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Abstract—Promotion of cooperative behavior in Prisoner’s
Dilemma (PD) game while players that are allowed to move
between different gaming environments (i.e. habitats) is inves-
tigated. The stochastic mobile model under study is realized
over connected habitats that are situated on a two dimensional
grid environment. The players appearing in the same habitat are
allowed to interact with their immediate neighbors. Mobility of a
player is defined as movement from its habitat to another based
on both obtained payoff and randomly assigned habitat diversity
values. By the end of extensive experimentation, it is concluded
that player mobility is an effective factor that contributes to
promotion of cooperation in spatial evolutionary games. Also,
even for higher values of temptation of PD game, habitat diversity
supports and triggers a collective resistance for the emergence
and promotion of cooperative system behavior.

Keywords : Evolutionary game theory, mobile prisoners

dilemma, promotion of cooperation, habitat diversity.

I. INTRODUCTION

Cooperation is a common behavior observed in various sys-

tems like ecological, social, economic and biological systems.

Individuals tend to cooperate with each other, even there is

a cost of cooperation for them. Emergence of cooperation

and promotion of altruistic behavior under the temptation

of selfish defective behavior is a fundamental issue in such

systems. The Prisoner’s Dilemma is a well known metaphor

to model such encounters among players in evolutionary game

theory [1]. In PD game, there are two types of competing

players; cooperators (Cs) that are inclined to cooperate and

defectors (Ds) that do not prefer to cooperate but to exploit

the cooperators.

Nowak and May [2] have first studied the impact of spatial

structure and neighborhood interactions on cooperative cluster

formation of individuals playing PD game. Following this

work, investigation of relation between topological aspects of

the population and promotion of cooperation due to spatial

organization of situated players becomes the rationale behind

the studies on spatial versions of the PD. The spatial PD

versions include regular lattice, small-world networks and

random graphs [3]-[4]. Scale-free networks [5] have been

reported to have potential to promote cooperative behavior

in prisoner’s dilemma and snowdrift games [7],[8]. Scale-

free topologies provide realistic representations to describe

connectivity among communities. The preferential attachment

mechanism is used to build scale-free networks. It is realized

by setting local rules between individuals [9].

In this paper, we report the results of experimentation about

evolution of cooperation among mobile players of PD game.

The objective of the research is to examine the impact of player

mobility on promotion of cooperation realized on diversified

and connected habitat environments. Habitat diversity refers

to different environmental conditions for alternative spatial

locations. The connected and diverse habitat concept adds

realism to the PD since the environment can be thought as a

form of a player that affects the obtained welfare of the others.

In our case, Mobile Prisoner’s Dilemma (MPD) game setup

realizes player migration due to obtained cumulative payoff

and habitat diversity values. MPD provides more realistic

and useful setup to investigate the dynamics of cooperative

behavior.

The idea of introducing diversity to PD game is not a

new one. In [10], the diversity among individual players’

social status in society is represented by some scaling factor.

Similarly in [11], they investigate how diversity in the way

individuals assess their adverse social partners affects the

evolution of cooperation. In MPD game a spatial/locational

diversity rather than player attributed diversity is considered.

Also, habitat scaling factors affect the game payoffs based on

their figured out values. In [12], the potential effect of mobility

on system equilibrium has been experimented in the game of

chicken played on cellular spaces. In their model, competition

for space among players rather than promotion of cooperation

was the main concern behind the designed mechanism. In

MPD game setup, a player in one habitat can move to another

one depending on their obtained payoff and diversity values

of neighboring habitats.

Scaling factors are drawn randomly from exponential dis-

tribution and the factor values remain fixed throughout each

run. Positive (and negative) scaling factors increase (and

decrease) the magnitude of payoff values while preserving

the nature of PD game. The generated habitat values are

uniformly distributed over a 2D grid. In other words, there

is no spatial correlation between generated assigned habitat

diversity values. Player mobility is formulated to answer the

basic question: Who will Go to Where (WGW)?

The paper is organized as follows: In Section II, the MPD
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Fig. 1. An example playground for Mobile Prisoner’s Dilemma (MPD)
model: An L x L periodic boundary-conditioned 2-D lattice of scale-free
habitat network with L=3

game and properties of scaling factors that determine habitat

diversity on the playground are defined; in Section III, the

experimental setup and results are given and discussed. This

section also includes some general comments about numerical

implementations of PD based simulations. Section IV is the

conclusions.

