Abstract:
Particle swarm optimization (PSO) may lose search efficiency when the problem's dimension increases to large scale. For high dimensional search space, an algorithm may no...Show MoreMetadata
Abstract:
Particle swarm optimization (PSO) may lose search efficiency when the problem's dimension increases to large scale. For high dimensional search space, an algorithm may not be easy to locate at regions which contain good solutions. The exploitation ability is also reduced due to high dimensional search space. The “No Free Lunch” theorem implies that we can make better algorithm if an algorithm knows the information of the problem. Algorithms should have an ability of learning to solve different problems, in other words, algorithms can adaptively change to suit the landscape of problems. In this paper, the strategy of dynamical exploitation space reduction is utilized to learn problems' landscapes. While at the same time, partial re-initialization strategy is utilized to enhance the algorithm's exploration ability. Experimental results show that a PSO with these two strategies has better performance than the standard PSO in large scale problems. Population diversities of variant PSOs, which include position diversity, velocity diversity and cognitive diversity, are discussed and analyzed. From diversity analysis, we can conclude that an algorithm's exploitation ability can be enhanced by exploitation space reduction strategy.
Published in: 2012 IEEE Congress on Evolutionary Computation
Date of Conference: 10-15 June 2012
Date Added to IEEE Xplore: 02 August 2012
ISBN Information: