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Abstract—In this paper, a hierarchical Pareto dominance
based multi-objective evolutionary approach is proposed for the
optimization of gene regulatory network models. The approach
is presented based on the neglected observations in GRN opti-
mization that (i) structural dependencies exist among objectives;
and (if) some objectives may be more important than others. The
hierarchical Pareto dominance is able to reduce the number of
objectives during optimization process and increase the selection
pressure to relieve the many objective problem. The proposed
hierarchical Pareto dominance based multi-objective approach
is verified and compared with classical Pareto dominance based
algorithm NSGAII on the gene regulatory network optimization
problem. The results obtained indicate that the presented ap-
proach has great performance when no noise exist. Also it shows
superior results compared to NSGAIL

I. INTRODUCTION

There are a small number of model organisms whose
genetic networks have been studied in detail including Ara-
bidopsis (a flowering plant), bakers yeast, a nematode, the
sea urchin, and the fruit fly, Drosophila, among others. At
the same time, the complete DNA sequence has been deter-
mined for some 3047 organisms (as of January 2012) with
another 7784 in progress(http://www.genomesonline.org/cgi-
bin/GOLD/index.cgi). Thus, there is a major and growing gap
between available genomic data and a functional knowledge
of the networks whose operations the DNA encodes. For
this reason, there have been a great deal of work to predict
phenotype by directly modeling the gene interactions at the
expression level [1][2][3]. In these cases, genes are typically
modeled using differential equations, Boolean logic, linear
units, oscillators, etc [1][2][3][4][5]. Estimating parameters for
the gene regulatory network(GRN) models so that simulated
expression levels match experimentally observed data is a key-
modeling step. This is a cumbersome task that requires an
effective, derivative-free approach, such as the evolutionary
algorithms [6]. In addition, the existence of multiple data sets,
eg. expression data of various genes, make it by nature a
multi-objective optimization problem(MOP) [7]. Accordingly,
a number of multi-objective evolutionary algorithms(MOEAs)
have been proposed [7][8][9][10][11][12]. Among them, Ko-
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duru et. al applied fuzzy dominance in multi-objective evo-
lutionary algorithms hybridized with simplex method [7]. Al-
ternatively, Datta et.al presented a multi-objective differential
evolution algorithm for GRN optimization problem [9]. Cai
et. al proposed a GP-PSO hyrbid algorithm to reconstruct
the GRN structure and estimate model parameters simulta-
neously [8]. Lately, Lee et. al proposed a similar method but
used the concept of network decomposition [12]. The survey of
multi-objective evolutionary approach for GRN optimization
problem can be found in [10].
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Nevertheless, all the MOEAs designed for GRN optimiza-
tion problem, to our best knowledge, are based on the hy-
pothesis that all the objectives are independent to each other
and equally important as well [7][8][9][10][11][12]. But the
reality of GRN optimization problem is that (i) structural
dependencies exist among objectives; and (ii) some objectives
may be more important than others. For instance, in the
optimization of Arabidopsis flowering time control model, as
shown in Fig. 1, the expression data of the switch genes(LE'Y
and AP1) that signal plant commitment to flowering are
apparently more important than that of other upstream genes,



such as T'F'L1. In addition, the expression data of gene LF'Y
is likely to correlate with that of gene AP1 as gene LF'Y and
AP1 regulate each other. In other words, dependencies may
exist among objectives(expression of different genes) in such
multi-objective optimization problem.

In this paper, we propose a hierarchical multi-objective evo-
Iutionary approach for the optimization of GRN. Our proposed
approach is able to make use of the structural information
among genes and treat objectives(expression data of genes)
differently based on their importance in the GRN. The property
analysis of the proposed approach show its capability to
reduce the dimensions of objectives and relieve many-objective
problem. More details of many-objective problems can be
referred to in [13][14].

The rest of the paper is organized as follows. Section II
introduces the optimization problem of the flowering time con-
trol model in Arabidopsis. In Section III, the concept of multi-
objective optimization problem is formally defined. Section IV
details the hierarchical multi-objective optimization method.
Properties of the proposed approach is also analyzed in this
section. In section V, results obtained for GRN optimization
problem is discussed. We also compare the hierarchical multi-
objective method with NSGAIL Finally, Section VI draws the
conclusions and the future work.

