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Abstract—The linear antenna array design problem is one
of the most important in electromagnetism. While designing
a linear antenna array, the goal of the designer is to achieve
the “minimum average side lobe level” and a “null control”
in specific directions. In contrast to the existing methods that
attempt to minimize a weighted sum of these two objectives
considered here, in this paper our contribution is twofold.
First, we have considered these as two distinct objectives which
are optimized simultaneously in a multi-objective framework.
Second, for directivity purposes, we have introduced another
objective called the “maximum side lobe level” in the design
formulation. The resulting multi-objective optimization problem
is solved by using the recently-proposed decomposition-based
Multi-Objective Particle Swarm Optimizer (dMOPSO). Our
experimental results indicate that the proposed approach is able
to obtain results which are better than those obtained by two
other state-of-the-art Multi-Objective Evolutionary Algorithms
(MOEAs). Additionally, the individual minima reached by
dMOPSO outperform those achieved by two single-objective
evolutionary algorithms.

I. INTRODUCTION

Antenna arrays play an important role in detecting and

processing signals arriving from different directions. Nowa-

days, antenna arrays are preferred because the use of a

single element has several limitations in terms of directivity

and bandwidth. Antenna arrays overcome such defects by

associating each antenna element to different electrical and

geometrical configurations, so that it can have its beam-

pattern modified with an amplitude and phase distribution

called the weights of the array. After post-processing the

antenna outputs, the signals are weighted and summed to

give the antenna array beam-pattern. On the other hand, the

antenna array pattern synthesis problem consists of finding

weights that satisfy a set of specifications on the beam pat-

tern. Antenna arrays have found several applications in radar,

sonar, radio, and third generation wireless communication

systems [4, 7, 20].

The main goal in the design of an antenna array structure

is to find the positions of the array elements that produce a

radiation pattern as a whole that closely matches the desired

pattern [19]. Recently, the synthesis of linear array elements

separated in a non-linear fashion has become immensely

popular among researchers working in electromagnetism.

Current mathematical programming techniques are not able

to satisfy researchers due to their limitations, including

the fact that most of them are likely to get trapped in

local optimal points and are highly sensitive to the ini-

tial search point. For this reason, several researchers have

opted for the use of metaheuristics (mainly, evolutionary

algorithms) to reduce the Side Lobe Levels (SLLs) and

the Null Control (NC) from the designed arrays (see for

example [2, 3, 12, 21, 22]). Such techniques are a suitable

alternative to the conventional methods because of their

ability to deal with difficult problems featuring complex

landscapes. Most of these approaches tackle the objectives

simultaneously creating a single objective function by taking

a weighted sum of the objective functions. Clearly, when

using such a weighted sum method, the solution obtained

will depend on the values of the specified weights, and

determining such weights is not an easy task.

Motivated by the inherent multi-objective nature of the

linear antenna design problem and to avoid the problems

associated with the use of weighted sum approaches, in

this paper, we present a multi-objective formulation of the

problem of our interest and we adopt a recent approach called

decomposition-based Multi-Objective Particle Swarm Opti-

mizer (dMOPSO) for solving it. In contrast to the plethora

of works which consider only the average SLL and NC as the

objective functions, we consider here an additional objective

(maximum SLL) in order to increase the overall directivity

of the antenna array. As we will see later in this paper, the

solutions obtained by dMOPSO outperform those obtained

by two other state-of-the-art multi-objective evolutionary

algorithms (MOEAs). Additionally, the individual minima

obtained by dMOPSO also outperform those obtained by

two single-objective evolutionary algorithms reported in the

specialized literature.

The remainder of this paper is organized as follows.

Section II provides the basic concepts adopted in this paper,

as well as the multi-objective formulation of the problem of

our interest. In Section III, we provide a short description

of the multi-objective particle swarm optimizer adopted in

this work. Section IV shows the results obtained in our

experimental study. In Section V, we give a brief discussionU.S. Government work not protected by U.S. copyright
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of the results obtained. Finally, in Section VI, we provide

our conclusions and some possible paths for future research.

