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Abstract—Microarray cancer gene expression data comprise of
very high dimensions. Reducing the dimensions helps in improv-
ing the overall analysis and classification performance. We pro-
pose two hybrid techniques, Biogeography — based Optimization
— Random Forests (BBO — RF) and BBO — SVM (Support Vector
Machines) with gene ranking as a heuristic, for microarray gene
expression analysis. This heuristic is obtained from information
gain filter ranking procedure. The BBO algorithm generates a
population of candidate subset of genes, as part of an ecosystem
of habitats, and employs the migration and mutation processes
across multiple generations of the population to improve the
classification accuracy. The fitness of each gene subset is assessed
by the classifiers — SVM and Random Forests. The performances
of these hybrid techniques are evaluated on three cancer gene
expression datasets retrieved from the Kent Ridge Biomedical
datasets collection and the libSVM data repository. Our results
demonstrate that genes selected by the proposed techniques
yield classification accuracies comparable to previously reported
algorithms.

I. INTRODUCTION

Microarray gene expression experiments help in the mea-
surement of expression levels of thousands of genes simulta-
neously. Such data help in diagnosing various types of tumors
with better accuracy. The fact that this process generates a lot
of complex data happens to be its major limitation. Normally
the number of genes (features) is much greater than the
number of samples (instances) in a microarray gene expression
dataset. Such structures pose problems to machine learning and
make the problem of classification difficult to solve. This is
mainly because, out of thousands of genes, most of the genes
do not contribute to the classification process. As a result
gene subset selection acquires extreme importance towards
the construction of efficient classifiers with high predictive
accuracy.

To overcome this problem, one way is to select a small
subset of informative genes from the data. This technique
which is known as gene selection or feature selection helps in
tackling overfitting by getting rid of noisy genes, reducing the
computational load and in increasing the overall classification
performance of the learning models.
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Gene selection algorithms are mainly categorized as : wrap-
pers and filters. Wrappers make use of learning algorithms to
estimate the quality or suitability of genes to the modelling
problem. Optimization algorithms in combination with various
classifiers fall into this category as described in [11], [2], [3].
On the other hand, filters [4] evaluate the genes considering
their inherent characteristics without making use of a learning
algorithm. Filters, therefore, give an insight into the properties
of the dataset we use. Algorithms based on statistical tests and
mutual information are some examples of filters.

This paper presents hybrid BBO — RF and hybrid BBO —
SVM approaches for simultaneous informative gene selection
and high performance classification. Additionally, for enhanc-
ing performance we provide information gain gene ranking
as heuristic knowledge to our BBO algorithm. It traverses
the enormously large search space by using this ranking
information to iteratively obtain informative gene subsets.
The selected subsets of genes (candidate solutions) in each
generation are subsequently evaluated by SVM and Random
Forests CV (cross validation) accuracies.

II. METHODOLOGY
A. Biogeography—based Optimization

Biogeography is the study of geographical distribution of
species over geological period of time. Biological literature
on the same is massive. In 2008, for the first time, Simon [5]]
applied the biogeography analogy to the idea of engineering
optimization and thus introduced the Biogeography—based Op-
timization (BBO) technique. It is a population based method
that works with a collection of candidate solutions over gener-
ations. It attempts to explore the combinatorially large solution
spaces with a stochastic approach like many other evolutionary
algorithms [6]], [[7]. It mimics the geographical distribution of
species to represent the problem and its candidate solutions
in the search space, subsequently using the process of species
migration and mutation to redistribute solution instances across
the search space in quest of globally optimal or near optimal
solutions.



BBO, as is or in variations, has been explored for vari-
ous combinatorial and constrained/unconstrained optimization
problems [8]] including the likes of the Traveling Salesman
Problem [9], [10], satellite image classification [11]] and sensor
selection [3]] among others. But as of 2012, no work is reported
of using BBO as a gene selection technique for microarray
gene expression data analysis. We attempt to study BBO for
gene selection and classification in this work.