II. MODELING FLOWERING TIME CONTROL IN
ARABIDOPSIS

In the molecular genetic model plant, Arabidopsis thaliana,
three genes TERMINAL FLOWERING 1 (T'FL1),
APETALA 1(AP1), and LEAFY (LFY) play a special
role in flowering [2][7]. OFF to ON state changes in two of
them (AP1 and LFY) signal plant commitment to flowering.
Although it is not possible to completely disentangle the link-
ages based on extant experimental data, one possible model
is that of a three element positive feedback loop comprising a
bistable switch. A model for this switch is the coupled set of
differential equations

%LFY = Ry g(SOC1,TFL1) — A\, LFY
4 AP1 = Ryhu,(LFY) — AgAP1 (1)
4TFL1 = Rrhauwn(AP1) — \pTFL1

where h,, and hg,, are respective, promotive (n = 3) and
repressive (n = —3) Hill function [15] defined as
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where nis a cooperativity coefficient. The function ¢ is a
repressive Hill function whose input is (I"F' L1 —SOC1). The
difference input to g is restricted to positive values; negative
biochemical concentrations are impossible.

External switch input is provided by the expression level
of the SUPRESSOR OF OVEREXPRESSION OF
CO (SOC1) gene, which is a linear, ramped sinusoid. The
steepness of the ramp and the amplitude of its oscillations
relate to the rate of progress toward flowering. An equation

for SOC'1 expression levels is

SOC1 (1) = oty + 22— 02)

5 tmsin(QZZm
GRN Optimization Problem Definition: The 9 parameters
to be estimated are: Ry, Ry, Rr, A, Ay, A\, K FY,
KsP1 and KpFL1. A total of 318 data points were gen-
erated covering 5 days, using realistic parameter values. The
three objectives to be minimized are the root mean squared
error(RMSE) between the synthetic and simulated data for
LFY, AP1 and TFL1.

Since multiple gene expression data(LF'Y ,AP1 and TFL1)
are available for the above problem, the problem is multi-
objective by nature. Accordingly, the concept of multi-
objective optimization problem will be introduced in the next
section.

N E))

III. MULTI-OBJECTIVE OPTIMIZATION PROBLEM

A multi-objective optimization problem can be defined as:
Definition 1 (Multi-objective optimization problem):
Given a problem involving N decision variables x1, X2, ..., Xy
in a search space X C %N , we assume, without loss of
generality, M objectives f1(-),..., fas(-) in objective function
space Y C rM , are to be minimized.
Minimize
f(2) = ((fi(zr,22,...,2N)), - -, Fyp(@r, 22, - ..
The vector function is a mapping f: X — Y.
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A. Pareto Dominance and Pareto Front

In MOP, it is usually not possible to find a single solution
which is optimal for all the objectives. Instead, many good
solutions may exist. These solutions are always “trade-offs” or
good compromises among the objectives. A concept of Pareto
dominance is introduced to address MOP in MOEAs.

Definition 2 (Pareto dominance and non-dominated solutions):

Let #,i be two vectors of decision variables in MOP. ¥ is
considered to dominate g(written as & < %) iff they satisfy
the conditions:

ZyeX,Jjel, ..., M|f;(&) < f;(7)

On the contrary, a decision vector & is considered to be
a non-dominated solution iff there is no other solution that
satisfies Eq. 4. The set of all non-dominated solutions form a
Fareto set.

Definition 3 (Pareto front): The projection of the Pareto set
P in the M dimensional objective function space Y is called
Pareto front, F.

F={(1(2), o(Z),..., Iy(7))|Z € P} 5)

IV. HIERARCHICAL PARETO BASED MULTI-OBJECTIVE
APPROACH

To address MOP, MOEAs usually adopt the concept of
Pareto dominance to discriminate among solutions in the
multi-objective context, and therefore it has been the basis to
develop most of the MOEAs proposed so far, e.g., [7] and [16].



However, in GRN optimization problem, as multiple genes
comprise the gene regulatory network structures, the relations
among objective(expression of genes) have a hierarchical
structure, that is, the expression of certain genes, such as the
flowering switch genes AP1 and LFY in Flowering Time
Control model in Arabidopsis, may be much more important
than other genes, such as T'F'L1. Under this circumstance,
objectives need to be discriminated based on their importance
in GRN and the hierarchical Pareto dominance based multi-
objective optimization for GRN become necessary. The goal
can be achieved by extending the concept of Pareto dominance
as follows.