II. BASIC CONCEPTS AND PROBLEM FORMULATION

A. Notions of Multi-Objective Optimization

An unconstrained multi-objective optimization problem

(MOP), can be stated as follows 1:

min
x∈Ω

{F (x)} (1)

where Ω defines the search space and F is defined as the

vector of the objective functions:

F : Ω → R
k, F (x) = (f1(x), . . . , fk(x))

T

where fi : R
n → R is an unconstrained function.

In multi-objective optimization, it is desirable to produce

a set of trade-off solutions representing the best possible

compromises among the objectives (i.e., solutions such that

no objective can be improved without worsening another).

In order to describe the concept of optimality in which we

are interested, the following definitions are introduced [14].

Definition 1. Let x, y ∈ Ω; we say that x dominates y

(denoted by x ≺ y) if and only if, fi(x) ≤ fi(y) and

F (x) 6= F (y).

Definition 2. Let x⋆ ∈ Ω; we say that x⋆ is a Pareto optimal

solution, if there is no other solution y ∈ Ω such that y ≺ x⋆.

Definition 3. The Pareto Optimal Set PS is defined by:

PS = {x ∈ Ω|x is Pareto optimal solution}

Definition 4. The Pareto Optimal Front PF is defined by:

PF = {F (x)|x ∈ PS}

The main goal of a MOEA is to generate as many

(different) elements of the Pareto optimal set as possible,

while maintaining a distribution of solutions as uniform as

possible along the Pareto front.

B. Multi-Objective Formulation of the Problem

An antenna array is a configuration of individual radiating

elements that are arranged in an space and can be used to

produce a directional radiation pattern. For a linear antenna

array, let us assume that we have 2N isotropic radiators

placed symmetrically along the z-axis (the array geometry

is shown in Fig. 1). The array factor in the azimuth plane

can be written as:

AF (φ) = 2

N
∑

n=1

In cos [k · zn · cos(φ) + ϕn] (2)

where In is the excitation amplitude, k = 2π
λ

is the wave

number, zn is the location of the z-th element, ϕn defines

the phase and φ represents the angle measured from the array

line.

1Without loss of generality, we assume minimization

Assuming an uniform excitation of amplitude and phase

(i.e. In = 1 and ϕn = 0 for all the elements), the array factor

can be written as:

AF (φ) = 2

N
∑

n=1

In cos [k · zn · cos(φ)] (3)

The main goal of the optimizer is to find the locations

zn of the array elements that will result in an array beam

with minimum Side Lobe Level (SLL) and nulls at specific

directions but subject to certain constraints. In an antenna

array, if the adjacent elements are located very near, then that

can lead to mutual coupling effects. On the other hand, if they

are located very far, then, occurrence of grating lobes can

take place. Therefore, the distance among adjacent elements

needs to be constrained. The constraints which are considered

for normalizing the element spacing zn is given by:

0.5 ≤ zn+1 − zn ≤ 1, n ∈ [1, N − 1]

The first element along the positive z-axis needs to be

placed such that it is neither too close nor too far from the

first element on the negative z-axis. Therefore, the constraint

for the first element is given by:

0.3 ≤ z1 ≤ 0.5

In contrast with most of the design formulations of an-

tenna arrays which consider only the Average Side Lobe

Level (ASLL)–see for example [5, 17], we consider here an

additional objective function for the side lobe suppression:

the Maximum Side Lobe Level (MSLL). This objective func-

tion is considered for directivity purposes. The directivity of

an antenna array is an important parameter to be considered

during the design stage, since the design is considered to be

more efficient if the directivity is increased. In this study,

besides the ASLL reduction we have also given special

emphasis on reducing the two maximum lobes: the adjacent

lobe on the left side (MSSL1) and the adjacent lobe on the

right side (MSLL2). This ensures that the energy contents is
mostly confined to the maximum lobe, thereby increasing the

directivity of the entire array. Then, the two cost functions

(i.e., ASLL and MSLL) to be minimized are mathematically

stated as:

fASLL =
∑

i

1

∆φi

φui
∫

φli

|AF (φ)|2dφ (4)

fMSLL = |AF (φMSLL1)|+ |AF (φMSLL2)| (5)

where MSLL1 and MSLL2 are two lobes by the side of

the MSLL.

