a three-bit
minimal deceptive problem as outlined by Goldberg in [15],
a variation of the thirty-bit deceptive problem as described
by Goldberg & Bridges in [11] which expands the three-bit
problem into ten three-bit deceptive order-three subfunctions.
And finally, a thirty-bit deceptive problem, which also expands
the three-bit problem into ten three-bit deceptive order-three
subfunctions, over a changing landscape as outlined in [22].
The experiments were conducted with a population of 200
(apart from the 3-bit deceptive problem which had a population
of 20) over 200 runs; a crossover rate of 0.7 and a mutation
rate of 1/1, where [ is the length of the chromosome. We
chose a population of 200 to ensure adequate exploration of
the search space and give both GAs a reasonable chance
of success. The diagrams below indicate the average best
performance of both GAs over the deceptive landscapes. For
each group of experiments diversity is calculated at both
a genotypic and phenotypic level using pair-wise hamming
distance in order to gain an understanding to the level of vari-
ability present in the topology. For comparison purposes we
normalised the data on the hamming distance measurements
and use a scale of [0 — 1], with 0 indicating convergence and
1 indicating maximum diversity.

A. Three-Bit Deceptive Problem

To gain an initial understanding of what effect the MMGA
GP-map would have on variability we monitor the fitness lev-
els of both GAs and the levels of both genotype and phenotype
diversity present. The first set of experiments were run over a
three-bit fully deceptive problem. Figure 1 illustrates the level
of genotypic and phenotypic diversity in the population for
both the MMGA and a SGA. However, the three-bit deceptive
problem is relatively easy for both algorithms to solve, this is
illustrated in Figure 2, which shows the average best fitness
for both the SGA and the MMGA, with both variations of the

GA locating the global optimum (maximum fitness level of
30) quite quickly.
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Fig. 1. Genotype/Phenotype Hamming Distance 3-Bit Deceptive Problem
However, looking again at Figure 1, the SGA converges very
quickly and diversity, both genotypic and phenotypic, as they
are one and the same when a standard binary representation
GP-map is being used, disappear apart from the efforts of the
mutation operator, indicating the lack of phenotypic variabil-
ity. The MMGA on the other hand, through the non-trivial
GP-map, maintains a level of diversity both at a genotypic
level and to a lesser extent, at a phenotypic level indicating
the presence of phenotypic variability. A t-test was used to
determine if the results of the hamming distance experiments
conducted were statistically significant. For each experiment,
the results of the t-test analysis with a 95% confidence interval,
indicated that the result of the three-bit deceptive problem
hamming distance experiments were statistically significant
with P < 0.001. Overall, when we examine Figures 1 and 2 it
is difficult to argue for an increase in the level of phenotypic
variability given the extra computational overhead associated
with implementing the GP-map proposed. So although the
MMGA exhibits the ability to solve the problem, in the case
of the three-bit deceptive problem, it would appear that this
landscape is relatively easy to solve and therefore we need
to examine a more difficult landscape to see if there is any
benefit associated with an increase in phenotypic variability.

B. Thirty-Bit Deceptive Problem

One failing of the 3-bit fully deceptive problem is that it is
too small to really demonstrate a search strategy. The thirty-bit
problem as outlined in [11] expands the three-bit problem into
the sum of ten three-bit deceptive order-three subfunctions.
The effect of this is to make it difficult for the SGA to solve as
it tends to converge prematurely, with the subfunctions being
drawn towards the deceptive attractor rather than the global
optimum [11]. However, in Goldberg’s thirty-bit function each
three-bit subfunction is associated with the adjacent three-bit
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subfunction. So subfunction one is associated with bits one
to three and subfunction two is associated with bits four to
six and so on. This function is relatively difficult using most
functional optimisation standards and the search space is quite
large. To increase the level of difficulty we include a loose
ordering, which makes the problem fully deceptive. This is
achieved by increasing the defining length to twenty, where the
defining length is the maximum distance between two defining
symbols in a schema. For example, rather than having bits one
to three linked together to create a subfunction, increasing the
defining length to twenty means our subfunction now consists
of bits one, eleven and twenty one for the first subfunction and
bits two, twelve and twenty two for the second subfunction
etc. We also carry out a count of the number of subfunctions
discovered throughout the search, with ten being the maximum
number achievable. By increasing the three-bit problem into
ten three-bit sub-functions, as outlined, we create a thirty-
bit fully deceptive landscape which through the increase in
defining length for each subfunction, dramatically increases
the level of problem difficulty. Through the fixed non-trivial
GP-map, we increase the phenotypic variational topology, but
we are still interested in understanding whether increasing
phenotypic variation is beneficial in searching the deceptive
landscape provided by the function.

