
Knowledge Extraction in Multi-objective
Optimization Problem based on Visualization of

Pareto Solutions
Fumiya Kudo

Graduated School of Engineering
Nagoya University

Email: kudo@cmplx.cse.nagoya-u.ac.jp

Tomohiro Yoshikawa
Graduated School of Engineering

Nagoya University
Email: yoshikawa@cse.nagoya-u.ac.jp

Abstract—Genetic Algorithm (GA) is one of the effective
methods in the application to optimization problems. Recently,
Multi-Objective Genetic Algorithm (MOGA), which is the ap-
plication of Genetic Algorithm to Multi-objective Optimization
Problems, is focused on in the engineering design field. In this
field, the analysis of design variables in the acquired Pareto
solutions, which gives the designers useful knowledge in the
applied problem, is important as well as the acquisition of
advanced solutions. This paper proposes a visualization method
using an idea of Isomap, that visualizes manifold embedded
in the high dimensional space, which was originally proposed
in the field of multiple classification analysis. The proposed
method visualizes the geometric distance of solutions in the design
variable space considering their distance in the objective space.
This method enables a user to analyze the design variables
of the acquired solutions considering their relationship in the
objective space. This paper applies the proposed method to the
conceptual design optimization problem of hybrid rocket engine
and studies the effectiveness of the proposed method. We found
interesting structure in the distribution of Pareto solutions by
applying the proposed method to this problem. This paper shows
that the visualized result gives some knowledge on the features
between design variables and fitness values in the acquired Pareto
solutions.

I. INTRODUCTION

Recently, Multi-objective Optimization Problems (MOPs)
have been focused on in the engineering design field. Gen-
erally, it is difficult or impossible to acquire the optimized
solution satisfying all objective functions because of their
trade-offs. Then in MOPs, it is necessary to acquire Pareto
solutions which are superior to other solutions by at least one
fitness value. Multi-Objective Genetic Algorithm (MOGA),
which is the application of GA[1] to MOPs, could be effective
to solve MOPs because GA is multi-point search and it can
search various Pareto solutions in one trial[2].

It has been reported in recent years that MOGAs are
applied to engineering design problems due to the improve-
ment of computing[3][4][5]. Obayashi[3] worked on design
optimization of aircraft configuration problem using MOGA.
[3] acquired Pareto solutions by MOGA method and analyzed
the design variables of Pareto solutions to grasp the physical
features in the problem through visualization using Self Orga-
nizing Map (SOM). Deb[4] studied the method to discover

Fig. 1. Hybrid Rocket

useful information for designers from the Pareto solutions
in engineering design problems. In engineering design field,
it is important not only to search advanced Pareto solutions
using MOGA, but also to grasp useful knowledge for designers
and analyze physical relationships between fitness values and
design variables[4][5].

This paper employs the conceptual design optimization
problem of hybrid rocket engine (HRE) as an application of
MOGA to engineering design problem[7]. This problem has
been provided and published on the Web (in Japanese)[8] by
Japan Aerospace Exploration Agency (JAXA).

This paper applies one of the representative multi-objective
optimization method NSGA-II (Non-dominated Sorting Ge-
netic Algorithm-II) [9] to the conceptual design optimiza-
tion problem of HRE and analyzes the relationship between
design variables and fitness values in the acquired Pareto
solutions[10][11][12]. To consider their relationship, this pa-
per proposes a visualization method which considers relative
distance of data in the design variable space considering
relative distance of data in the objective space using an idea
of Isomap[13][14][15][16]. Isomap is the visualization method
which preserves the distance between data and distributes
them in a low-dimensional space based on “geodetic distance”
instead of Euclidean distance in the original space. The exper-
imental result shows that we can see the relationship of the
design variables considering that of the fitness values as well,
and we can grasp some knowledge on the features between
them.

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence 
June, 10-15, 2012 - Brisbane, Australia IEEE CEC



TABLE I
DESIGN VARIABLES AND THEIR RANGES

V1 ṁoxi(0) : Initial flow rate of oxidant 1.0− 30.0[kg/s]

V2 Lfuel : Length of fuel 1.0− 10.0[m]

V3 rport(0) : Initial radius of port 0.01− 0.2[m]

V4 tburn: Burning time 15.0− 35.0[s]

V5 Pch: Pressure in reaction chamber 30.0− 40.0[Bar]