As these two objective functions are not conflicting, a

weighted sum of these objectives could be taken. Therefore,

we define the overall objective function for the side lobe

suppression fSLL as a weighted sum of the above objectives,

denoted by:

fSLL = α · fSLA + β · fMSL (6)



Fig. 1. Symmetrically placed linear array.

where α = 0.2 and β = 0.1, and the null control fNC is

defined as:

fNC =
∑

k

|AF (φk)|
2 (7)

In this way, equations (6) and (7) are considered as

two distinct objectives that are simultaneously optimized in

a multi-objective framework. A MOEA will allow us to

find out the right balance between the two above objec-

tive functions. When a MOEA is used, we obtain a set

of solution which represent the best compromises among

such objectives. Therefore, a MOEA will allow us greater

flexibility in designing a linear antenna array than single-

objective evolutionary approaches, which provide only one

optimal solution per run, which might not completely satisfy

the designer’s needs.

III. THE MULTI-OBJECTIVE PARTICLE SWARM

OPTIMIZER

A Pareto optimal solution to a MOP, under some mild

assumptions, can be an optimal solution to a scalar optimiza-

tion problem in which the objective is an aggregation of all

the objective functions fi’s. Therefore, an approximation of

the Pareto optimal front can be achieved by decomposing

a MOP into several single-objective optimization problems.

This is the main motivation behind current decomposition-

based MOEAs [15, 18, 23, 24].

Recently, Zapotecas and Coello [23] proposed a novel

decomposition-based Multi-Objective Particle Swarm Opti-

mizer (dMOPSO). This MOEA employs a decomposition

framework similar to the one adopted by MOEA/D [24].

However, a (µ+ λ)-selection mechanism (selecting the best

solution to each subproblem) is employed instead of a mech-

anism to update a neighborhood as adopted in MOEA/D.

In dMOPSO, a swarm of N particles P = {x1, . . . , xN} is

randomly initialized. Each particle possesses a flight velocity

vi and an age ai, both of which are initially set to zero.

Along the flight circuits, a particle tries to minimize one of

the subproblems in which the MOP is decomposed. Each

subproblem is defined by a weighted vector λ according to

the Penalty Boundary Intersection (PBI) approach, which is

stated as [24]:

minimize: g(x|λ, z⋆) = d1 + θd2 (8)

Pareto Optimal Front

Attainable Objective Set

Fig. 2. Illustration of the Penalty Boundary Intersection (PBI) approach.
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where x ∈ R
n, z⋆ = min{fi(x)|x ∈ Ω} and λ ∈ Λ, being Λ

a well-distributed set of weighted vectors previously defined.

In this way, a Pareto optimal point is reached by minimizing

a subproblem defined by the weighted vector λ. Fig. 2 shows

the illustration of the PBI approach.

At each cycle, dMOPSO tries to find the best solution to

each subproblem. Thus, the global best set (Gbest) is defined

in a natural way by storing the solutions that minimize each

subproblem and these solutions are identified at each cycle.

The personal best xpb,i of the ith particle, represents the

best solution provided by the particle to the ith subproblem.

Since, at the beginning, a particle does not have a previous

movement, the best personal position is initialized with the

same position as the particle, i.e., xpb,i = xi.

Once the global best set has been defined, the velocity

and the position of each particle are updated according to

the traditional PSO flight equations:

vt+1
i = wvti + c1r1(xpb,i − xt

t) + c2r2(xgb,i − xt
i)

xt+1
i = xt

i + vt+1
i

(9)

where w ≥ 0, c1, c2 ≥ 0, r1, r2 ∈ (0, 1), vi, xpb,i and xgb,i

represent the velocity, the personal best and the global best

position for the ith particle, respectively.

