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Abstract—We model DNA count data as a multiple change
point problem, in which the data are divided in to different
segments by an unknown number of change points. Each segment
is supposed to be generated by unique distribution characteristics
inherent to the underlying process. In this paper, we propose
a modified version of the Cross-Entropy (CE) method, which
utilizes Beta distribution to simulate locations of change points.
Several stopping criterions are also discussed. The proposed
CE method applies on over-dispersed count data, in which the
observations are distributed as independent Negative Binomial.
Furthermore, we incorporate the Bayesian Information Criterion
to identify the optimal number of change points within the CE
method while not fixing the maximum number of change points
in the data sequence. We obtain estimates for the artificial data
by using the modified CE method and compare the results with
the general CE method, which utilizes normal distribution to
simulate locations of the change points. The methods are applied
to a real DNA count data set in order to illustrate the usefulness
of the proposed modified CE method.

Index Terms—change point problem, Cross-Entropy method,
combinatorial optimization, DNA count data, stochastic optimiza-
tion

I. INTRODUCTION

Change-point models are utilized to detect heterogeneity in
many scientific fields to give an improved and more detailed
interpretation of the properties inherent to the process. These
models can be employed in many areas like biomedical
sequences, financial and economic time series, quality con-
trol, signal processing, etc. There are two broader classes
of change-point models: retrospective (off-line methods) and
sequential (on-line) methods. Many authors have addressed the
change point problem both in terms of Bayesian and Frequen-
tist point of view. There is a rich class of literature available
in the methods developed to segment binary sequences as well
as continuous data. However, in literature there exist only a
handful of resources concentrating mainly on change point
detection in count data and especially on Deoxyribonucleic
Acid (DNA) count data.

DNA is the heredity material or the information carrier in
humans and almost all the living organisms. DNA consists of
two long polymers of nucleotides. The information in DNA
is stored as a code made up of four chemical bases known
as Adenine (A), Guanine (G), Cytosine (C) and Thymine (T).

Fig. 1. The DNA structure. Source: US National Library of Medicine
(http://ghr.nlm.nih.gov/handbook/basics/dna)

The order or the sequence of these chemical bases determines
the information available for building and maintaining a living
organism.

Reviewing the literature on change point modelling in
DNA sequences, Braun and Müller [1] reviewed some of the
methodologies that were used to segment DNA sequences.
They have proposed and discussed a local segmentation
method called split polynomial fitting. However, they have not
addressed methodologies related to change point modeling in
DNA count data. On the more recent advances, Tibshirani and
Wang [2] applied fused lasso method to the hot spot detection
in comparative genomic hybridization (CGH) data. Where,
CGH [3] is a technique for measuring DNA copy number
of selected genes on the genome. Erdman and Emerson [4]
introduced an improved version of the computing package
on change point modeling based on Product Partition Models
(PPM) introduced by Barry and Hartigan [5]. Zhang et al.
[6] proposed a scan statistic based on summing a chi-squared
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statistic for each individual sample in order to detect simul-
taneous change-points in multiple sequences. Furthermore,
various approaches to detect multiple change points in DNA
sequences were discussed in [7], [8], [9] and [10]. More
recently with the development of next-generation sequencing
data, Ivakhno et al. [11] proposed a novel approach called
CNAsegbased on number of reads in order to identify the copy
number abnormalities (CNAs).

The above literature on change point modeling related to
DNA sequences data considered competing methodologies on
segmenting binary sequences and do not consider the problem
as a count data process. In the literature, count data modeling
has been discussed extensively by many authors mainly in
the context of Generalized Linear Modeling (GLM). This
comprises of analysis when the over-dispersion is present or
not and with many other attributes [12]. However, the usage
of change point analysis on DNA count data within the GLM
context has not been addressed by many. The change point
analysis within the GLM framework adds more information
to the outcome of the study, as it reveals the true nature of
the underlying structure of the observations. Li and Lund [9]
have recently discussed a genetic algorithm approach to model
multiple change points in count data. They have considered
count data related to a meteorology study in which the data
are assumed to be distributed as independent Poisson random
variables. However, they have not discussed any issues on
over-dispersion of the data.

