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Abstract—Since the high computational cost of the structure-
based protein-Ligand docking prediction is one of the major
problems in designing new drugs, many researchers keep looking
for a high performance search algorithm to find the workable
directions to drug design as well as a simulator platform being
able to test and verify the new drugs. In this paper, an improved
version of Lamarckian genetic algorithm (ILGA) is first presented
for enhancing the performance of LGA by using pattern reduc-
tion to reduce the computation cost and using tabu search to
increase the search diversity to further find the better results. In
addition, the proposed algorithm is also applied to a well-known
simulator platform (AutoDock) to evaluate the performance of
the proposed algorithm. The simulation results show that the
proposed algorithm can enhance the performance of ILGA in
terms of convergence performance especially for highly flexible
ligands.

keyword: Protein-Ligand docking prediction, AutoDock,
Lamarckian genetic algorithm.

I. INTRODUCTION

Drug design is very important work for human health
because it is known that designing a useful drug is the way
in fighting against various diseases such as preventing and
curing diseases. The ligand-based and structure-based drug
designs are two of the most important methods for modern
drug design [1], [2]. Different from ligand-based drug design
(IBDD) which uses the indirect drug design method to derive
drugs, structure-based drag design (SBDD) uses direct drug
design method to create possible candidate drugs. This kind
of drug design, SBDD [3], usually can be used to predict the
interactions between small drug molecules and protein receptor
complexes, and now, it is one of the well-known computer-
aided drug design methods. This prediction method is based
on theoretical computing method and molecular modeling to
establish the three-dimensional structure for designing a new
drug molecule which has good binding activity with receptors.

One of the important reasons that many studies [4] focused
on molecular docking with computer-aided SBDD method
is that the time in lab for the new drug development of
pharmaceutical compounds method can be reduced. Before
the docking process, the active site of target protein can
first be searched and then the binding energy for relative
space between molecules can be calculated. The lower binding
energy is the greater binding activity which can also provide
better drug efficiency. For the docking method, it is used to

predict if ”protein” combining with ”small molecule ligand” 1

will be a stable complex conformation or not [5]. To evaluate
the performance of the prediction method, the score function is
used for measuring the results of the binding energy between
protein and ligand. Among the search process, the protein-
ligand docking method will try to locate the position of
ligand in the active sites of translation, rotation direction, and
conformation of protein receptors.

In [6], Chen et al. pointed out that the score function and
efficient search algorithm were the most important parts of a
good and effective docking method. The score function is a
free energy formula for representing the binding interaction
between protein and ligand. A good score function should
precisely show the result quality found by search algorithm.
For the protein-ligand docking problem, the major concern is
to find out the lowest energy conformation for finding where
the main binding orientation is. For the search algorithm, the
score function is used for estimating binding energy as well
as guide it to the trend the search directions that have high
probability to get better result that the others.

Due to the search space of possible conformations being
very large, how to reduce the computation time becomes
a very important research issue. In addition, because it is
a NP-problem [7], an high performance search method is
required for speeding up the search process. That is why many
search methods for reducing the computation time have been
presented to solve the docking problem [8]. The heuristic
algorithm, of course, is one of the efficient ways solving
this problem [9]. Recently, various heuristic algorithms (i.e,
simulated annealing(SA) [10] and genetic algorithm [11],
[12] have been proposed for protein-ligand docking problems
because they provide a fast way to search for the approximate
solution comparing with the brute force search algorithms.

Because the heuristic algorithm only can obtain the approx-
imate solutions2 which are close to the global optimal solution,
the balance between the computation cost and solution quality
becomes one of the most important problems for the heuristic
algorithms. In this paper, the focus is not only on developing a
good search process in a limited number of time (computation

1Ligands mean the drug molecules in this paper.
2The heuristic algorithm is no guarantee can find the optimization solution.
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cost), but also on stably getting closer to the best solution for
the binding location.

A modified Lamarckian genetic algorithm called improved
Lamarckian genetic algorithm (ILGA) is presented in this
paper to solve the docking problem for the rigid protein and
flexible drug molecules. Moreover, the proposed algorithm is
also applied to the AutoDock4 system [13] as the docking
processing environment and existing energy scoring function.

The remainder of the paper is organized as follows. Section
Section II gives a brief introduction to the molecule docking
and Autodock system. Section Section III describes in detail
the proposed algorithm. Performance evaluation of the pro-
posed algorithm is presented in Section Section IV. Conclusion
is drawn in Section Section V.