In dMOPSO, a reinitialization mechanism based on the

age of each particle is employed. This mechanism provides



diversity along the flight circuits. When a particle does not

improve its personal position in a flight cycle, then the

particle increases (by one) its age. On the other hand, if

a particle exceeds a certain age threshold (Ta), the particle

(including, its velocity, its age and its personal best) is

reinitialized according to the following equation:

xt+1
i (j) = N

(

xgb,i(j)− xpb,i(j)

2
, |xgb,i(j)− xpb,i(j)|

)

(10)

where N(m,σ) represents a random number using a normal

distribution with mean m and sigma σ. As in [23], in our

experiments we use Ta = 2.
The solutions contained in Gbest at the final generation,

are reported as an approximation to the Pareto set. For a

detailed description of dMOPSO, the interested reader is

referred to [23].

IV. EXPERIMENTAL STUDY

In order to assess the performance of dMOPSO, we

compared its results with respect to those generated by the

Nondominated Sorting Genetic Algorithm II (NSGA-II) [6]

and the Multi-Objective Particle Swarm Optimizer based on

Decomposition (MOPSO/D) [18].

A. Performance Measures

For comparing results, we adopted the performance mea-

sures described next.

1) R2 Indicator (IR2): The R2 indicator (IR2) proposed

in [9] quantifies the distance between the nondominated set

or a reference set R and an approximation of the nondom-

inated set A given by an algorithm. Mathematically, it can

be expressed as:

IR2(A) =

∑

λ∈Λ
u∗(λ,R)

|Λ|
(11)

where R is a reference set, u∗ is the maximum value reached

by the utility function u with the weight vector λ, on an

approximation set A, i.e., u∗ = max
y∈A

uλ(y). Λ denotes the

set of weight vectors λ ∈ R
k.

Here, we employed the augmented Tchebycheff function

as the utility function u. For each test problem, the reference

vector R was defined by using the minimum values of each

objective found by all the algorithms.

2) Hypervolume difference to a reference set (IH̄ ): The

Hypervolume (IH ) indicator was proposed by Zitzler [25].

This performance measure is Pareto compliant [26] and

quantifies the approximation of nondominated solutions to

the Pareto optimal front. The hypervolume corresponds to

the non-overlapped volume of all the hypercubes formed by

a reference point r (given by the user) and each solution p in

the Pareto set approximation A. It is mathematically defined

as:

IH(A) = Λ





⋃

p∈A

{x|p ≺ x ≺ r}



 (12)

where Λ denotes the Lebesgue measure and r ∈ R
k denotes

a reference vector being dominated by all valid candidate

solutions in A.

Here, we consider the hypervolume difference to a refer-

ence set R (commonly, the Pareto optimal front), and we

will refer to this indicator as IH̄ , which is defined as:

IH̄(A) = IH(R)− IH(A)

where smaller values correspond to higher quality as opposed

to the original Hypervolume indicator IH(A).
Since we solve a real-world problem, we do not know the

Pareto optimal front. Therefore, for each design problem,

we executed all the algorithms for a considerably large

number of generations, and the union of all the nondominated

solutions obtained was used as the reference set R for

this performance measure. For computing IH , the reference

vector r was defined by using the maximum values of each

objective function found by all the algorithms over all the

runs in each test problem.

B. Multi-Objective Evolutionary Approaches

For each design problem, we performed 30 independent

runs with each algorithm. Each run was restricted to 700

generations. For each problem, we used a population size

N = 100. Therefore, we performed 70,000 fitness function

evaluations for each test problem.

Since dMOPSO and MOPSO/D are two decomposition-

based algorithms, we used the same scalarization function

for a fair comparison, i.e., we used the PBI approach with

θ = 5. For all the algorithms (dMOPSO, MOPSO/D and

NSGA-II), the parameters were set as the best suited para-

metric set-up chosen with guidelines from their respective

references, see [6, 18, 23]. Since the solutions obtained for

each MOEA are not always nondominated, we extracted the

best compromise solutions by using the fuzzy membership

function based method outlined in [1].

As we mentioned before, the performance of each MOEA

was evaluated using the two performance measures previ-

ously defined (IR2 and IH̄ ). The results are summarized in

Tables I, III and V. Each table displays the best, the worst,

the average value, as well as the standard deviation of each

performance measure, for each test instance. For an easier

interpretation, the best results are presented in boldface for

each performance measure and test problem adopted.