Figure 3, highlights both the genotypic and phenotypic
diversity for both the SGA and MMGA. Again, because of
the type of representation and GP-map present in the SGA,
both the genotypic and phenotypic diversity are the same. The
SGA’s genotypic and phenotypic diversity converges early on
as it is drawn towards the deceptive attractor, indicating a lack
of variability. The MMGA’s performance differs from that of
the SGA, as a level of diversity, both phenotypic and to a
greater extent genotypic, is maintained throughout the search
as the variational topology changes. The ability to increase the
level of phenotypic variability through the GP-map enables
the maintenance of diversity, particularly genotypic diversity



appears to assist in searching the landscape as the MMGA
exhibits the ability to repeatedly locate the optimum solution
where the SGA fails. Figure 4, illustrates the average best
fitness achieved by both the MMGA and SGA per generation,
with a fitness of 300 indicating optimisation. Figure 5, empha-
sis this from a different perspective by outlining the number
of sub-functions discovered by both the SGA and MMGA. We
can see that the SGA never manages to locate the entire ten
sub-functions, whereas the MMGA succeeds in discovering all
ten sub-functions, which is the global optimum. To ensure that
the results were statistically significant we carried out a t-test
analysis with a 95% confidence interval, the result of which
indicated were statistical significance, with a p-values score
< 0.001. Overall from the fitness values outlined in Figure 4,
the increase in phenotypic variability associated with the use of
a non-trivial GP-map appears to be beneficial in searching this
particular class of problem. To continue testing the effect of
increased phenotypic variability we now introduce a dynamic
landscape and examine the performance of the MMGA.

C. Changing Landscape Thirty-Bit Problem Deceptive Prob-
lem

As seen from the experiments outlined above, the MMGA
possesses the capability to solve problems over a relatively
difficult deceptive landscape. In order to continue to observe
the performance of both the SGA and the MMGA, we use a
landscape which changes the fitness function at a predefined
point in the search. To obtain the effects of a dynamic envi-
ronment we alter the fitness function during the search, which
changes the landscape and creates a new global optimum.
Table II outlines the changes made to the fitness function and
shows our new deceptive attractor and new global optimum.
In other words to change the landscape, at a predetermined
point we change the fitness function from that shown in Table
I to the fitness values shown in Table II.

In testing the MMGA over a changing deceptive landscape
we are attempting to increase our understanding of the impact
the multi-layered GP-map has as the structure of this landscape
should give an advantage to the SGA. The reason for this is
because the SGA gets drawn towards the deceptive attractor in
the first stage of the search and when the landscape changes,
the deceptive attractor becomes the new global optimum,
therefore the SGA begins the search closer to this point.
In Figure 6 we can see that both the SGA’s genotypic and
phenotypic diversity are drawn towards convergence. However,
with the MMGA, we have increased phenotypic variability
through the GP-map and maintain a level of diversity in the
population. Again, a t-test analysis with a 95% confidence
interval was used and the results of the hamming distance
experiments were shown to be statistically significant.

Figure 7, shows the average best fitness per generation for
both the SGA and the MMGA. Once the search reaches the
half way point the fitness function changes and the landscape
shifts where the global optimum prior to the changing of
fitness functions, switches and becomes the deceptive attractor
of the new fitness function. At this point the SGA is closer to
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the new global optimum, while the MMGA is located directly
on the deceptive attractor. As the search continues the SGA
continues to converge and fails to locate the optimum (max-
imum fitness value of 300). The MMGA however, succeeds
in locating the optimum, both before and after the landscape
changes.

Figure 8, illustrates that in the first half of the search, the
SGA is drawn away from the global optimum and converges
on the deceptive attractor, solving only, on average, two sub-
functions. The MMGA on the other hand, continues probing
the landscape and discovers the global optimum, solving
all ten sub-functions. When the landscape changes although
the SGA is closer to the global optimum it still converges
prematurely and fails to locate all ten sub-functions. While the
MMGA continues to search after the landscape has changed
and succeeds in optimsing the problem and solving all ten



sub-functions. Thus indicating that the non-trivial GP-map
can through an increase in phenotypic variability, succeed in
solving a changing deceptive landscape. These results indicate
the usefulness of an increase in phenotypic variability over this
particular class of problem.
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V. CONCLUSION AND FUTURE WORK

The results indicate that the proposed multi-layered GP-
map is effective in solving the deceptive problems presented,
with its benefits increasing as the level of problem difficulty
increases. It illustrates that neutrality or redundancy can have
an critical impact on phenotypic variability in the case of
a non-trivial GP-map. The non-injective GP-map allows dif-
ferent neighbourhoods that map, quite possibly, to different
neighbourhoods of the same phenotype and thereby increase
the phenotypic variability, similar to that outlined in [3]. By
measuring the level of diversity at both the genotypic and phe-
notypic level, we attempted to quantify the levels or variability
present. The results of the experiments appear to indicate that
the introduction of a flexible phenotypic variational topology
enhances the ability of a genetic algorithm to search more
complex fully deceptive landscapes. By introducing a more
flexible genotypic-phenotypic relationship through the use of
a series of mappings, loosely based on the biological processes
of transcription and translation, the MMGA repeatedly opti-
mised both the fixed deceptive landscape and the changing
deceptive landscape. This paper presents a non-trivial fixed
GP-map, which includes a flexible phenotypic topology for
mapping genes to phenes. The GP-map proposed allows the
use of standard operators within a GA, without having to
modify them and illustrates the benefits of the GP-map over
a set of deceptive problems. Possible future work includes;
further examination and analysis on phenotypic variability
topologies and further investigation on how a multi-layered
GP-map influence these topologies within the phenotypic

25000

space. Comparisons of the performance of the MMGA with
dynamic landscape algorithms such as SORIGA and ADMGA.
Investigations into the use of operators within the transcription
phase and altering the levels of neutrality and examine the
influence this has in terms of changes in the locality of
reference.
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