In BBO, there exists an ecosystem (population) which in
turn consists of a number of habitats (islands). Each habitat has
a habitat suitability index (HSI), which is similar to a fitness
function and depends on many features/attributes of the island.
If a value is assigned to each feature, then the HSI of a habitat
H is a function of these values. These variables characterizing
a habitat’s suitability collectively form the ‘suitability index
variables’ (SIVs). Thus,

HSI(Habitat;) — f(SIVi, SIVa, ..., SIV,,)

For the problem of gene selection, the SIVs of a habitat
(candidate solution) are the selected subsets of genes out of
the set of all genes. The ecosystem is therefore a random
collection of candidate gene subsets.

A good solution is thus analogous to a good HSI and
vice versa. Good HSI solutions tend to share SIVs with poor
HSI solutions. This form of sharing, termed as migration, is
controlled by emigration and immigration rates of the habitats.
We have purposely kept the model simple and have obeyed the
original simple linear model for migration as shown in Figure
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Fig. 1. Migration rate vs. No. of species

where E and I are the maximum emigration and immigration
rates, both typically set to 1. The individual immigration and
emigration rates (A and p respectively) are calculated by the
same formulae for this simple linear model as in [5].
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where k is the iterator for the n habitats.

B. BBO Gene Selection Algorithm

We present our BBO algorithm for performing gene selec-
tion. For our problem, we treat a gene (identified by gene

number) as an SIV for a habitat and each habitat has m SIVs
(arity m as Habitat H € SIV"™). For example, if a habitat is
Habitaty = {12,345,26,7,141} then the SIVs 12, 345, ...,
141 are the selected gene numbers out of say a collection of
500 genes and the subset size is 5 genes. The tuned parameter
values for our algorithm are given in the next section. The
BBO gene selection algorithm is stated.

Algorithm 1 BBO for Gene Selection
1: Initialize BBO parameters
2: Initialize ecosystem with randomly generated n habitats
3: Evaluate habitats : calculate the HSI of each habitat in
the ecosystem (Cross validation accuracies of each gene
subset from a classifier)
4: for G generations do
Compute \; and u; for each Habitat; based on its HSI

wn

6:  Perform migration

7. Perform mutation

8:  Re-evaluate ecosystem

9:  Perform elitism

10: end for

11: Output the habitat with best HSI and its SIVs (selected
genes).

At each migration or mutation, we ensure that a gene is
not duplicated within a single subset of genes, i.e. within a
single habitat. The subset sizes (the variable m) can be set
during each run of the BBO algorithm. The ecosystem then
has habitats all with same number of SIVs. This selection
of subset size is predecided and can be tuned manually by
running BBO for various subset sizes.

Migration: The migration procedure of the original BBO
algorithm [J5] is retained. We produce the algorithm here for
the purpose of completeness.

Algorithm 2 Migration
1: Select H; with probability oc \;
2: if H; is selected then
3:  for j =0 ton do

4 Select H; with probability oc p;

5 if H; is selected then

6: Randomly select an SIV o from H;
7 Replace a random SIV in H; with o
8 end if

9:  end for

10: end if

Mutation with Information Gain based Gene Ranking:
Given the vast search space formed by the possible genes, we
keep the mutation rate to about 0.4 to 0.55 in order to graze
other portions of this space with a good chance. We have
used information gain heuristics as the additional information
during mutation. The information gain (IG) [12] of a gene is a
measure of attribute selection. It stores the ‘information con-
tent’ of a gene with respect to the problem under consideration.



The IG of a gene indicates the capability to separate instances
for binary classification. We are specially interested in the
non-zero IG values. Thus we partition the informative and
non-informative genes into separate sets. For IG computation,
we have used Weka [13] data mining software suite, which
outputs the information gain based ranking of genes. This is
fed to BBO for further computations. This informative gene set
with non-zero infogain values are introduced in the population
during the process of mutation.