V6 ϵ: Open area ratio 5.0− 7.0

TABLE II
FITNESS VALUES

Obj1 Mtot : Weight of rocket [kg] Min

Obj2 Hmax : Highest reachable altitude [km] Max

Obj3 Mpay : Weight of pay load [kg] Max

Obj4 Ltot: Length of rocket [m] Min

Obj5 amax : Maximum acceleration [m/s2] Min

II. PROBLEM ESTABLISHMENT

This section explains the employed conceptual design opti-
mization problem of HRE. HRE is the rocket engine that holds
propellant in two different conditions, which has a smaller risk
of explosion and a higher safeness. It is also environment-
friendly, and it can adjust the thrust by using a slot ring.
However, for a design of HRE, it is difficult to acquire general
design knowledge because the thrust is generated by burning in
the turbulent boundary layer in the reaction chamber, which is
different from the conventional rocket engines. In the turbulent
boundary layer, the O/F mixture ratio which dictates the thrust
is calculated by the length of fuel, the radius of the port and the
flow rate of oxidant. Thus, the geometric design of a HRE can
be considered as an optimization problem which optimizes the
weight of the rocket and the highest reachable altitude. As for
the design variables of this problem, there are the flow rate of
oxidant[kg/s], length of fuel[m], initial radius of the port[m],
burning time[s], pressure in the reaction chamber[Bar] and
open area ratio. As for the main objective functions, there
are the minimization of weight of the rocket[kg] and the
maximization of highest reachable altitude[km].

Fig.1 shows the conceptual figure of a hybrid rocket, and
TABLE I and TABLE II show the design variables and the
fitness values, respectively. This paper deals with three objec-
tive functions Obj1, Obj2 and Obj5, which can be expanded
to 5 objective optimization problem in this problem as shown
in TABLE II.

III. VISUALIZATION METHOD

The proposed method uses an idea of geodetic distance to
reflect the similarity of the solutions in the objective space into
the geodetic distance in the design variable space. Isomap vi-
sualizes relationship between data defined by geodetic distance
using Multidimensional Scaling (MDS).

A. MDS

When the similarity between data in a multidimensional
space were defined, MDS distributes the data in a visualiza-

Fig. 2. Image of Proposed Method

tion space (low-dimensional space) preserving the similarities
among data in the original space (high-dimensional space).
This paper employs the Euclidean distance as the similarity in
MDS and two-dimensional space to visualize the result. The
fitness values are normalized based on the maximum and the
minimum fitness values in each objective function acquired
in genetic search and design variables are normalized by the
feasible area shown in TABLE I into 0-1, respectively. The
distance between data i and j in the original space dij and
d

′

ij in the visualization space are calculated by eq. (1) and
(2). Then, it distributes the data to minimize the sum of the
squares of error between two distances in the different spaces
calculated by eq. (3). Xi and X

′

i denote the coordinate in the
original space and in the visualization space, respectively. In
the error function eq. (3) in MDS, the coordinate itself for
each data does not have meaning, but the distance between
data does. Thus, in the visualization result by MDS, the axes
and the coordinate of data does not have explicit meaning.

dij = ∥Xi −Xj∥ (1)

d
′

ij = ∥X
′

i −X
′

j∥ (2)

min
{
ΣiΣj(dij − d

′

ij)
2
}

(3)

B. Isomap

Isomap is similar to MDS in terms of preserving the distance
between data and distributes them in a lower-dimensional
space. The feature of Isomap is using “geodetic distance”
as the similarity of data. Geodetic distance is to measure
the distance along the form of manifold. In this method, the
distance in neighborhood is approximated by the Euclidean
distance and others are calculated by the shortest path using the
neighborhood distance. For example, in the distance between
Hokkaido and Taiwan, the distance measured by straight line



that goes under the ground is the Euclidean distance, while the
distance measured as (Hokkaido-Tokyo) + (Tokyo-Okinawa)
+ (Okinawa-Taiwan) is the geodetic distance. Isomap approx-
imates the geodetic distance by the sum of the neighborhood
distance.

Concretely, it defines “neighborhood” of each data in the
original space and links them. There are two ways to define
the neighborhood, one is to use the Euclidean distance in
the original space and the other is to define the number of
neighborhoods around each data. This paper employs the for-
mer. Next, the geodetic distance is calculated. In the geodetic
distance, the distance between linked data is simply measured
by its Euclidean distance and that between not linked data is
calculated by the sum of the Euclidean distances of the data
which give the shortest path to reach the target data along the
linked ones. The distance between data which are not able to
reach is given as Due. Usually, Due is set to relatively large
value[16].