C. Single-Objective Evolutionary Approaches

The individual minima found by each MOEA, i.e., the

minimum value reached at each objective function (fSLL

and fNC), were compared with respect to those achieved

by two single-objective bio-inspired algorithms: a standard

Particle Swarm Optimizer (PSO) [11] and an elitist Genetic

Algorithm (GA) [8]. For each design problem, we performed

30 independent runs with each single-objective evolutionary

approach. Both algorithms were tested using a population

size of 100 individuals. As in the multi-objective evolu-

tionary approaches, each run was restricted 70,000 fitness

function evaluations (i.e., 700 generations). However, since



we used the single-objective evolutionary approaches for

minimizing separately each objective function, we divided

the computational cost for each objective, i.e., we employed

350 generations (35,000 fitness function evaluations) for each

one.

The PSO algorithm was tested using the traditional inertia

equations. The inertia weight w was set linearly decreasing

from 0.9 to 0.4. The flight constraints c1 and c2 were set in

2. The GA was implemented using a roulette-wheel selection

mechanism, one-point crossover and an adaptive feasible

mutation operator [13].

The results obtained by each algorithm are reported in

Tables II, IV and VI. Each table displays the individual

minima and the directivity (in decibels (dB)) obtained by

each algorithm for each test problem. The best result for

each adopted test problem is presented in boldface.

D. Test Problems and Numerical Results

In our study, we compared the performance of the above

mentioned MOEAs in three different test problems. In the

following, we describe these design problems and their

corresponding numerical results are also presented.

1) Example 1: In the first example we have designed a

22-element array having minimum SLL in bands [0°, 82°]

and [98°, 180°] with one null in the direction 81°.

Table I provides the results achieved by the multi-objective

evolutionary approaches (i.e., dMOPSO, MOPSO/D and

NSGA-II) with the adopted performance measures (IR2 and

IH̄ ). From this table, it is possible to see that the best values

for both indicators are obtained by dMOPSO. That means

that dMOPSO obtained a better approximation to the Pareto

optimal front than MOPSO/D and NSGA-II. These results

are validated in Fig. 3, where we show the bi-dimensional

Pareto front obtained by all the MOEAs. The figure clearly

indicates that by using dMOPSO, it is possible to achieve

better trade-off solutions between the two conflicting objec-

tives, namely fSLL and fNC . In Table II, we have provided

the individual minima values and the value of directivity for

the linear antenna array obtained by the considered single-

objective evolutionary algorithms (i.e., PSO and GA). From

this table, we can see clearly that the individual minima

obtained by dMOPSO is considerably better than those

obtained by the single-objective evolutionary approaches.

Finally, Fig. 4 plots the normalized power (in dB) versus

the elevation angle (in degrees) for all the algorithms over

the design corresponding to Example 1.

2) Example 2: In the second example we have increased

the number of elements of the array thereby considering a

26-element array having minimum SLL in bands [0°,82°]

and [98°, 180°] which has one null in the direction 20°.

In Table III, the performance measures adopted for the

comparison of the MOEAs are reported. For both, the IR2

and the IH̄ indicators, the best values were obtained by

dMOPSO. Fig. 5 shows the bi-objective Pareto front obtained

by the MOEAs tested here. From this figure, it is possible

to see that dMOPSO achieved a better approximation to the

Pareto optimal front than the two other MOEAs, although the

TABLE I
BEST, WORST, MEAN AND STANDARD DEVIATIONS OF THE

PERFORMANCES MEASURES (IR2 AND I
H̄
) ACHIEVED BY EACH MOEA

FOR THE EXAMPLE 1

Metric Value Type MOPSO/D NSGA-II dMOPSO

IR2

Best 5.76E-007 4.36E-005 1.72E-007

Worst 7.66E-005 8.72E-004 6.63E-005

Mean 3.86E-005 1.87E-004 1.65E-005

Std. Dev 1.65E-005 5.83E-005 1.84E-005

I
H̄

Best 5.87E-006 4.87E-005 3.28E-006
Worst 1.54E-004 7.54E-004 9.78E-005

Mean 8.20E-005 2.87E-004 6.62E-005

Std. Dev 4.29E-005 9.87E-005 2.68E-005

TABLE II
INDIVIDUAL MINIMA AND DIRECTIVITY ACHIEVED BY EACH

ALGORITHM FOR THE EXAMPLE 1

Algorithms fSSL fNC Directivity (dB)

