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Abstract— Many real-world problems are dynamic, requiring
an optimization algorithm which is able to continuously track
a changing optimum over time. In this paper, we present an
ant-colony based algorithm for solving optimization problems
with continuous variables, labeled Continuous Differential Ant-
Stigmergy Algorithm (CDASA). The CDASA is applied to
dynamic optimization problems without any modification to the
algorithm. The performance of the CDASA is evaluated on the
set of benchmark problems provided for the IEEE Competi-
tion on Evolutionary Computation for Dynamic Optimization
Problems (ECDOP-Competition-2012).

I. INTRODUCTION

A dynamic optimization problem (DOP), which this work
deals with, is defined as

F = f(x, φ, t),

where F is the optimization problem, f is the fitness func-
tion, x is a feasible solution in the solution set X, t is time
and φ is the system control parameter, which determines the
solution distribution in the fitness landscape.

Recently, there have been many attempts to solve these
problems using evolutionary algorithms [1], differential evo-
lution [5], [6], memetic algorithms [2], multi-agent algo-
rithms [3], particle swarm optimization [4], and ant-colony
optimization [7], [6]. Cruz et. al. [8] provide a survey of the
research done on optimization in dynamic environments over
the past decade.

In this paper we describe the Continuous Differential Ant-
Stigmergy Algorithm (CDASA) for dynamic optimization
based on idea of continuous space exploration with prob-
abilistic sampling. Moreover, the CDASA is modification of
the Differential Ant-Stigmergy Algorithm (DASA) proposed
in [9], [10], which transforms a real-parameter optimization
problem into a graph-search problem, where vertices repre-
sent predefined offsets. Unlike the DASA, the CDASA uses
arbitrary real offsets to navigate through the search space.

The remainder of this paper is organized as follows:
Section II introduces the optimization algorithm called the
Differential Ant-Stigmergy Algorithm. Section III presents
the experimental evaluation on the set of benchmark prob-
lems provided for IEEE Competition on Evolutionary Com-
putation for Dynamic Optimization Problems (ECDOP-
Competition-2012). Finally, Section IV concludes the paper.
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II. THE ALGORITHM

Let us assume n is a number of parameters xi, i =
1, 2, . . . , n, and x′i is the current value of the i-th variable.
During the search for the optimal variable value, the new
value, xi, is assigned to the i-th variable as follows:

xi = x′i + ∆i. (1)

Here, ∆i is the so-called variable difference and is chosen
using the inverse cumulative distribution function of the
Cauchy distribution:

∆i = z0i + s tan(Rndi),

where z0i is the location offset for the i-th variable, s
is the scale factor, and Rndi is a uniformly distributed
random number from continuous interval, so for all ∆i, i =
1, 2, . . . , n, li ≤ xi + ∆i ≤ ui is true.

Each ant walks over all Cauchy distributions and on its
way forms the vector of variable differences

~∆ = [∆1 ∆2 . . . ∆i . . . ∆n].

The optimization consists of an iterative improvement
of the temporary best solution, ~x tb, by constructing an
appropriate vector of variable differences, ~∆. New solutions
are produced by applying ~∆ to ~x tb (Eq. 1).

First a solution ~x tb is randomly chosen (by uniform sam-
pling) in RndSolution. This solution is then evaluated and
set as global best, y gb . Then an initial amount of pheromone
is deposited on variable difference intervals according to the
Cauchy probability density function

C(z; z0i , s) =
1

π

(
s

(z − z0i)2 + s2

)
,

where z0i is the location offset for the i-th variable and

s = sglobal − slocal

is the scale factor. For an initial pheromone distribution im-
plemented in PheromoneInitialization the Cauchy
distribution with sglobal = 1, slocal = 0, and z0i = 0, for
i = 1, 2, . . . , n is used.

There are m ants in a colony, all of which begin simultane-
ously from the first variable. Ants use an inverse cumulative
distribution function to determine a variable difference.