This paper contributes to the literature mainly in two as-
pects. Firstly, this proposes an efficient methodology to detect
multiple change points in DNA count data, considering it as a
combinatorial problem and discusses two competing stopping
criterions. Secondly, this models the data in each segment by
utilizing the negative binomial distribution while addressing
the over-dispersion issue.

This paper utilizes a modified version of the Cross-Entropy
(CE) method originally proposed in [13] in order to identify
the number of change points as well as the locations in DNA
count data. Change point modeling with the use of CE concept
was first utilized in [14] to detect multiple change points in
DNA binary sequences. They have proposed a CE method
using a normal distribution to simulate change points in binary
sequences. However they have fixed the maximum number of
change points in advance and did not search for an optimal
combination of change points that maximizes their proposed
performance function.

This paper proposes Beta distribution to simulate the loca-
tions of the change points within the CE method and does
not place a restriction on the maximum number of change
points. In each segment of the count data sequence is modeled
by using the negative binomial distribution. The Bayesian
Information Criterion (BIC) [15], [16] is used to identify the
number of change points in the count data. Yao [16] shows
that for normally distributed data the estimate on the number
of change points obtained by the BIC weakly converges to the
true number of change points. Finally, the study will compare
the results with the general approach proposed as in [14] and

discuss two stopping criterions that can be used to optimize
the process.

The paper is structured as follows. Section 2 introduces
the multiple change-point problem in mathematical terms. In
Section 3, we explain the modified CE method, underlying
distribution properties, the BIC and the estimation of the
parameters. Section 4 presents the results of numerical exper-
iments. Finally, Section 5 will conclude the paper with future
research directions.

II. THE MULTIPLE CHANGE-POINT PROBLEM

Let us formulate the multiple change point problem in math-
ematical terms. A count data sequence y = (y1, y2, . . . , yL)
of length L is given.

A segmentation of the sequence is specified by the number
of change points N and the positions of the change points
C = (c1, c2, . . . , cN ), where 0 = c0 < c1 < · · · < cN <
cN+1 = L. In this context, a change point is a boundary be-
tween two adjacent segments. The value of ci is the sequence
position of the rightmost character of the segment to the left of
the i-th change point. Segments are numbered from 0 to N as
there will be one or more segment than number of change
points. The model assumes that within each segment, the
observations are distributed as independent negative binomial
with probability pn and fixed dispersion parameter (size) of r,
where 0 ≤ pn ≤ 1 for n = 0, . . . , N . The dispersion parameter
r can either be pre-specified or estimated from the data. Then
the joint distribution of y = (y1, y2, . . . , yL) conditional on
N , C = (c1, c2, . . . , cN ), and p = (p0, p1, . . . , pN ) is given
by

f(y1, y2 . . . , yL | N,C,p)

=
N∏
n=0

[
cn+1∏
i=cn+1

Γ(r + yi)

yi!Γ(r)
(1− pn)rpyin

]
.

Note that this is one of the forms of negative binomial dis-
tribution which is also known as the gamma-poisson mixture
distribution. The corresponding log likelihood of the model is

ll(N,C,p)

=
N∑
n=0

[
cn+1∑
i=cn+1

ln Γ(r + yi)−
cn+1∑
i=cn+1

ln(yi!)

−λn ln Γ(r) + λnr ln(1− pn) +

cn+1∑
i=cn+1

yi ln(pn)

]
,(1)

where λn = (cn+1−cn−1) is the length of the nth segment.

A. Four parameters Beta distribution (Beta4 distribution)

The standard beta distribution with two shape parameters
(α > 0, β > 0) is supported on the range [0, 1]. In this study
the location of the change points may vary based on the length
of the data set. Therefore, two further parameters have to be
introduced to obtain beta random values in the specified range.
Let us consider the minimum and the maximum values of the
distribution of beta values as L0 and LM . Then, the probability



density function of the four parameter beta distribution is given
by,

f(y | α, β, L0, LM )

=
1

B(α, β)
(y − L0)α−1 (LM − y)β−1

(LM − L0)α+β−1
.

The method-of-moment estimates (e.g., [17]) of the shape
parameters are

α̂ = ȳ

[
ȳ(1− ȳ)

s2
− 1

]
, (2)

β̂ = (1− ȳ)

[
ȳ(1− ȳ)

s2
− 1

]
. (3)

Note that since we have two additional parameters specifying
the range of the beta values, the ȳ (sample mean) and s2

(sample variance) values are replaced with

ȳ =
ȳ − L0

LM − L0

and
s2 =

s2

(LM − L0)2
.

Furthermore, mean and the variance of the four parameter
Beta distribution are:

Mean =
αLM + βL0

α+ β
, (4)

Variance =
(α− 1)LM + (β − 1)L0

α+ β − 2
. (5)

III. MODIFIED CROSS-ENTROPY METHOD FOR MULTIPLE
CHANGE POINT PROBLEM

A. The standard Cross-Entropy method

The Cross- Entropy (CE) method [13] can be used for two
types of problems:

1) Estimation,
2) Optimization.

In general the process of multiple change point detection
can be considered as either a minimization or a maximization
problem based on the nature of the performance function F .
Let X be a finite set of states and F be a real valued perfor-
mance function on X . We wish to find the optimum (minimum
or maximum) of F over X and the state(s) corresponding to
this value.

The CE method is an iterative optimization procedure that
starts with a parameterized sampling distribution from which
a random sample is generated. Then, each observation or the
combinatorial arrangement is scored for its performance as the
solution to a specified optimization problem. A fixed number
Nelite of best of these combinatorial arrangements are referred
to as the elite sample. This elite sample is subsequently
used to update the parameters for the sampling distribution.
Thus, adaptive parameters are utilized in each iteration. The

sampling distribution eventually converges to a degenerate
distribution about a locally optimal solution which ideally will
be globally optimal.

Let N is the maximum number of change points in this
study that we wish to find. We can represent the position of
the change points as a non decreasing N -dimensional vector.
When the number of change points is less than the maximum
number of change points, some of the components of the
vector will be repeated, indicating the same change point. The
CE method in [14] considers truncated independent normal
distributions to simulate the locations of change points. They
have used the likelihood function as the performance function
F to identify change points in DNA binary sequences. In
each iteration the initial parameters are updated based on the
standard CE method until a convergence state is achieved. A
variance based stopping criterion is used to measure the fit of
the combinations of change points in each iteration.

B. Modified Cross-Entropy Method
The proposed modified CE method differs from the standard

CE method mainly in three aspects. Firstly, this considers over-
dispersed count data and each segment of the sequence are
assumed to be distributed as independent negative binomial
distribution with dispersion parameter r and probability pn.
The dispersion parameter is estimated from the data and
held constant for each segment and the other parameter is
estimated for each of the segments. Secondly, N beta dis-
tributions on the support [L0, LM ] are used to simulate the
locations of change points. We denote the set of these beta
distributions by Beta(α,β), where α = (α1, α2, . . . , αN )
and β = (β1, β2, . . . , βN ) are the parameters of each com-
ponent. In each iteration, the parameters of the Beta(αi, βi)
distributions, i = 1, 2, . . . , N , are updated until a stopping
criterion is met. Finally, the performance function F in this
study is the BIC [15], [16] which is calculated for all the
simulated combinations of change points. The combination
which minimizes F under the corresponding N is considered
as the optimum solution. Therefore, a minimization problem
is considered.

We choose initial values for both vectors α and β such
that αi = βi = 1, i = 1, 2, . . . , N , which are the uniform
distributions on the interval [L0, LM ], since we are dealing
with four parameter beta distributions. Where L0 and LM are
the lower and upper bound of the count data sequence, that
is, L0 = 0, LM = L. For each change point vector C in
the sample we obtain the maximum likelihood estimate of
pn with respect to the each of the segments and evaluate the
performance function F .

The performance function, the BIC, that we wish to mini-
mize is

F = −2ll(N,C,p) + k ln(L), (6)

where ll(N,C,p) is the log likelihood as in (1) of the count
data sequence, k = 2(N + 1).

In each of the iterations Nelite sample is calculated
considering the best performing combinations of change



points with respect to the performance function score. The
process is carried out until a convergence or a specific
stopping criterion is achieved. In this study, two stopping
criterions are discussed and evaluated. The first criterion is
based on the [14] and the other is based on the original CE
method as in [13]. In each step, the initial parameters of the
beta distribution are updated accordingly. Then, locations of
the change points are generated randomly according to the
updated beta distributions.

The CE-Beta algorithm can be summarized as below:

1) Choose initial values for α0 = (1, 1, . . . , 1) and
β0 = (1, 1, . . . , 1). In this case we have set both
parameters equal to one and both parameter vectors are
N dimensional. Set t = 1.

2) Generate a random sample C(1),C(2), . . . ,C(N1)

from the Beta(αt−1,βt−1) distribution, where
C(i) = (c

(i)
1 , c

(i)
2 , . . . , c

(i)
N ), i = 1, 2, . . . , N1, is the

change point vector as defined earlier.

3) For each i = 1, 2, . . . , N1 order c
(i)
1 , . . . , c

(i)
N from

smallest to biggest and set C(i) = (c
(i)
1 , c

(i)
2 , . . . , c

(i)
N ).

4) Evaluate the performance of each C(1),C(2), . . . ,C(N1)

using (6). Define the elite sample, which is the best
performing combinations of the change points. Let
Nelite = ρN1 be the size of the elite sample.

5) For all j = 1, 2, . . . , N estimate the two
shape parameters αt = (αt1, α

t
2, . . . , α

t
N ),

βt = (βt1, β
t
2, . . . , β

t
N ) as in (2) and (3) using the

elite sample and update the current parameter set.

6) If the stopping criterion (SC) is met, then stop the
process and identify the combination of the locations of
change points C(i) that minimizes the BIC. Otherwise
set t = t+ 1 and iterate from step 2.

Note that the steps of the CE-Normal algorithm is identical
to the CE-Beta except for the use of normal distribution to
simulate the locations of change points. In order to start
the two algorithms with a common basis, we initialized the
normal distribution parameters with the corresponding mean
and standard deviation of Beta(1, 1) on the support [L0, LM ]
by using (4) and (5).

The two stopping criterions (SCs) that are considered in this
study are

SC1: Stop the process if maxj(σ
2
j )t < ε.

SC2: Stop the process if for some t ≥ k, say k = 4,
Ft = Ft−1 = · · · = Ft−k.

Finally, the solution will be a single vector of change points.

IV. RESULTS

In this section, we include results of numerical experiments
that illustrate the performance of the modified CE method.
First, we consider an artificial count data sequence with a
known distribution, in which observations of each segment are
generated from a negative binomial process. We carried out the
analysis based on the two stopping criterions distinctly under
the standard CE method which utilizes a normal distribution
(CE-Normal) and the modified CE method which uses a beta
distribution (CE-Beta) to simulate the locations of change
points. The BIC, which is the performance function, is then
used to identify the optimal combination of the change points.
This will allow us to carry out direct comparison of the
methods in terms of the Root Mean Squared Error (RMSE)
and running time.

Finally, a real DNA count data set is considered. We
continue the process until a convergence in the performance
function is achieved or a stopping criterion is met. Since we
do not know the number of change points in advance, an
agreement between the methods is considered by looking at
the mean profile plots followed by a comparison study on the
processing time.

A. Example 1: Artificial Data Set

Let (y1, y2, . . . , y20000) be a sequence of independent neg-
ative binomial random variables with the parameters given in
the Table I, where the dispersion parameter of the distribution
is held constant at 10. We generated 200 random sequences
using these parameters and carried out the analysis based on
the CE algorithms with different stopping criterions.

First we carried out the analysis varying number of change
points (N) from 1 to 20 for both CE-Beta and CE-Normal
algorithms with respect to the two stopping criterions. We have
considered a sample size N1 of 1000 and an elite proportion
value ρ of 0.1 in all of the algorithms. In CE-Beta and CE-
Normal under SC1 ε value of 0.5 considered and under SC2 k
value of 4 used as the stopping criterions parameters. Then we
obtained the best solution in each of the N situations which
minimizes (6). Figure 6 shows the BIC values for each of the
N cases (from 8 to 20) for both algorithms. Table II shows
the average processing times on CE-Beta and CE-Normal with
respect to the stopping criterions.

Figures 2, 3, 4 and 5 show the underlying process behind
the CE-Beta SC1 algorithm when identifying the locations of
the change points at N = 5. Figure 2 is drawn from the
updated Beta parameters after running the algorithm with the
initial parameters of α = β = 1. Consequently, Figures 3, 4
and 5 are obtained from the updated Beta parameters after the
corresponding iteration. It is noted that, as the iteration number
increases the shape of the Beta distribution changes, such that
the process converges to the mode of the Beta distributions.
This shows the adaptive nature of the CE algorithm, where in
each iteration the parameters are updated in order to obtain
better estimates of the locations of change points. Finally,
at iteration 19 the stopping criteria is met and it is almost
converged to a point mass in the count data sequence.



Fig. 2. The shape of the beta distributions after 1 iteration of the CE-Beta
under SC1 at N = 5.

Fig. 3. The shape of the beta distributions after 4 iterations of the CE-Beta
under SC1 at N = 5.

Figure 6 shows that in both algorithms with two stopping
criterions, the BIC is minimized when N = 9. More impor-
tanlty, when considering the processing time as in Table II,
there is a significant improvement in the proposed CE-Beta
algortihm when compared to the competing CE algorithms
based on normal assumption.

The CE-Beta SC1 algorithm can be identified as the optimal
CE algorithm on the basis of processing time when compared
with the other three algorithms considered in the study. The
processing time is considered as one of the most important
aspects in combinatorial studies especially when dealing with

Fig. 4. The shape of the beta distributions after 10 iterations of the CE-Beta
under SC1 at N = 5.

Fig. 5. The shape of the beta distributions after 19 iterations of the CE-Beta
under SC1 at N = 5.

change point modelling. Furthermore, Table II shows that the
running time(s) in CE-Beta is significantly less than that of the
competing CE-Normal method with the two SCs. Note, that
this study is carried out in a corei3 first generation 2.27GHz
processer with 4GB RAM. Therefore, the processing time is
relative to this operation conditions.

Table III shows the average Root Mean Squared Error
(RMSE) for each algorithm CE-Beta and CE-Normal with
two SCs under the optimal change point numbers detected
(i.e. N = 9). The RMSE values indicate that even though
the computing time is highly superior under SC1 it gives less



TABLE I
NEGATIVE BINOMIAL p PARAMETERS FOR THE ARTIFICIAL SEQUENCE

WITH FIXED SIZE OF r = 10.

Positions Negative Binomial
Parameter(p)

1—2000 p0 = 0.05

2001—4000 p1 = 0.15

4001—6000 p2 = 0.40

6001—8000 p3 = 0.02

8001—10000 p4 = 0.20

10001—12000 p5 = 0.50

12001—14000 p6 = 0.10

14001—16000 p7 = 0.85

16001—18000 p8 = 0.18

18001—20000 p9 = 0.90

Fig. 6. BIC vs. N for CE-Beta and CE-Normal with two SCs

TABLE II
TOTAL RUNNING TIME OF CE-BETA AND CE-NORMAL WITH TWO SCS.

Algorithm
Running Time(s)

SC1 SC2

CE-Beta 5322.01 12916.66

CE-Normal 8546.73 27460.30

precision when compared with the SC2. Moreover, it is noted
that the RMSE value is lower in the proposed CE- Beta under
SC1 method than the competing CE- Normal method. Figure
3 shows the fit of the change points with the average counts
over the sequence. It is noted that both methods under the two
stopping criterions correctly captured the major regions in the
over dispersed count data series.

B. Parameter smoothing: Rho (ρ)

We have considered smoothing up the paramter Rho (ρ),
which is used to obtain the elite sample. The RMSE and

TABLE III
AVERAGE RMSE FOR BETA AND NORMAL WITH TWO SCS WHEN N=9.

Algorithm
RMSE

SC1 SC2

CE-Beta 3.6603 0.0665

CE-Normal 4.9598 0.6885

Fig. 7. Average count vs. sequence position for CE-Beta and CE-Normal
with two SCs

processing time(s) is obtained for the Rho values from 0.01
to 0.1 with the bin of 0.01 when N = 9. We have obtained
the average results based on 100 simulations under each of
the Rho values.

Figure 8 indicates that the RMSE for the SC2 is lower
than the SC1 algorithms both in CE-Beta and CE-Normal
cases. Furthermore, CE-Beta algotrithms have lower RMSE
on average than that of the competing CE-Normal algorithms.
Also, by looking at the Figure 8 it can be noted that the RMSE
tends to scatter around 4 for the CE-Beta cases and around 0
for the CE-Normal cases after Rho value of 0.05 .

However, based on the processing time (Figure 9) the SC1
algorithms outperform the SC2 algorithms in both CE-Beta
and CE-Normal cases. On average the CE-Normal algorithms
take more processing time than the CE-Beta cases. Therefore,
we have to consider a Rho value that will balance the trade-
off between the RMSE and the processing time. We have used
the Rho value as 0.05 in this study to obtain the results. This
is mainly based on the average RMSE results as disucssed
above.

C. Example 2: Real Data

This example considers a real DNA count data. The data
correspond to the chromosome 2 of a subject in a study. Due to
this being real data we do not know the true number of change
points in advance. Therefore, we look for agreement between
the two methodologies. We have considered the proposed CE-



Fig. 8. Plot of Average RMSE vs. Rho (ρ)

Fig. 9. Plot of Average Processing time (s) vs. Rho (ρ)

Beta method and the CE- Normal method under the SC1 to
compare the results. In order to calculate the Nelite fraction
of samples ρ value of 0.05 is used.

Figure 10 shows a portion of the DNA count data set
that we have used in our study. Since, the data are highly
over-dispersed; negative binomial distribution will model the
process more informatively and accurately. Figure 11 shows
the iterations results for the CE-Beta and CE-Normal under
SC1. The optimum number of change points is obtained by
considering the combination of change points that minimizes
the BIC value. The BIC is minimized when N = 28 for the
CE-Beta and 24 for the CE-Normal under the SC1. Table IV
shows the running time for each of the cases under SC1 with

Fig. 10. Part of the DNA count data

Fig. 11. BIC vs. Number of change points (N )

number of change points equal to 28 and 24 respectively.
Figure 12, the mean profile plot shows the agreement of the

two methods in identifying the number of change points in
the DNA count data. In addition to the major regions that has
also been captured by the CE-Normal algorithm, the proposed
method has also identified few more small regions as well.
Furthermore, as in Table IV the proposed CE-Beta method is
computationally efficient compared to the CE-Normal method
in detecting the locations of change points of the DNA count
data as well.

V. CONCLUSION

A modified CE method is proposed with different stopping
criterions. This proposed method utilizes beta distribution to



Fig. 12. Average count vs. sequence position for CE-Beta and CE-Normal
under SC1 of DNA count data

TABLE IV
RUNNING TIME FOR THE DNA COUNT DATA WITH CE-BETA AND

CE-NORMAL UNDER SC1

Algorithm Running time (s)

CE-Beta 229.17

CE-Normal 555.54

simulate location of change points in over dispersed count
data. It was identified that the processing time under the
proposed CE method is significantly less than the original CE
method with respect to the two stopping criterions. However,
the CE algorithm with SC2 produced lower RMSE in the
proposed CE-Beta as well as the CE-Normal at the cost of
high processing time.

While the results of this work are encouraging, there are
plenty of avenues available for future research work, espe-
cially on smoothing up the CE algorithms and fine-tuning its
parameters. In addition to that it would be helpful to investigate
the possibilities of fine-tuning the penalty term in the BIC in
the case of number of change points is not known for count
data problems. A modified BIC [18] will certainly help to
obtain more smooth results and will more effectively address
the dimension of the models with the increase of number of
change points.
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