A. Hierarchical Pareto Dominance

Although the method can be extended to apply to any
number of objective hierarchies, we only consider two sets
of objectives in the GRN optimization problem - a set of
primary objectives P = { f1(Z):RMSE for LFY, f2(Z):RMSE
for AP1} and a set of secondary objectives S = {f3():
RMSE for TFL1}. Given two solutions # and ¥, if Z has
smaller RMSE than g along all the primary objectives P, T is
considered to dominate ¢ in the primary objective set P, that
is ¥ <1 ¢. Similarly, © dominating ¢ along all the secondary
objectives S can be noted as & <2 .

The Pareto dominance can be extended to hierarchical
Pareto dominance by applying the following rules:

(1) if ¥ <1 ¢, then & < &
@) if (T A1) A (F A1 D) A (T <2 §) . then & < i/
The above rules can be summarized as

TG @< V(ZAYNANGADN(Z <27). (6)

B. Properties of Hierarchical Pareto Dominance

Multi-objective evolutionary algorithms defined Pareto
dominance as criteria to select better non-dominated solutions.
However, when the number of objectives to be optimized
increases, the performance of MOEAs decreases consider-
ably [17][18]. In this situation, almost all the solutions become
non-dominated to each other and the selection pressure based
on classical Pareto dominance become very ineffective. This is
termed the many-objective problem [17][13]. Existing methods
to relieve the many objective problem include dimension
reduction in objective domain [19][20][21][22] and design
relaxed form of Pareto domiance [17] [23]. Inspired from the
concept of hierarchy of objectives [24] and lexicographic
optimality [25], a new relaxed form of Pareto dominance,
termed hierarchical Pareto dominance(HPD), is proposed for
multi-objective evolutionary optimization in this paper. We
analyze the properties of HPD as follows.

(1) From Eq. 6, we can observe that when solution (Z 4
i) A (i 4 ), which indicates solutions & and % do not
dominate each other in both primary and secondary ob-
jective, all three objectives are compared to discriminate
between & and #. In this case, HPD is equivalent to three-
objectives Pareto dominance.

(2) We can also observe that when (¥ <1 %) V (¥ <1 %),
only two objectives in the primary objective set(RMSE
for LF'Y and AP1)are compared to discriminate between
Z and ¢/. In this case, HPD actually reduce the number
of objectives from 3(RMSE for LFY, AP1 and TFL1)
to 2(RMSE for LFY and AP1).

On the other hand, when (% 41 §)A(¥ A1 &), which indi-
cates solution & and ¢/ does not dominate each other in the
primary objective set, the comparison of the secondary
objective set is to be activated. In this case, HPD can be
considered as a relaxed form of Pareto domiance [23].
It is able to relax the dominance relation and have the
non-dominated solutions of the primary objective set to
continue comparison with each other in the secondary
objective set. Thus HPD is able to increase the selection
pressure and enhance the performance of MOEAs.
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C. Hierarchical Multi-objective Evolutionary Approach

The hierarchical Pareto dominance is very generic and can
be incorporated on any MOEAs framework. But in purpose
to compare the proposed approach with classical Pareto dom-
inance based multi-objective algorithms, we incorporate HPD
into NSGAII for comparison. The general pseudocode for the
proposed algorithm is given in Algorithm 1. Initially, a random
parent population Py with size of N is created. Tournament
selection, crossover, and mutation operators are applied to
create a child population @) of size V.

Algorithm 1: A Hierarchical Pareto dominance based
Multi-objective Evolutionary Approach(main loop)
1 while ¢t < max_generation do

2 Let Ry = P,UQ;

3 Let F' = hierarchical Pareto dominance (R;)
4let Pb+1=¢gandi=1

5 while |P,yq1| + |F;| < N do

6 Apply crowding-distance-assignment(F;)

7 Let Pt+1 :Pt+1UF1‘

8Leti=1+1

9 end

10 Sort(F;, <)

11 Let Pt+1 = Pt+1 U Fl[l : (N — |Pt+1‘)]

12 Let Q111 = make — new — pop(Piy1)
1I3Lett=1t+1

14 end

V. EXPERIMENTAL RESULT AND DISCUSSIONS

A. Experimental Setup

All simulations are conducted with a population size of
100, crossover rate of 0.8, mutation rate of 0.2 and generation
number of 5000 for all implementations. In addition, we use
SBX crossover and mutation. Tournament selection is adopted
in a recombination and replacement scheme. These design
parameters are chosen to be consistent with what were used
in [16].