While in mutation, our algorithm either randomly explores
newer genes or exploits from the available set of genes with
non-zero infogain values. We set a user defined exploitation
probability qo. This exploitation is done in a probabilistic
manner as analogous with the exploration and exploitation in
ant colony optimization [14f], [15], [16], [1], [17]. To give
an example, we have a total of 30 expressed genes and only
the first 8 out of these 30 genes have a non-zero infogain.
Assuming rand < gqg is satisfied (step 5 of Algorithm 3),
then we select one out of these 8 genes, with a probability
proportional to the information gain ranking scores, to be
newly put in Habitat; in place of an existing one. While on
the other hand if rand < gy did not get satisfied, we execute
the else part (step 7 and 8) i.e. randomly select a gene from
all of the 30 genes expressed in the data.

Algorithm 3 gives the detailed mutation algorithm.

Algorithm 3 Mutation
1: for 3 =0 to m do
2:  Use \;, p; of habitat H; to compute the probability P;

3:  Select SIV(gene) H;(j) with probability < P;

4: if H;(j) is selected then

5: if rand < g9 then

6: Exploit : Replace H;(j) with a probabilistically
selected a SIV (gene) from the rest (using their
information gain)

7: else

8: Explore : Replace H;(j) with a random SIV (gene)
out of the rest

9: end if

10:  end if

11: end for

FElitism: We implement elitism so that the best solutions
obtained until a particular generation do not get corrupted.

C. Support Vector Machines

Support Vector Machines (SVMs) [18] were originally
introduced by Vapnik and co-workers [19] and successively
extended by a number of other researchers. SVM employs a
maximum margin linear hyperplane for solving binary linear
classification problems. For non-linearly separable problems,
SVM first transforms the data into a higher dimensional feature
and subsequently employs a linear hyperplane. To deal with
computational intractability issues it further uses appropriate
kernel functions facilitating all computations in the input space

itself. Vapnik et al. in [20] have themselves used SVM with
recursive feature elimination (RFE) for gene selection and
achieved notably high accuracy levels. We discuss more about
results in the subsequent section.

For our purposes we employ the 1ibSVM [21] library for
evaluation of our candidate solutions during each generation.

D. Random Forests

Random Forests (RF) were first introduced by Breimen
and Cutler [22]. It is an ensemble of randomly constructed
independent decision trees. It performs substantially better
than single-tree classifiers such as CART [23] and C4.5 [24].
A random subset of attributes are used for node splitting
while growing each decision tree. Normally, for each tree, a
bootstrap set (with replacement) is drawn from the original
training data, 7.e. an instance is picked from the training
data and is replaced again before drawing the next instance.
Likewise, n such instances are taken to form ‘in bag’ set for
a particular tree. For each of the bootstrap training sets, about
one — third of the samples, on an average, are unused for
making the ‘in bag’ data and are called the ‘out of bag’ (OOB)
data for that particular tree. The classification tree is built with
this ‘in bag’ data using the CART algorithm [23]]. Separate test
data is not required in RF for checking the overall accuracy of
the forest. The OOB data is used for cross validation. When
all the trees are grown, the k" tree classifies the samples that
are OOB for that tree (left out by the k" tree). In this manner,
each instance is classified by about one third of the trees. A
majority vote is then taken to decide on the class label for
each case. The percentage of times that the voted class label
is not equal to the original class of a sample, averaged over
all the cases in the training data, is called as the OOB error
rate [25]].

We have used the randomForest package in R for imple-
mentation purposes [20].

III. DISCUSSION AND RESULTS
A. Datasets

The output of microarray experiments are the expression
levels of different genes. Three such datasets were obtained
from the Kent Ridge Biomedical datasets repository[27] and
libSVM repository [21] (made available from various other
original sources).