C. Proposed Method

The Isomap calculates the geodetic distance along the
manifold in the original space and visualizes the relationship
among them. The feature of the proposed method is to define
the neighborhood in the objective space and then to calculate
the geodetic distance in the design variable space.

Figure.2 shows the image of the proposed method. In this
paper, the radius ϵ shown in the objective space in Fig.2 is
calculated by eq. (4). η denotes the parameter that defines the
distance of “neighborhood” and fimax and fimin denote the
maximum and the minimum fitness value in the solutions in
each objective function.

ϵ =

√
Σn

i=1(fimax − fimin)2

η
(4)

The proposed method defines the neighborhood in the
objective space based on the distance in the sphere with the
radius ϵ, then it links the data in the design variable space
using the neighborhood information in the objective space and
calculates the geodetic distance in the design variable space.

For example in Fig.2, data 6 and data 8 become the neigh-
borhood because the distance between data 6 and 8 is smaller
than ϵ, then they are linked each other. As for data 1 and data
4, they are not linked directly and the distance is (distance
between data 1 and data 2 + distance between data 2 and data
4). Data 1-2-3-4-5 and data 6-7-8 are not linked together so
that they are distributed far in the visualization space. In Fig.2,
data that are near in both the objective space and the design
variable space are distributed near in the visualization space
(e.g. data 6,7,8), while data that are near in the design variable
space but far in the objective space are distributed far in the
visualization space (e.g. data 1 and data 5).

MDS and the original Isomap enable us to analyze the
solutions acquired in optimization problems independently in
the objective space or the design variable space. However, it
is difficult to analyze both the objective space and the design
variable space together and the relationship between them.

(a) Weight of Rocket

(b) Highest Reachable Altitude

(c) Maximum Acceleration

Fig. 3. Visualization of Objective Space by MDS

The proposed method uses the neighborhood information in



the objective space and calculate the geodetic distance in
the design variable space to visualize the similarity. It is
expected that the solutions can be analyzed considering both
the objective space and the design variable space.

IV. EXPERIMENT AND CONSIDERATION

First, NSGA-II was applied to the conceptual design op-
timization problem of HRE explained in II. and 286 Pareto
solutions were acquired. This paper used the real value coded
GA, in which each gene represented each design variable di-
rectly shown in TABLE I. This paper employed PNX[17][18]
as the crossover and Uniform mutation in which each variable
was uniformly mutated in the range of area shown in TABLE
I. Crossover rate was 1.0, mutation rate was 0.03, population
size was 64 and the search was done for 32 generations.

The 286 Pareto solutions visualized by MDS are shown
in Fig.3(a)(b)(c). The gradation in each figure presents the
weight of rocket (Obj1), the highest reachable altitude (Obj2)
and the maximum acceleration (Obj5). The red data have
large value and greed data have small value in each variable.
As described in III.A., each fitness value is normalized by
the maximum and the minimum fitness value acquired in
genetic search into the range of [0, 1]. From Fig.3, the weight
of rocket (Obj1: minimization) and the highest reachable
altitude (Obj2: maximization) have trade-offs in the objective
space, while the maximum acceleration (Obj5: minimization)
is orthogonal to these objective functions.

Fig.4(a) shows the result of the proposed method to the
acquired Pareto solutions shown above. This paper set η = 25
in eq. (4). As for the distance Due for not linked data explained
in III.B. was set to 10. In the proposed method, the solutions
having similar fitness values are basically placed near one
another because the neighborhood and the link structure are
defined in the objective space. Fig.4(b) shows the solutions
in the space A in Fig.4(a) in which the positions have been
recalculated based on their geodetic distances. It can be seen
that there are some branch structure. We picked up some
branch structures shown in Fig.4(b) to see the characteristics
of them. TABLE III shows the average of fitness values and
design variables in each group labeled in Fig.4(b).

In TABLE III, group 1 and 2 have small fitness value while
group 3, 4 and 5 have large value in comparison. Thus, the
overall trend shows that the solutions are distributed from large
fitness value in the low left part to small one in the upper
right part in Fig.4(b). TABLE III also tells us that the design
variables having large influence on this overall trend are the
initial flow rate of oxidant (V 1) and the length of fuel (V 2).

In comparing group 1 and 2, group 1 have larger fitness
value of the weight of rocket (Obj1) and lower value of
the maximum acceleration (Obj5) than group 2. The same
feature can be found in group 3 and 5 while the fitness values
themselves are much different from group 1 and 2. And group
4 which is distributed between group 3 and 5 has the middle
fitness value of them. The design variable of the influence on
this feature will be the burning time (V 4), because group 1
and 3 have large value and group 2 and 5 have small one.