II. RELATED WORK

A. Molecule Docking

Molecular docking is a simulation program used for predict-
ing receptor-ligand complex conformation where the receptor
can be proteins or nucleic acid and ligand is a small molecule.
Usually, the receptor of molecular docking is drugs. In the
docking procedure, to calculate binding energy between re-
ceptor and ligand needs to refer to coordinates for all atoms
and to collocate several parameters, such as Van der Waals
(VDW), atomic radius, charge, torsional angles, intermolecular
hydrogen bonds and hydrophobicity of the contact force. When
the prediction of docking process is complete, it will return
all the possible ligand conformations and several predicted
binding sites. The simulation process of molecular docking
can be regarded as the key matching problem where the lock
and key are the receptor and ligand, respectively. The goal of
simulation process is to adjust the positions of key and lock
being matched, or to say that it will produce many possible
key positions and compare all possible key positions to further
choose the best location by using the standard score function.

To understand the performance of the search algorithm
for ligand docking problem and find the possible drugs, a
numerous software of molecular docking predictions have
been presented by the academic organizations and commercial
companies, such as [14], [10], [15], [16], [17], [18], [19],
[20], [21], [22], [23]. The basic idea of these programs is
to quickly identify new leading compounds (throughout the
virtual screening process). The search results of these programs
can save time for experimental syntheses or raise accuracy.
Simulation accuracy can be improved by repeatedly modifying
simulation parameters, then validated by real crystal structures
and experimental data to obtain the generally accepted experi-
ment. In summary, these processes attempts to find out a good
drug molecule with excellent effect for the receptor which is
not validated yet by a laboratory.

B. AutoDock

AutoDock [10] is an effective tool for drug designs based
on structure-based protein molecule and an open free software.
This tool usually considers two target molecules of proteins
and ligand for docking simulations that assume the protein

being rigid and the ligand being flexibility. In other words,
the protein receptor is a rigidly fixed object which needs to
consider how to describe the dynamic combination between
the flexible ligand and receptor molecules. To determine the
merits of the parameters combination that depends on the
corresponding score function to evaluate means the lowest
binding energy.

This software (AutoDock) provides a method that tries to
find the best combination of parameters to further provide the
best relative position and orientation between the protein and
ligand (i.e., the lowest free energy). Three search methods,
simulated annealing, genetic algorithm and Lamarckian genetic
algorithm, are provided by AutoDock environment to search
for possible protein-ligand binding sites. The energy function
calculating the energy value between the protein and ligand
molecule is used by these search algorithms to determine
which conformation is the candidate with the most appropriate
binding points. The details of composition formula for free
energy expressions could be referred to the study of [11].
Moreover, more and more studies attempt to apply their pro-
posed methods to AutoDock, such as PASDock [24], DEDock
[9], SODock [6] and so on.

III. THE PROPOSED ALGORITHM

In this section, the proposed method first describes how the
ligand molecule being represented and score function as an
expression of formula. Then, the details of search procedure
will also be given in this section.

A. Chromosome representation

Because AutoDock is the test environment in this paper,
the proposed algorithm uses the parameter settings of this
environment to define and adjust the coordinates of the lig-
and molecule translation, orientation and conformation. These
parameters contain the three-dimensional coordinates of the
ligand center points, four orientation parameters and some
additional special atoms, such as coal, nitrogen and hydrogen
atoms whose free torsion degrees as parameters. N + 7
parameters (i.e., seven translation and orientation and n free
torsion degrees) are used for the encoding form.

Fig. 1. Chromosome representation

As shown in Fig. 1,
• Three parameters for translation coordinates, x, y, and z,

are the barycenter of ligand. As a result, the search space
is a grid box space pre-specified by the user.



• The orientation of the ligand is a quadruple parameters
represented by nx, ny, nz , and α in the range interval
[−π, π]. [nx, ny, nz] means ligand relative to the specified
rotation angle of x, y, and z-axis. Although the direction
of the ligand can be represented by three Euler angles,
the use of the fourth parameter α can prevent gimbal lock
problem.

• t1, t2, ..., tn represent the free torsion degree for some
special atoms such as carbon, nitrogen and hydrogen
atoms of the ligand molecule in the range interval [−π, π].

B. Score function

AutoDock uses an empirical energy function as the score
function to evaluate the ligand molecular docking conforma-
tion which is suitable or not for binding area of receptor.
AutoDock uses an empirical energy function as the score func-
tion to evaluate the ligand molecular docking conformation
being suitable or not for binding area of receptor.

A set of candidate solutions, X , can be expressed as the
total energy of the protein-ligand interaction and the sum of
the internal energy for both ligand and protein.

minEtotal(X) = Ev + Eh + Ee + Ei + Ed, (1)

where Ev , Eh and Ee are used for the interaction forces
of intermolecular namely Van der Waals forces, hydrogen
bond and electronic potential energy; Ei is represented as the
internal attraction of ligand and protein molecules; and Ed is
the desolvation of binding area meaning the performance for
hydrophobic. Note that, the details of Eq. (1) can be referred
to study of [11].