The Colon Cancer dataset retrieved from the Kent Ridge
Biomedical dataset repository consists of 62 instances repre-
senting cell samples taken from colon cancer patients. Among
these, 40 are tumor samples while 22 otherwise [28]. The
breast cancer dataset is retrieved from the DUKE Breast
Cancer SPORE frozen tissue bank [29]. Of the 44 samples we
worked with, each sample with expressions for 7129 genes,
22 belong to class A (estrogen receptor-positive ER+) while
22 belong to class B (estrogen receptor-negative ER—). The
Leukemia dataset [30] also retrieved from the Kent Ridge
Biomedical dataset repository contains the expression of 7129
genes. These are total 72 samples taken from leukemia patients
out of which 25 belong to the Acute Myeloid Leukemia



(AML) class and 47 belong to the Acute Lymphoblastic
Leukemia (ALL) class. These specifications are tabulated in
Table 1.

TABLE I
DATASET SPECIFICATIONS

Cancer dataset  #genes  #classes #instances
name (D) (#A & #B)
Colon (C) 2000 2 62 (40 & 22)
Breast (B) 7129 2 44 (22 & 22)
Leukemia (L) 7129 2 72 (25 & 47)

B. Discussion and Results

As discussed earlier while describing our algorithms, we
have implemented BBO with and without heuristics. Very
interestingly, both simple BBO and BBO with heuristics
are successful in selecting a good set of features providing
comparable classification results. As compared to very typical
implementations of gene selection using genetic algorithms
and other EAs like PSO [6], [7], which usually work over
many generations with large population sizes [31]], our imple-
mentation of both versions of BBO (that with SVM and RF)
for gene selection started showing better results very early
with just 40-50 habitats in the ecosystem. We performed 50
simulations each with #generations varying from 15 to 40.
The algorithms almost always converged to comparable results
by the end of 25 generations with very minute differences in
further generations.
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Fig. 2. Example convergence of population averages of simple vs. heuristic
BBO over 25 generations; also with example non-monotonic behavior (boxed)
of average suitability of habitats with simple BBO

For BBO with heuristics, we decided not to hinder the
original BBO procedure a lot and incorporated the heuristics
of information gain of each gene only during the mutation
process; even this with only some degree and not for every
mutation. This was done by roping in the analogy of ex-
ploration and exploitation from the ant colony optimization
[14], [15]], [16] method to give the vast number of other
genes a fair chance of inclusion; this degree of exploitation

to be controlled by the user depending upon the problem
at hand. As a result of this, we observed BBO-SVM and
BBO-RF both to converge to an optimal or near optimal
solution faster than their counterparts without heuristics. Also,
the average suitability of habitats in the ecosystem almost
always shows a monotonic improvement in this case unlike
the earlier. In effect, it is more like the overall ecosystem
(population) showing improvement. The inclusion of proba-
bilistic selection of genes based on entropy, during mutation,
adds to the improvement of the overall results. This behavior
was consistently observed over 50 simulations. Figure [2] shows
an example of how the population average in BBO with
information gain heuristics converged to higher accuracy in
lesser generations as compared to simple BBO. The boxed
portion demonstrates the typically observed non-monotonic
behavior during some runs of simple BBO as against heuristic
BBO.

With regards to the classifiers — SVM and RF — that we
have used to evaluate BBO selected gene subsets, there has
been work in literature that has reported to find SVM to
outperform RF [32], both on average and in majority of
microarray datasets; and our results reiterate the same. We
have verified this observation by training SVM and RF on the
same subset of selected genes. The evaluation of each habitat
to obtain its HSI from the classifier (the CV accuracies) can
be run in parallel resulting in faster results by speeding up the
whole process.

From literature, SVMRFE-RG [20] and Fisher-RG-
SVMREFE [33] report high accuracies with SVM for classi-
fication. But the SVMRFE-RG is unable to tackle redundant
genes [33]]. While in [33], the authors have used gene ontology
to tackle redundant genes during gene selection, we have
used the information gain based gene ranking. There are also
other methods as in [40] who have attempted classification
of cancer tissue samples with SVMs without feature (gene)
selection. They have reported approximately 85% accuracy of
classification (about 10-11 falsely classified samples out of
nearly 70 in AML/ALL leukemia cancer case). In [2], the
authors have used Ant Colony Optimization (ACO) for gene
selection with Ant Miner (AM) and RF for classification.

The parameters and their corresponding tuned values used
in our algorithms have been listed in Table II. These values
were observed to give the most optimum results over extensive
simulations.

Results : Table III lists the sizes of gene subsets selected
by BBO separately run with SVM and RF algorithms and the
10 — fold cross validation accuracies obtained for the selected
gene subsets.

With reference to literature, BBO-SVM and BBO-RF have
fared well as compared to the previously best performing algo-
rithms (for the same colon cancer dataset) namely SVMRFE-
RG [20], Fisher-RG-SVMREFE [33], ACO-AM (Ant Colony
Optimization—Ant Miner) and ACO-RF [2]] which had demon-
strated accuracies of 93.3, 94.7, 9547 and 96.77% respec-
tively [34]], [35]. Similarly, the best performing algorithms



TABLE I
TUNED ALGORITHM PARAMETERS

a. For BBO with both SVM and RF

Parameter Values
Population size (#candidate solutions for each generation) 50
#Generations 25
Mutation probability 0.70
Habitat modification probability 1.00
Exploitation probability during mutation (for heuristics) 0.55
b. For SVM
Parameter Values
Cost 50
Gamma (for Radial Basis Function as kernel) 0.02
Folds for cross-validation 10
c. For RF
Parameter Values
Trees in the forest 500

Features per tree \/features_selected_and_fed_to_RF

TABLE III
SUBSET SIZES AND BEST 10-FOLD CROSS VALIDATION ACCURACIES
(CVAS) IN %
D  Original #genes 10-fold #genes 10-fold
#genes selected CVA for selected ~ CVA for
BBO-SVM  BBO-SVM  BBO-RF  BBO-RF
C 2000 09 98.39 11 92.34
B 7129 15 99.56 20 94.38
L 7129 19 99.60 20 93.20

for leukemia cancer classification have shown accuracies in
the range 91-97%, with the best being 97.06% [2], [20],
[33], [36], [37]. While [2]], [20] and [33]] have worked with
the same dataset for AML/ALL classification, [36] and [37]
have worked with a different dataset (for Diffuse Large B-
Cell Lymphoma (DLBCL)) but with similar properties, which
makes us believe that our proposed algorithm with gene
selection will also perform equally well as in AML/ALL
classification. In case of breast cancer, the reported accuracies,
for the dataset we have worked with, have been in the range
of 91-94%]38]], [30]. Very clearly, our method of using BBO
for gene selection in combination with SVM and RF has
outperformed them with accuracies as shown in Table Itis
worth to note that the methods in literature have almost always
reported their best accuracies. In our work, we have reported
the average accuracies for both, BBO-SVM and BBO-RF.

IV. CONCLUSION

The hybrid BBO-SVM and BBO-RF techniques have shown
consistently good results when compared against the highest
accuracies for colon cancer, breast cancer and leukemia cancer
datasets. Like other evolutionary algorithms, they are also sim-
ple to implement, robust and flexible since we can have various
possible alternatives as suited to the problem and domain
constraints. A significant speedup in the algorithm may be
achieved by parallel implementations where the classification
accuracies for individual candidate solutions may be computed
in parallel.

V. FUTURE WORK

Like all EAs, our hybrid methods spur many possibilities
of future work — some problem dependent and some from
the implementation perspective. From problem representation
to specific migration and mutation strategies, we can have a
variety of schemes. For example, with respect to problem rep-
resentation, the other suitable scheme that one could explore
for BBO here is: each habitat of the ecosystem could have
an arbitrary number of attributes (SIVs) which remains fixed
for itself across generations but may differ from other habitats
in the ecosystem. This is similar to the variable population
sizes proposed earlier for BBO [3] and other EAs [39] but at
a finer granularity, variable solution (habitats or chromosomes
as the case may be) sizes. This could lead us to a compact
implementation framework that can simultaneously output the
better performing subset sizes along with the selected genes.
Many such variations possible with other EAs could work here
too.
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