dMOPSO 0.1056 0.0231 17.587

NSGA-II 0.1672 0.0476 17.282

MOPSO/D 0.1352 0.0532 17.354

GA 0.1852 0.1054 16.192

PSO 0.1762 0.0976 16.823
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Fig. 3. Best solutions obtained by dMOPSO, MOPSO/D and NSGA-II for
the Example 1
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Fig. 5. Best solutions obtained by dMOPSO, MOPSO/D and NSGA-II for
the Example 2

distribution was not better. However, a better distribution of

solutions is relevant only when there is a good approximation

to the Pareto front. In Table II, we can see that the individual

minima values obtained by dMOPSO are better than those

obtained by the single-objective evolutionary approaches.

Fig. 6 shows the normalized power versus elevation angle

plot for all the algorithms over the design corresponding to

Example 2.

TABLE III
BEST, WORST, MEAN AND STANDARD DEVIATIONS OF THE

PERFORMANCES MEASURES (IR2 AND I
H̄
) ACHIEVED BY EACH MOEA

FOR THE EXAMPLE 2

Metric Value Type MOPSO/D NSGA-II dMOPSO

IR2

Best 6.83E-007 5.75E-006 3.57E-007

Worst 2.63E-004 8.03E-004 9.02E-005
Mean 5.98E-005 1.76E-004 3.10E-005

Std. Dev 3.82E-004 1.65E-004 8.35E-005

I
H̄

Best 5.20E-005 1.07E-004 2.66E-005

Worst 8.13E-004 3.76E-003 5.67E-004
Mean 4.98E-004 9.24E-004 1.65E-004

Std. Dev 2.63E-004 5.83E-004 3.76E-004

TABLE IV
INDIVIDUAL MINIMA AND DIRECTIVITY ACHIEVED BY EACH

ALGORITHM FOR THE EXAMPLE 2

Algorithms fSSL fNC Directivity (dB)

dMOPSO 0.1130 0.0012 17.9230

NSGA-II 0.1575 0.0543 17.7540

MOPSO/D 0.1334 0.0234 17.8320

GA 0.1865 0.0965 16.0030

PSO 0.1623 0.0887 16.7240

3) Example 3: In the third example, we consider a 26-

element array having minimum SLL in bands [0°, 82°] and

[98°, 180°] which has two nulls in the direction 12°and 60°.

For this design instance, Table V shows the results ob-

tained by the MOEAs. The best values for both indicators

(IR2 and IH̄ ), were obtained by dMOPSO. In Fig. 7, the bi-

objective Pareto front achieved by the MOEAs is presented.
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Fig. 6. Array patterns obtained for the Example 2

As it is possible to see, dMOPSO achieved a better approxi-

mation to the Pareto optimal front than the other MOEAs. In

Table VI, the individual minima values are reported. From

this table, we can see that dMOPSO not only obtained better

results in terms of the indicators adopted here, but also

obtained individual minima that outperformed those obtained

by the single-objective evolutionary approaches. Finally,

Fig. 8 shows the normalized power versus elevation angle

plot for all the algorithms over the design corresponding to

Example 3.

TABLE V
BEST, WORST, MEAN AND STANDARD DEVIATIONS OF THE

PERFORMANCES MEASURES (IR2 AND I
H̄
) ACHIEVED BY EACH MOEA

FOR THE EXAMPLE 3

Value Type MOPSO/D NSGA-II dMOPSO

IR2

Best 6.86E-007 5.05E-006 3.01E-007

Worst 8.13E-005 4.83E-004 7.75E-005

Mean 2.06E-005 3.45E-005 1.01E-005
Std. Dev 8.63E-005 9.27E-005 5.82E-005

I
H̄

Best 1.76E-005 8.20E-005 1.03E-005
Worst 6.43E-005 6.65E-004 5.33E-005

Mean 3.97E-005 2.47E-004 2.06E-005

Std. Dev 4.54E-006 5.92E-006 1.87E-006

TABLE VI
INDIVIDUAL MINIMA AND DIRECTIVITY ACHIEVED BY EACH

ALGORITHM FOR THE EXAMPLE 3

Algorithms fSSL fNC Directivity (dB)