B. Results of GRN Optimization Problem

The proposed algorithm is tested on the GRN optimization
problem defined in Section II. The three objectives to be min-
imized are the root mean squared error between the synthetic
and simulated data for LFY, AP1 and TFL1. In order to
mimic real expression data, the synthetic data obtained in the
aforementioned manner was corrupted by adding random noise
that followed a two parameter lognormal distribution. The
noise was generated at four different levels, with the variance
parameter kept at 1%, 5%, 10%, and 20% of actual values.
The proposed approach was run 20 times at each noise level.

GRN Optimiation Problem
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Fig. 2: Comparison of the final Pareto fronts obtained at
various noise levels for GRN optimization problem

Fig. 2 shows the Pareto front produced by merging the non-
dominated solutions of all 20 runs at different noise level for
the proposed algorithm. We can see that the the convergence
of the proposed approach decreased with the increasing noise.
It is clear that noise plays a very important role in the
performance of the proposed algorithm. When no noise exists,
the root mean square error between the simulated and the
synthetic data for LF'Y and AP1 can reach as small as 1077,
However, the performance of the proposed approach dropped
dramatically with the increase of noise, which indicates the
necessity of further noise handling techniques in the algorithm
design.

C. Comparison of Proposed Approach with NSGAII

The proposed approach is compared with the classical
Pareto dominance based NSGAII on the GRN optimization
problem. Fig. 3 shows the non-dominated solutions obtained
from 30 runs of approaches - 3-objective(LFY, AP1 and
TFL1) NSGAII, 2-objective(LFY and AP1) NSGAII and 2-
objective(LFY and AP1) HPD based approach, represented
as symbols “*”, big “” and big “o”, respectively. Due to the
objective reduction property of hierarchical Pareto dominance,
as specified in Section IV(B), the non-dominated solutions
obtained by the proposed HPD based approach is two dimen-
sional while non-dominated solutions obtained by 3-objective
NSGAII remain three dimensional. For the convenience of

comparison, we only show the 2-dimensional projected non-
dominated solutions obtained by 3-objective NSGAII in Fig. 3.
As we can see in Fig. 3, the proposed approach outperforms
both 2 and 3-objective NSGAII in terms of prediction error.
More specifically, the proposed approach is 10 times better
than 3-objective NSGAII; and 2 times better than 2-objective
NSGAII, respectively, in terms of root mean squared error
between the synthetic and simulated data for LFY and
AP1(10~7 vs. 1075). The observation in Fig. 3 fit the property
analysis of Hierarchical Pareto Dominance quite well.

In addition, the proposed approach is compared with the
classical Pareto dominance based NSGAII on the GRN opti-
mization problem at different noise levels, as shown in Fig. 4-
7. As we can see in the figures, the performance of our pro-
posed approach become close to, although slightly better than
that of NSGAII in prediction error under noisy circumstances.
We believe this is because inaccurate information(noisy data)
has lead to the failure of taking advantage of the secondary
objective set(T'F'L1) to further increase the selection pressure
for the proposed approach.
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Fig. 3: Comparison of NSGAII with the proposed approach
with no noise in GRN optimization problem

VI. CONCLUSION

In this paper, a hierarchical Pareto dominance based multi-
objective approach is proposed for the optimization of gene
regulatory network models. The approach is presented based
on the neglected observation that (i) structural dependencies
exist among objectives(expression of different genes); and
(i) some objectives may be more important than others in
GRN optimization problem. Through the property analysis
of hierarchical Pareto dominance, we conclude that the pro-
posed approach is able to reduce the number of objectives
and increase the selection pressure to relieve many objective
problem.

We conducted experiments of the proposed approach for the
GRN optimization problem. The results show great conver-
gence(RMSE is as small as 10~7) when no noise exist. The
performance of the algorithm deteriorated with the increase
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of the noise level. We also carried out a comparison of the
proposed approach with NSGAIL. Our proposed approach
shows superior results over both 2 and 3-objective NSGAII
in terms of error in prediction of gene expression. Given
proper hierarchical strategy, we can conclude that hierarchical
Pareto dominance based multi-objective algorithm is a more
appropriate alternative for GRN optimization problems than
the Pareto dominance based MOEAs, such as NSGAII. We
believe that the proposed algorithm is able to incorporate the
prior knowledge(the hierarchies of objectives) into the multi-
objective optimization process thus it can be applied to any
optimization problem that needs to (i)discriminate between
objectives and (ii) relieve many objective problem.

The work in this paper is only preliminary. Future work
includes the consideration of noise handling techniques in al-
gorithm design and the investigation of the proposed approach
on more complex problem where more objectives need to be
considered.
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