II. MODEL DESCRIPTION

An evolutionary two-strategy prisoner’s dilemma game with

players located initially on vertices of scale-free habitats is

considered (see Figure 1). Each scale-free habitat is located on

vertices of a two-dimensional square lattice of size L x L with

periodic boundary conditions. The playground is a network of

habitats on which individuals are allowed to interact with their

neighbors residing in the same habitat. Players move from the

habitats depending on their performance and the diversity of

the habitat they reside.

At any simulation cycle, individuals adopt either defec-

tion D or cooperation C as strategy. The system evolves

by applying interaction, imitation and migration phases one

after another. During interaction phase, players encounter with

each of their neighbors. In the PD game, each player adopts

either a defecting strategy D or a cooperating strategy C and

payoff values are computed accordingly. Mutual cooperation

among players is rewarded R, but mutual defection results in

punishment P . When a player prefers to cooperate but the

other one does not, the player takes suckers payoff S and the

tempted defective player gets whatever the assigned temptation

value T is.

In the setup, we take original T = b > 1, R = 1 and S

= P = 0 values and rescaled them according to habitat social

status (diversity) while preserving the original games payoff

ranking (T > R > P > S). Rescaling on the game played at

habitat i is done according to similar formulation developed in

[10]. In the original formula, the scaling acts as a mapping of

the original payoffs to individual fitness values defining social

diversity among individuals.

Rescaled payoffs have the form Ur
ij = Uij(1+ hi) where j

is a player residing at habitat i, hi is the scaling factor assigned

to each habitat location at the beginning of simulations. hi is

drawn randomly from exponential distributed habitat diversity

defined by equation

h = a(− logχ− 1) (1)

where χ is a uniformly distributed random variable taking

values from unit interval such that the average of h values

is zero. Note that,
∫ 1

0
h(χ) dχ = 0 so that average of h

over all the habitat locations is zero. Parameter a in Equation

(1) defines the amplitude of scaling factors. The degree of

dispersion is defined by this parameter. When a = 0, the

original PD payoff values are obtained. On the other hand,

when a = 1, (1 + hi) ≥ 0 preserved for all i and possible PD

payoff ranking changes are disabled.

During imitation phase, players update their strategy, syn-

chronously. The whole population updates the strategies si-

multaneously in discrete time steps, giving rise to a discrete

time dynamics on macroscopic level. A player j located on

habitat i chooses one of its neighbors say k as its cultural

parent and copies its strategy sik with a probability

psij→sik =
1

1 + e(Uij−Uik)/K1

(2)

where Uij is the obtained payoff at one game cycle by player

j, Uik is the payoff of randomly chosen neighbor k in the

same habitat i and K1 is the extent of noise [4].

The stochastic effects on the evolution of cooperation in

MPD game are extended while introducing diversity of habi-

tats and player mobility as two new model extensions. The

habitat diversity is provided by introducing scaling factors that

modify the game payoffs to scaled values. Note that the game

played is still preserved to be the prisoner’s dilemma while

the game places are supposed to affect the obtained payoff

values.

During migration phase, players migrate from one habitat to

another based on their success and diversity of the habitat they

reside. We can answer the two questions i) Who should leave

from the current habitat? ii) Where can be the new location

of the mover in terms of both its new habitat and its new

neighbors in that new scale-free habitat location?

Related to the first question: In order to establish a relation

between obtained payoff and player mobility we need to

propose a mechanism. In our case, for a rescaled payoff Ur
ij ,

the probability of player j at habitat i to leave its location is

computed by

pij = 1−
Ur
ij

M(Ur
ij)

(3)

where M(Ur
ij) is the maximum payoff that player j can retain

in one game cycle played from its neighbors. Clearly, M(Ur
ij)

shows variation depending on the players current strategy. For

cooperators it is calculated by

M(Ur
ij) = kR(1 + hi)
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and for the defectors, by

M(Ur
ij) = kT (1 + hi)

where k is the number of current neighbors of j. Players with

higher payoff values are expected to continue their survival

on their habitats. As a special case, when only one player

resides in a habitat, it does not move to its neighbor habitats

but stays. Note that in an habitat when all the players are

cooperators, each player gets the maximum obtainable payoff

and this results in pij= 0 and no move from the habitat. Related

to the second question: Decided movers in habitat i can change

their habitats by considering their four-neighboring habitats.