Figure.5 shows the gradation of the burning time (V 4). It can
be seen that the branch between group 1 and 2, group 3 and
5 were caused by the burning time (V 4).

(a) Overall View

(b) Grouping in each Branch

Fig. 4. Visualization Result of Proposed Method

TABLE III
VARIABLES IN EACH GROUP

Group 1 2 3 4 5
Obj1 Mtot 221 174 1705 1377 1201
Obj2 Hmax 82 73 193 192 195
Obj5 amax 57 80 104 111 140
V 1 ṁoxi(0) 2.1 2.5 20.3 17.6 19.5
V 2 Lfuel 1.63 1.59 3.93 3.83 3.68
V 3 rport(0) 0.07 0.06 0.061 0.062 0.050
V 4 tburn 31 20.1 32.2 29.8 23.4
V 5 Pch 36.8 33.7 35.1 35.4 36.1
V 6 ϵ 5.7 5.9 6.3 6.1 6.1

Next, we focused on each branch. Fig.6 shows the result



Fig. 5. Gradation by Burning Time (V 4)

Fig. 6. Pareto Solutions (green) and Rank-2 Solutions (red)

when the proposed method was applied to the Pareto solutions
(green) with the solutions of rank-2 (red). When some new so-
lutions are added, the distribution of all solutions has changed
due to the change of the information of the neighborhood
and their links. In comparing Fig.6 with Fig.4(b), the space
between group 1 and 2 (“B” part in Fig.4(b) and Fig.6) was
filled by the rank-2 solutions while the space between group 3
and 5 (“C” part in Fig.4(b) and Fig.6) was not. It can be said
that the B part was the space where dominated solutions were
and the branch was generated on the progress of the search.
On the other hand, there were no solutions in the C part even
considering the dominated solutions.

Next, we generated some solutions to see if the C part could
be filled in. First, we focused feasible solutions which can
be generated from the solutions in the branches. The average
fitness values of the solutions in the edge of group 3 and
group 5 circled in Fig.7 (group 6 and group 7, respectively)
were used as the bases. Only one design variable, the initial
flow rate of oxidant (V 1) in first and the burning time (V 4)

in second, was changed (i) from the average value of group
6 to that of group 7 in 10 steps starting at the average values
of design variables of group 6, and (ii) that of 7 to that
of 6 starting at group 7. Fig.7(a) shows the result of the
proposed method applied to the Pareto solutions with these
generated solutions for the initial flow rate of oxidant (V 1),
and Fig.7(b) does that for the burning time (V 4). In Fig.7,
the distribution of the Pareto solutions were fixed and the
generated solutions were placed using Isomap. The solutions
in the case (i) described above are blue and (ii) are red in
Fig.7. The generated solutions were distributed around each
group or along the distribution of the Pareto solutions. We
could not fill in the space C by generating solutions which
had the design variables between group 3 and 5.

We generated unfeasible solutions to find out if the space
C could be filled in. Figure.8 shows the result of the proposed
method to the Pareto solutions with the unfeasible solutions
generated here. The unfeasible solutions had the same fitness
values of solution b in Fig.8 and the design variables of the
average of solution a, b and c in Fig.8. However, they had
35.0−70.0[kg/s] counted by 5.0[kg/s] for the initial flow rate
of oxidant (V 1) which were out of feasible area in this design
variable. We can see in Fig.8 that these unfeasible solutions
are distributed between group 3 and 5.

Thus, it can be said that the space between group 1 and 2
is the dominated solution space and the space between group
3 and 5 is the unfeasible solution space.

V. CONCLUSION

This paper proposed a visualization method which visual-
ized the geometric distances of solutions in the design variable
space considering their distances in the objective space using
the idea of Isomap. This paper applied NSGA-II to the
conceptual design optimization problem of HRE to analyze
the design variables in the acquired Pareto solutions. By using
the proposed method, it was able to grasp the feature of the
Pareto solutions and the correspondence of objective space
and design variable space. The experimental results showed
that the proposed method worked well to analyze the Pareto
solutions and to extract knowledge of them. For the future
work, we will apply the proposed method to other problems
and feed back the extracted knowledge to genetic operations.

This research is partially supported by Strategic Programs
for Innovative Research.



(a) Shift of Initial Flow Rate of Oxidant
(V 1)

(b) Shift of Burning Time (V 4)

Fig. 7. Generated Solutions

Fig. 8. Unfeasible Solutions (V 1)
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