dMOPSO 0.1452 0.0154 17.8240

NSGA-II 0.1593 0.0197 17.6920

MOPSO/D 0.1557 0.0203 17.5630

GA 0.1825 0.0431 17.0320

PSO 0.1733 0.0511 17.2130

V. DISCUSSION OF RESULTS

According to results presented in Tables I to VI, dMOPSO

has clearly shown its superiority in terms of the performance

measures considered here. These tables provide a quantitative

assessment of the performance of dMOPSO in terms of
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the IR2 and IH̄ indicators. That means that the solutions

obtained by dMOPSO constitute a better approximation to

the Pareto optimal front than the solutions obtained by

either MOPSO/D or NSGA-II. As it is possible to see

in Tables II, IV and VI, dMOPSO also reached better

values for the individual minima reported by the two single-

objective evolutionary approaches. It is worth noting that

dMOPSO was not the only MOEA capable to obtaining

good individual minima. In fact, the other two MOEAs

also achieved better individual minima than those obtained

by the single-objective evolutionary approaches. We believe

that this good performance of the MOEAs evaluated in

our experimental study can be attributed to their diversity

maintenance mechanism, which allows a better exploration

of different regions of the search space than that provided

by a single-objective optimizer. In the case of NSGA-II,

this diversity is provided by its crowded-comparison operator

[6], which promotes the exploration of regions of the Pareto

front which contain isolated solutions. In the case of MOEAs

based on decomposition (i.e., dMOPSO and MOPSO/D),

the algorithms try to minimize different problems defined

by a well distributed set of weighted vectors and the PBI

approach. In other words, the solutions are guided by each

weighted vector, and the parameter θ enforces the search in

a specific direction, providing diversity in the search. The

single-objective evolutionary algorithms adopted don’t have

a similar mechanism to maintain diversity and are simply

guided by the aim of improving, as much as possible, the

best solution obtained so far.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have incorporated an additional objective

function (called the Maximum Side Lobe Level (MSLL))

into the linear antenna array design problem which has been

formulated as a bi-objective optimization problem. The two

objectives considered here, are optimized simultaneously in

a multi-objective framework. Then, a MOEA is adopted as

our search engine. Our results indicate that MOEAs provide

greater flexibility in the linear antenna array design problem,

by producing a set of solutions from which the designer

can choose the most preferred according to his/her own

particular preferences. In our study, we adopted one of

the recently developed variants of PSO for multi-objective

optimization called dMOPSO, which was developed by two

of the co-authors of this paper. The adopted algorithm has

been tested in three different instances of the design problem

of our interest. The results obtained by dMOPSO were

compared with respect to those obtained by two state-of-the-

art MOEAs, namely NSGA-II and MOPSO/D. Additionally,

the individual minima obtained were compared with respect

to those attained by two single-objective algorithms (a PSO

approach and an elitist GA).

The results indicate that dMOPSO outperforms all the

other approaches with respect to which it was compared

(including the single-objective techniques). In fact, all the

MOEAs adopted were able to outperform the individual

minima obtained by the single-objective optimizers used

in our study, giving evidence of the benefits of the more

diversified search that they perform.

As part of our future work, we are interested in having

more control of the array pattern by using dMOPSO for op-

timizing the excitation amplitude and phase of each element

in the array. We also aim to investigate the use of dMOPSO

in other (more complex) antenna design problems which are

currently modeled as single-objective optimization problems.

Additionally, we are also interested in hybridizing dMOPSO

with direct search methods available in the mathematical

programming literature (e.g., Hooke-Jeeves [10] or Nelder-

Mead [16] method) aiming to improve its performance. The

idea is to use the evolutionary strategy to explore the search

space as a whole and the mathematical programming method

to exploit promissory regions within it (acting as a local

search engine).
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