The scaling factor hi of the habitat of the mover is compared

with that of a randomly chosen neighbor habitats scaling factor

hj and the probability to change its location from i to j is

calculated by

pi→j =
1

1 + e(hi−hj)/K2

(4)

where K2 is the extent of noise defining the uncertainty about

player move process.

Formation and update of a scale-free habitat is critical

for our simulations. Barabasi-Albert scale-free network gen-

eration algorithm [6] suggests two main ingredients of self-

organization of a network: (i) growth followed by (ii) preferen-

tial attachment. A newcomer is connected to current topology

based on preferential attachment algorithm. By this way, scale-

free property of habitat is preserved against possible changes

due to player mobility. In simulations, the number of nodes

that newcomer attached is assumed to be 4. If a habitat holds

less than 4 players, then the newcomer is attached to all.

We know that scale-free networks are robust to random

failures like node collapse (or removal) but fragile to inten-

tional attacks [13][14]. For the removal of node i, we propose

the following simple procedure inspired from preferential

attachment. Let Ωi be the set of neighbors of node i and ki
show degree of node i:

• Step 1: Remove node i together with its connected edges.

• Step 2: Decide on node j taken from Ωi based on

probability:

Πj =
kj∑

l∈Ωi
kl

• Step 3: Connect node j to all other nodes in Ωi (except

itself), if exists.

The above procedure prevents potential graph disconnec-

tions caused by node removals. However, an evaluation about

its possible scale-free preserving property still requires some

mathematical elaboration.

III. SIMULATION SETUP, RESULTS AND DISCUSSIONS

This section is divided into three subsections. The first

subsection defines the designed simulation setup. In the second

one, simulation results are reported and discussed. The last

subsection contains general comments about both numerical

implementations of PD based simulations and result interpre-

tations.

A. The Setup

IVC software [15] id used to generate initial scale-free habi-

tats. Habitats are generated by initial 4 core nodes extended by

16 attached nodes each with 4 neighbors. K1 and K2 param-

eters, in Equations (2) and (4) define uncertainties in strategy

change and movement from habitat processes, respectively.

They are both assumed to be 0.05. Scaling factors are drawn

randomly from a given distribution to determine the diversity

of habitat places. The habitat grid size was 20times20. Two
different sizes N = 200 and 500 are tried as the initial

population for each habitat. For all runs initial cooperator

density values (FC) are set with 0.5 probabilities at individual

habitat level. By the end of 1000 iterations of all runs, the FC

results are observed to converge. For each different habitat

diversity and temptation values, 20 independent simulations

are executed. 11 different amplitude values ranging from 0.0 to
1.0 in 0.1 step size and 11 different temptation values ranging

from 1.0 to 2.0 in 0.1 step size are considered. Therefore, total

number of independent runs is: 11·11·20·2 = 4840 for each of

two initial habitat population sizes. Runs for immobile mode

(as the base model) are also taken. Total number of runs for the

immobile mode is: 11 · 20. Each simulation run is performed

on a single computational node of a cluster. The system is

implemented in Java programming language.

B. Results and Discussions

Figure 2 depicts the values of cooperator densities (FC)

on the strategy state space which is calculated by taking the

average over 20 independent simulations for each amplitude

and temptation values. We observed that the existence of both

habitat diversity (i.e. a > 0.0) and mobility promotes higher

cooperation rate than the immobile case for temptation values

b >= 1.7. For a = 0.0 and b >= 1.5, there are no cooperators

left in the society by the end of 1000 iteration cycles of all

20 independent runs. Nonexisting habitat diversity implies a

flat grid landscape and allows random movement. However,

grid landscape with diverse habitat values provides a kind

of probabilistic guidance for cooperators to reach potential

locations populated with cooperators. In immobile case, the

population size in a habitat is crucial factor for survival of

cooperation and it requires enough number of individuals

reside in the same habitat. For any setup either immobile,

nondiverse or diverse habitat, when temptation values are as

low as b < 1.5, the cooperators dominate the society. The

reason for that is simply the scale-free nature of the habitats.

See [7] for compatible results.