The ants repeat this action until they reach the last variable.
For each ant i, variable differences vector ~∆i is constructed
in FindDifferences and from which a new solution ~xi
is calculated.

After all ants have created solutions, they are being evalu-
ated with a calculation of y = f(~xi). The information about
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the best among them is stored as currently best information
(~x cb, ~∆ cb, and y cb).

The current best solution, ~x cb is compared to the tem-
porary best solution ~x tb. If y cb is better than y tb, then
temporally best information is replaced with currently best
information. In this case sglobal is increased according to the
global scale increase factor, s+:

sglobal ← (1 + s+)sglobal,

slocal is set to

slocal =
1

2
sglobal

in UpdateScales and pheromone amount is redistributed
in PheromoneRedistribution according to the asso-
ciated variable differences vector ~∆ cb, where z0i = ∆ cb

i

for i = 1, 2, . . . , n. Furthermore, if new y tb is better then
global best y gb, then globally best information is replaced
with temporally best information. So, global best solution
is stored. If no better solution is found sglobal is decreased
according to the global scale decrease factor, s−:

sglobal ← (1− s−)sglobal

in UpdateScale and pheromone is being evaporated in
PheromoneEvaporation.

Pheromone evaporation is defined by some predetermined
percentage ρ. The probability density function C(z; z0i , s) is
changed in the following way:

z0i ← (1− ρ)z0i

and
slocal ← (1− ρ)slocal.

Here we must emphasize that ρ > s−, because otherwise we
might get negative scale factor.

Finally, if scale factor s is smaller than restart threshold
α, a new random solution is set as new temporary best
and pheromone is initialized according to initial pheromone
distribution.

The pseudocode of the CDASA is as follows:

~x tb = RndSolution()
y tb =∞
y gb = f(~x tb)
PheromoneInitialization()
while not ending condition met do

for all m ants do
~∆i = FindDifferences()
~xi = ~x tb + ~∆i

end for
y cb =∞
for all m ants do
y = f(~xi)
if y < y cb then
~x cb = ~xi
y cb = y
~∆ cb = ~∆i

end if
end for
if y cb < y tb then
~x tb = ~x cb

y tb = y cb

s = UpdateScales(sglobal, slocal)
PheromoneRedistribution(~∆ cb, s)
if y tb < y gb then
~x gb = ~x tb

y gb = y tb

end if
else
UpdateScale(sglobal)
PheromoneEvaporation(ρ)

end if
if s < α then
~x tb = RndSolution()
y tb = f(~x tb)
PheromoneInitialization()

end if
end while

III. PERFORMANCE EVALUATION

A. The Benchmark Suite

The CDASA algorithm was tested on six benchmark prob-
lems provided for the IEEE Competition on Evolutionary
Computation for Dynamic Optimization Problems (ECDOP-
Competition-2012) [11]:
• F1: Rotation peak function (multi-modal, scalable, ro-

tated, the number of local optima are artificially con-
trolled),

• F2: Composition of Sphere’s function (multi-modal,
scalable, rotated, 10 local optima),

• F3: Composition of Rastrigin’s function (multi-modal,
scalable, rotated, a huge number of local optima),

• F4: Composition of Griewank’s function (multi-modal,
scalable, rotated, a huge number of local optima),

• F5: Composition of Ackley’s function (multi-modal,
scalable, rotated, a huge number of local optima),

• F6: Hybrid composition function (multi-modal, scal-
able, rotated, a huge number of local optima, different
functions properties are mixed together, sphere func-
tions give two flat areas for the function).

B. Framework of Dynamic Changes

When dealing with the dynamic optimization problem the
dynamism results from a deviation of solution distribution
from the current environment by tuning the system control
parameters. It can be described as follows:

φ(t+ 1) = φ(t)⊕∆φ,

where ∆φ is a deviation from the current system control
parameters. Then, we can get the new environment at the
next moment t+ 1 as follows:

f(x, φ(t+ 1)) = f(x, φ(t)⊕∆φ).



There are eight change types of the system control parame-
ters:
• T1: small step change

∆φ = α · ‖φ‖ · r · φseverity,

• T2: large step change

∆φ = ‖φ‖ · (α · sign(r) + (αmax − α) · r) · φseverity,

• T3: random change

∆φ = N(0, 1) · φseverity,

• T4: chaotic change

φ(t+ 1) = A · (φ(t)− φmin) · 1− (φ(t)− φmin)

‖φ‖
,

• T5: recurrent change

φ(t+ 1) = φmin +
‖φ‖
2
· (sin(

2π

P
t+ ϕ) + 1),

• T6: recurrent change with noise

φ(t+ 1) = φmin +
‖φ‖
2
· (sin(

2π

p
t+ϕ) + 1) ·Nseverity,

• T7: dimensional change

D(t+ 1) = D(t) + sign ·∆D,

and
• T8: number of peaks change

P (t+ 1) = P (t) + sign ·∆P.

Here, ‖φ‖ is the change range of φ, φseverity is a constant
number that indicates change severity of φ, φmin is the
minimum value of φ, Nseverity ∈ (0, 1) is noisy severity
in recurrent with noisy change and is set to 0.8. α ∈ (0, 1)
and αmax ∈ (0, 1) are constant values, which are set to 0.04
and 0.1. A logistics function is used in the chaotic change
type, where A ∈ (1.0, 4.0) is a positive chaotic constant,
which is set to 3.67, if φ is a vector, the initial values of the
items in φ should be different within ‖φ‖ in chaotic change.
p is the period of recurrent change and recurrent change with
noise and is set to 12, ϕ is the initial phase, r is a random
number in (−1, 1), sign(x) returns 1 when x is greater than
0, returns −1 when x is less than 0, otherwise, returns
0. N(0, 1) denotes a normally distributed one dimensional
random number with mean zero and standard deviation one.
∆D is a predefined constant, which the default value of
is 1. If D(t) = Max D, sign = −1; if D(t) = Min D,
sign = 1. Max D and Min D are the maximum and minimum
number of dimensions, which are in our case set to 15 and
2, respectively. ∆P is also a predefined constant, which
the default value of is 2. If P (t) = Max P, sign = −1;
if P (t) = Min P, sign = 1. Max P and Min P are the
maximum and minimum number of peaks, which are in our
case set to 50 and 10, respectively.

C. Parameter Settings

The CDASA has five parameters: the number of ants, m,
the pheromone evaporation factor, ρ, the global scale increase
factor, s+, the global scale decrease factor, s−, and the re-
start threshold, α. The single setting for parameters’ was
used for all problems. We set m = 1, ρ = 0.91, s+ = 0.03,
s− = 0.03, and α = 13−4. The algorithm parameter settings
were set according to the algorithmic approach to parameter
tuning proposed by Smit and Eiben [12].

D. The Experimental Environment

The computer platform used to perform the experiments
was based on AMD Opteron 2.6-GHz processor, 2 GB
of RAM, and the Microsoft Windows operating system.
The CDASA was implemented in C++ using the EAlib
package, which is available from http://cs.cug.edu.
cn/teacherweb/lichanghe/pages/EAlib.html.

E. Results

For each change type of each function, we present mean
value (Mean) and standard deviation (StD) for xb(t) over 20
runs:

Mean =
runs∑
i=1

num change∑
j=1

Elast
i,j (t)

runs · num change
,

StD =

√√√√ 1

runs · num change

runs∑
i=1

num change∑
j=1

(Elast
i,j (t)−Mean)2.

Here, Elast(t) = |f(xb(t)) − f(x∗(t))| after reaching
Max FES/change for each change (in our case we have
Max FES/change = 50,000).

In Tables I–II we present the Mean values and StD for the
CDASA algorithm on all test problems.

F. Overall Performance Marking Measurement

To evaluate the CDASA performance in terms of both
convergence speed and solution quality, the performance on
test case k is calculated by:

performancek =
runs∑
i=1

num change∑
j=1

rij
num change ∗ runs

,

where rij =
rlast
ij

1+
∑S

s=1

1−rs
ij

S

, rlast
ij is the relative value

of the best one to the global optimum after reaching
Max FES/change for each change. rsij is the relative value of
the best one to the global optimum at the s-th sampling dur-
ing one change and S = Max FES/change

sf
, where sf is sampling

frequency (in our case we have sf = 100). rsij =
f(xij)+ε
f(x∗

ij)+ε

for the maximization problem F1 and rsij =
f(x∗

ij)+ε

f(xij)+ε for the
minimizations problems F2 – F6, here ε is used to ensure
that f(x∗ij) + ε > 0.

The overall algorithm performance is evaluated by:

performance =
Num test cases∑

k=1

performancek.



TABLE I
MEAN VALUES AND STD FOR THE PROBLEM F1 WITH CHANGING RATIOS change ratio = 0.3, 0.7, AND 1.0, RESPECTIVELY

Chang. T1 T2 T3 T4

ratio Mean ± StD Mean ± StD Mean ± StD Mean ± StD

0.3 7.70E−1 ± 4.72E−1 1.69E+0 ± 9.25E−1 2.43E−1 ± 1.96E−1 3.46E−1 ± 5.12E−1

0.7 8.39E+0 ± 7.17E+0 4.45E+0 ± 3.16E+0 3.88E−1 ± 3.80E−1 3.20E−1 ± 3.33E−1

1.0 3.43E+0 ± 3.80E+0 3.08E+0 ± 2.47E+0 2.36E+0 ± 6.90E−1 9.76E−3 ± 2.30E−3

Chang. T5 T6 T7 T8

ratio Mean ± StD Mean ± StD Mean ± StD Mean ± StD

0.3 2.81E−4 ± 1.36E−4 1.29E+0 ± 1.95E+0 — —

0.7 2.08E−4 ± 9.03E−5 1.53E−1 ± 1.34E−1 — —

1.0 1.68E−4 ± 5.74E−5 1.88E−2 ± 2.44E−3 2.63E+0 ± 4.84E+0 2.97E+0 ± 5.64E+0

TABLE II
MEAN VALUES AND STD FOR THE PROBLEMS F2 – F6

Problem T1 T2 T3 T4

Mean ± StD Mean ± StD Mean ± StD Mean ± StD

F2 5.44E−1 ± 5.10E−1 3.37E−1 ± 5.31E−1 1.13E+0 ± 1.66E+0 5.44E−2 ± 2.34E−2

F3 7.53E+0 ± 1.18E+1 4.53E+1 ± 1.03E+2 4.05E+1 ± 9.10E+1 2.81E+1 ± 6.35E+1

F4 1.90E+0 ± 3.49E+0 1.60E+0 ± 2.39E+0 3.46E+0 ± 4.37E+0 8.49E−1 ± 1.53E+0

F5 1.90E−1 ± 9.47E−2 1.79E−1 ± 4.73E−2 1.86E−1 ± 1.10E−1 1.65E−1 ± 5.91E−2

F6 1.39E+0 ± 1.94E+0 3.09E+0 ± 1.97E+0 2.84E+0 ± 3.64E+0 1.88E+0 ± 1.36E+0

Problem T5 T6 T7 T8

Mean ± StD Mean ± StD Mean ± StD Mean ± StD

F2 1.86E+0 ± 1.59E+0 1.47E−1 ± 2.31E−1 1.81E+0 ± 4.32E+0 8.18E+0 ± 1.10E+1

F3 1.47E+1 ± 4.30E+1 3.15E+1 ± 6.59E+1 5.69E+2 ± 4.22E+2 1.53E+1 ± 1.92E+1

F4 7.25E+0 ± 1.03E+1 1.10E+0 ± 1.73E+0 3.68E+0 ± 9.73E+0 1.70E+1 ± 3.85E+1

F5 2.80E−1 ± 9.08E−2 1.59E−1 ± 4.79E−2 4.11E−1 ± 6.83E−1 8.65E−1 ± 9.18E−1

F6 1.05E+0 ± 8.00E−1 1.96E+0 ± 1.13E+0 4.28E+0 ± 7.41E+0 7.95E+0 ± 8.28E+0

TABLE III
OVERALL PERFORMANCE

Problem Chang. ratio T1 T2 T3 T4 T5 T6 T7 T8 Sum

0.3 0.9896 0.9809 0.9950 0.9819 0.9985 0.9636 — — 5.9095

F1 0.7 0.8819 0.9450 0.9894 0.9913 0.9982 0.9910 — — 5.7968

1.0 0.9411 0.9416 0.9632 0.9924 0.9989 0.9895 0.9402 0.9422 7.7093

F2 1.0 0.9495 0.9545 0.9366 0.9652 0.8710 0.9568 0.9011 0.7716 7.3062

F3 1.0 0.7126 0.5948 0.6243 0.6015 0.7129 0.5991 0.4811 0.6129 4.9392

F4 1.0 0.8640 0.8695 0.8467 0.8685 0.7712 0.8595 0.8537 0.7043 6.6375

F5 1.0 0.9612 0.9605 0.9624 0.9521 0.9501 0.9531 0.9293 0.9079 7.5766

F6 1.0 0.9074 0.8763 0.8771 0.8533 0.9130 0.8510 0.8351 0.7460 6.8593

The overall performance 52.7344



Fig. 1. Convergence graph for F1 with changing ratio 0.3 for different change types.

Fig. 2. Convergence graph for F1 with changing ratio 0.7 for different change types.

Fig. 3. Convergence graph for F1 with changing ratio 1.0 for different change types.



Fig. 4. Convergence graph for F2 for different change types.

Fig. 5. Convergence graph for F3 for different change types.

Fig. 6. Convergence graph for F4 for different change types.



Fig. 7. Convergence graph for F5 for different change types.

Fig. 8. Convergence graph for F6 for different change types.

There are totally Num test cases = 60 specific test cases.
Table III presents the performance of the CDASA algo-

rithm.
Convergence graphs for all functions obtained by the

CDASA are depicted in Figs. 1–8. Normalized relative error
values according to worst error obtained in all function
evaluations are depicted in figures. This way all values are
bijectively transformed to the interval [0, 1]. In general, the
algorithm performed well on all test cases. The only real
exception is function F3 with dimensional change (T7) and
to some extend function F1 with small and large step change.

IV. CONCLUSION

This paper presented an ant-colony based algorithm de-
veloped for numerical optimization problems. The algorithm
was applied to dynamic optimization problems with con-
tinuous variables proposed for the IEEE Competition on
Evolutionary Computation for Dynamic Optimization Prob-
lems (ECDOP-Competition-2012). The results showed that

the proposed algorithm can find reasonable solutions for all
of the problems.

One obvious advantage is that was no need any changes
to the original algorithm. So, it can be used as such for
both cases of numerical optimization, static and dynamic.
From our previous testing [13] we have discovered that for
static problems a higher number of ants is more suitable,
while for dynamic problem a much lower number is needed,
so the algorithm responds quicker to the changes. The
same was true for the original algorithm DASA, where
we have similarly used smaller number of ants to solve
dynamic optimization problems [14]. We believe that one
of the crucial reasons that there was no need to change the
algorithm itself was in restart procedure, which inherently
added the capacity to recover quickly every time there was a
change in problem environment. Furthermore, the algorithm
is unsusceptible to different types of changes and can be used
with very limited knowledge about problem, only maximal
dimension and input problem parameters.
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