C. Search Procedure

1. Randomly generate an initial population S = S1, S2, ..., Sn

2. While the termination criterion is not met
3. For i = 0 to gn
4. Evaluate the fitness value fi of each chromosome Si

5. Select the fitter chromosomes to reproduce
6. Perform the crossover and mutation operators to generate population S′

7. Find the best solution of S’ but not in Tabu list to perform the SW local Search
8. If (i > 2)
9. Perform pattern reduction procedure to detect and compress

10. Add Gaussian random number σ(0, 1) to adjust common genes of S′

11. EndIf
12. EndFor
13. EndWhile

Fig. 2. Outline of detection operator of ILGA.

Fig. 2 shows that, in addition to basic operators of simple
genetic algorithm (i.e., initialization, selection, reproduction,
crossover and mutation), the ILGA uses the advantages of
GA, local search and pattern reduction (PR) [25] to search for
global optimum, fine-tune the final result and reduce common
computations to speed up the computation time, respectively.
However, for structure-based protein-ligand docking prediction
problems, the quality (i.e., accuracy of the final result) is more
important than reducing the computation time of the whole
search process. Because most research for solving this problem
generally performs their search methods for a certain number
of iterations (such as 250,000 iterations) to find the better result

by using the evaluating score function to further find the best
binding active site and conformation of ligand molecular in
the vast search space, the proposed algorithm employs the PR
which does not only speed up the iterative process closer to
the optimal solution, but also avoid convergence being too fast.
Moreover, because fast convergence of search algorithm will
degrade the diversity of search solutions which may let it fall
into local optimal, the proposed method attempts that during
the PR process, the solution in each group will be maintained
for the PR gene cluster with a certain interval [-1,1] of the
Gaussian random value. Trying to let the common gene cluster
maintain a certain diversity is due to the random number and
avoid many computing resources being consumed.

D. The ILGA with Local Search

Because most heuristic algorithms do not guarantee that
they can find the local optimum solution in each iteration, the
local search algorithm is one of the most effective methods
to fine-tune the solution to further improve the quality of end
result. That is why local search is widely applied to improving
the search ability of heuristic algorithm, i.e., combining it with
genetic algorithms. In AutoDock, LGA is a hybrid method
which integrates genetic algorithm for global search with the
Solis and Wets (SW) [26] algorithm for local search that is
provided with features for directed and self-adjustment step
length. Of course, SW algorithm is also used as a local search
in the proposed algorithm.

To avoid search the same solution for multiple times, the
proposed algorithm integrates the concept of the tabu search
[27] into local search operator to prevent repeated evaluations.
More precisely, the proposed algorithm will check if the
solution (common gene) is compressed by pattern reduction
and listed in the Tabu list at first or not. If it is listed in
the tabu list, the proposed algorithm will find out the solution
not in the list at overall sequence checking to perform search
operation. In other words, it is a method to disturb the genes
that have similar structures and may let the search fall into
local minima. This method then can be used for increasing
the search diversity with a certain number of iterations for the
local search and the probability of finding the optimal solution.

IV. SIMULATION RESULTS

In this paper, the performance of the proposed algorithm
is evaluated by using it to solve the protein-ligand docking
problem. All the empirical analyses are conducted on an IBM
X3400 machine with 2.0 GHz Xeon CPU and 8GB of memory
using CentOS 5.0 running Linux 2.6.18. Moreover, all the
programs are written in C++ and compiled using g++ (GNU
C++ compiler).

A. Parameter settings and datasets

The experimental data used to evaluate the performance
of the proposed algorithm include four protein-ligand sets for
docking simulations. Each molecular data source is accessed
from the RCSB Protein Data Bank database (http://www.pdb.
org). These structure diagrams for both protein and ligand
molecules are shown in Fig. 3.



(a) PDB ID(1hiv) (b) ligand(NOA) for 1hiv

(a) PDB ID(1aaq) (b)ligand(PSI)for 1aaq

(a) 1epo (b) igand(CFH)for 1epo

(a) 4phv (b) ligand(VAC)for 4phv

Fig. 3. Structure diagrams for both protein and ligand molecule.

The description data type for ligand and protein receptor
use the AutoDock PDBQ format and these are made by using
AutoDock Tools at the preparation phase. On one side, the doc-
ument of ligand with operation steps are shown as following.
(1) The coordinates for all atoms in the ligand molecule are
extracted from the PDB format file which describes protein
receptor. (2) Adding the hydrogen atoms, the charge and
combine the non-polarity hydrogen atoms. (3) Define the root
node of the ligand and the bond type being twist. On the
other side, the document of protein receptor molecules for data
format are as follows. (1) To remove the water molecules,
ligands, and the metal ion which is not a part of binding
sites. (2) To edit incomplete atoms. (3) Adding the hydrogen
atoms, the charge and combine the non-polarity hydrogen

atoms. (4) To distribute the solvent parameters. The execution
environment parameter settings for ILGA simulation is shown
in Table I.