Figure 3 gives an idea about general behavior and conver-

gence of an individual run for various a and b values with

initial population sizes 200 and 500. The FC values show

convergence by the end of 1000 iteration cycles. A common

characteristic of all 20 independent runs is a decrease in

FC values in first 20-25 iterations of both immobile, diverse

and nondiverse habitats during which mobility of players are

also observed to be high. Such behavior can be explained by

the initial dominance of defectors over cooperators in every

habitat, which is suppressed relatively by later formation of
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Fig. 2. Cooperator density (FC) values on the temptation-amplitude (b-a)
parameter space where N=200, 500.

cooperation. As it is expected, in all runs, cooperator densities

decrease down for higher temptation values.
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Fig. 3. Cooperator density (FC) changes throughout iteration cycles for
various amplitude (a) and temptation (b) settings. Simulations were carried
out for N = 500 (left column), N = 200 (right column) values.

Since players are mobile, it would be interesting to examine

their potential spatial distribution by the end of 1000 iteration

cycles. Figure 4 and 5 show linear color scaled values indi-

cating the number of cooperators and defectors for the runs

of Figure 3. Note that, white dots in figure represent at most

one cooperator or defector player residing in a habitat. There

is no considerable difference between the results in Figure 4

and Figure 5. This means initial population size of habitats has

no important effect on the final spatial distribution of players.

The highest habitat diversity a = 1.0 together with mobility

promote the cooperation even for high temptation values. The

same effect can not be observed for nondiverse a = 0.0 and

immobile cases especially when b = 2.0. In immobile setup the

promotion results become more sensitive to initial population

sizes. When b = 1.0, in any case cooperation is the dominant

strategy and the observed blank habitats in two mobile cases

are simply due to the provided mobility.

b=1.0

b=1.5

b=2.0

b=1.0

b=1.5

b=2.0

b=1.0

b=1.5

b=2.0

a=0.0 a=1.0 Immobile

Fig. 4. Spatial distribution of Defective (Gray) and Cooperative (Black)
players by the end of 1000 iteration cycles for the run given in Figure 3
for selected immobile mode, diversity a = (0.0, 1.0) and temptation b =
(1.0, 1.5, 2.0) values where N=200.

C. General Comments

In [16], it has been pointed out that the outcome of so-

called games on grids depends somewhat on their numerical

implementation. As PD model becomes more complex and

the number of model initialization parameters and model

stochastic components are high, the simulations may not reveal

hidden system behavior. Another factor that can limit the

observability of potential system behavior is the quality of

random number generator used in simulations. Cycles in ran-

dom number generation process can limit the investigation of

whole encounter space and this may prevent the emergence of

potential system behavior. Furthermore, synchronous gaming

based on iteration cycles seems an important assumption that

may effect the conclusions drawn about the system behavior.

PD game is not the only mechanism to explain actually

found altruism/cooperation among individuals and societies.

For example, a simple alternative description for cooperation

realized on graphs and social networks has been pointed in

[17]. Kin selection, reciprocal altruism and more sophisticated

processes exemplify different perspectives to the problem.

Beside from this, the results obtained in this study (or in

general any other PD based simulations) should not be over

generalized especially when making judgments about human

societies whose behavior is known (or at least felt) to be
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Fig. 5. Spatial distribution of Defective (Gray) and Cooperative (Black)
players by the end of 1000 iteration cycles for the run given in Figure 3
for selected immobile mode, diversity a = (0.0, 1.0) and temptation b =
(1.0, 1.5, 2.0) values where N=500.

complex enough. Specifically, playing D or C may not be a

reflection of selfish or altruistic preference of the player but

it may just be a consequence of his/her adoption of honesty

as the third strategy that drives his/her conscious decision.

Therefore, careless interpretations about macroscopic system

behavior based on D and C label statistics can be misleading

when trying to explain complex social interactions.

IV. CONCLUSIONS

A new cooperation promotion model MPD game in diverse

habitats is introduced. Specifically, we have investigated how

the introduction of habitat diversity and particularly its am-

plitude affect the evolution of cooperation amongst players

moving on a spatial 2-D grid network of scale-free habitats.

Mobile player model provided systematic and stochastic for-

mulation of dynamically changing neighborhood description.

It is observed that an existence of habitat diversity together

with mobility provide promotion of cooperation even for high

temptation values. Alternatively, in immobile mode, promotion

of cooperation can only be achieved when the scale-free

network habitats are populated enough. Finally, we point out

that especially for human social systems, one must be careful

about associating meanings to the conclusions drawn by the

end of even so extensive simulations since the identifiability

of human intentions from the actions is still questionable.
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