TABLE I
SIMULATION RESULTS

Simulation Runs 30
Population size 50
Crossover rate 1
Mutation rate 0.02
Crossover method Arithmetic method
Stop criteria max gens. = 5000
(max generation no./ max evaluation counts) max eval. = 250000

B. Results

Tables II and III use two different viewpoints to evaluate
the AutoDock simple GA (sGA), LGA and ILGA. Table II
shows that the experimental results of ILGA (RMSD) is better
than sGA and LGA when performing the same iterations. By
using the variance information of these results, the final result
of ILGA is smaller than it of LGA method. In other words, this
experimental result shows that the proposed method is more
stable than the sGA and LGA.

Table III uses another viewpoint to compare the ILGA, sGA
and LGA that t he computing time of the proposed algorithm
is less than it of the sGA and LGA when setting a condition
of result quality for sGA, LGA and ILGA. In summary, these
two experimental results show that ILGA method can enhance
both time consumption and solution quality in comparison
with traditional methods (sGA and LGA) for search results.
In summary, these two experimental results show that ILGA
method can enhance both time consume and solution quality to
compare with traditional methods (sGA and LGA) for search
results.

The Fig. 4 for the comparison of convergence of sGA, LGA
and the proposed method (ILGA). Fig. 4(a) for the complete
results of the convergence process indicates the proposed
method for both convergence rate and solution quality being
superior to other types of GA-based approach. Fig. 4(b) is
a detailed comparison for the three methods, which more
clearly shows the method of this study mentioned early in the
convergence can be achieved very close to the optimal solution,
while the other two methods still need more computing time
to achieve the same result.

V. CONCLUSION

This study presents a hybrid search algorithm which com-
bines genetic algorithms, local search method and pattern
reduction to improve the accuracy and reduce the computation
cost for protein-ligand docking in structure-based drug design.
It attempts to design an efficient GA-based method with pattern
reduction to reduce duplication and unnecessary calculations.
By using pattern reduction method, this heuristic algorithm
not only can shorten computing time to solve such problems,
but also can focus on getting better solution quality. For future
research, the heuristic algorithm based on the proposed method
applying to the protein-ligand docking will be developed. Then



TABLE II
AVERAGE RESULTS OF SGA, LGA AND ILGA WITH ACCURACY COMPARISON

sGA LGA ILGA
PDB Energy RMSD Succ.a Timeb Energy RMSD Succ.a Timeb Energy RMSD Succ.a Timeb

1hiv -4.12 11.61 0.00 37.39 -4.45 10.36 0.00 37.46 -17.85 4.31 0.24 37.41
1aaq -3.92 9.34 0.00 16.20 -4.32 8.73 0.01 16.05 -16.44 3.03 0.38 16.12
1epo -7.41 7.72 0.04 17.17 -7.81 7.32 0.04 17.26 -12.26 6.53 0.09 17.13
4phv -11.56 7.53 0.10 17.24 -12.35 7.03 0.10 17.19 -16.13 2.37 0.31 17.21
aSucc.: The rate of successful docking (RMSD less than 2.0Å).
bTime : Average execution time in second per run.

TABLE III
AVERAGE RESULTS OF SGA, LGA AND ILGA WITH TIME CONSUME COMPARISON

sGA LGA ILGA
PDB Energy RMSD Succ.a Timeb Energy RMSD Succ.a Timeb Energy RMSD Succ.a Timeb

1hiv -4.39 10.42 0.00 47.46 -4.45 10.36 0.00 37.46 -6.64 9.24 0.13 20.51
1aaq -4.24 8.92 0.00 16.57 -4.32 8.73 0.01 16.05 -6.14 6.52 0.27 13.40
1epo -7.78 7.34 0.04 17.59 -7.81 7.32 0.04 17.26 -9.32 7.10 0.07 11.29
4phv -11.74 7.91 0.08 18.21 -12.35 7.03 0.10 17.19 -13.13 6.73 0.16 9.72
aSucc.: The rate of successful docking (RMSD less than 2.0 Å).
bTime : Average execution time in second per run.
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Fig. 4. Comparison of average convergence performance for protein(hsgl)-
ligand(ind)

the current algorithm will be further designed and modified
so that it can present more effective detection on evaluating
repeats in order to reduce a lot more computing time.
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