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Abstract— Many real world optimization problems are dynamic 
in which the landscape is time dependent and the optimums may 
change over time such as dynamic economic modeling, dynamic 
resource scheduling and dynamic vehicle routing. These 
problems challenge traditional optimization methods as well as 
conventional evolutionary optimization algorithms. In these 
environments, optimization algorithms must not just find the 
optima but also closely track the optima’s trajectory. In this 
paper we propose a two phased and collaborative version of 
Cellular PSO, named Two Phased Cellular PSO (TP-CPSO), 
which introduces two search phases in order to create a more 
efficient balance between the exploration and exploitation of the 
optimums. We address the weaknesses of Cellular PSO and 
propose some modifications and ideas to tackle them including a 
modified PSO update rule and an efficient local search. 
Moreover, the cell capacity threshold which is a key parameter of 
Cellular PSO is eliminated due to these modifications. To 
demonstrate the performance and robustness of the proposed 
algorithm, Moving Peaks Benchmark (MPB) has been adopted. 
For all the experimented dynamic environments, TP-CPSO 
outperformed all compared evolutionary algorithms including 
Cellular PSO. 

Keywords-Particle Swarm Optimizer (PSO); Dynamic 
Environment; Cellular Automata;  Space Partotioning; Cellular 
PSO; TP-CPSO 

I.  INTRODUCTION 
In dynamic environments, the fitness function changes over 

time and consequently the optimum points may change. Hence 
the optimization algorithm has to track the changes in the 
environment and find the new optimums quickly. The dynamic 
optimization problems have challenged traditional optimization 
algorithms which were designed for non-stationary problems. 
These algorithms converge to the fixed global optimum, which 
results in losing diversity and decreasing the algorithm’s ability 
to search for the new optimum after the environment changes.  

Many nature-inspired algorithms have been proposed for 
optimization in dynamic environments. Particle Swarm 
Optimization (PSO) algorithm is considered as one of the 
major algorithms that is widely used for optimization in 
stationary environments, yet it still needs some modifications 
to better cope with dynamic environments. 

The disadvantages of PSO in dynamic environments come 
from two major sources: the outdated memory or experiences 
of particles after the changes due to the dynamism of 
environment; and loss of diversity due to convergence. The 
outdated memory problem occur when the optima move(s) 
and/or optimum value changes. Particle memory which 
conveys the best place visited and its relevant fitness may not 
be valid after the change which leads to a misdirected search. 
The outdated memory problem can be solved either by clearing 
or by re-evaluating all the memories. The loss of diversity 
problem is rather serious. The time spent for swarm 
convergence and re-diversification, finding the moved 
optimums and re-convergence lead to severe decrease in the 
performance of the algorithm. 

In this paper, a two phased version of Cellular PSO (TP-
CPSO) is proposed for optimization in dynamic environments. 
The proposed algorithm addresses the disadvantages of 
Cellular PSO algorithm and introduces solutions to these 
issues. Two different phases of exploration and exploitation 
are defined for each cell which leads to eliminating the cell 
capacity threshold which is a key parameter of Cellular PSO. 
A powerful local search (Naïve Direct Search) is also 
introduced in order to follow the moving peaks more 
efficiently. 

The rest of this paper is organized as follows. Next section 
provides an overview of previous state of the art PSO 
approaches proposed for dynamic optimization problems. 
Sections 3 and 4 provide brief introductions to Particle Swarm 
Optimization and Cellular Automata as the foundations of our 
approach followed by a detailed explanation of the proposed 
algorithm in section 5. Section 6 provides the experimental 
results of the proposed model. Finally, Section 7 concludes the 
paper with some suggestions on relevant future works. 

II. PREVIOUS WORKS 
All the PSO based optimization algorithms for dynamic 

environments can be divided into five categories: 1) 
Randomization, 2) Mutual Repulsion, 3) Dynamic Information 
Networks, 4) Multi-Population and 5) Hybrid. 



A. Randomization 
One of the simplest approaches to address dynamic 

problems by PSO is reinitializing. Hu and Eberhart used re-
diversification of the population after the change [1]. Their 
proposed method included randomly relocating all or part of 
the memories by calculating the fitness in one or more points of 
particles’ memories after detecting the environment change. 
Since randomization leads to missing information, there is a 
chance that a large amount of information goes missing as if 
the algorithm runs from scratch with no previous memory. 
Also, lack of randomization may decrease diversity to an extent 
which is not enough to track the optimum. 

B. Mutual Repulsion 
Applying mutual repulsion between particles, swarms or 

extracted optimums can maintain a desirable amount of 
diversity during the search process. For instance, Vesterstrom 
and Krink [2] studied particles with limited size to avoid 
premature convergence. Parsopoulos and Vrahatis [3] 
introduced a repulsive operator inside a found optimum point 
to repel the swarm from that point which allows the swarm to 
extract other unfound peaks. The atomic model [4-7] is another 
example of using repulsion for dynamic problems. This model 
defines a swarm of particles as two sub-swarms of charged and 
neutral particles. Atomic model can be pictured as a cloud of 
charged particles orbiting around a neutral nucleus. Charged 
particles increase the diversity around the converging neutral 
sub-swarm (nucleus). 

C. Dynamic Information Networks 
Another approach is applying modifications to the topology 

of information sharing between the particles of the swarm. This 
can lead to a temporal decrease in tendency to move towards 
the best found positions which maintains the diversity. Li and 
Dum [8] proposed a neighborhood model with a four-cell grid 
structure and Johnson and Middendorf [9] studied a 
hierarchical structure and reported improvements in compare to 
canonical PSO algorithm. 

D. Multi-Population 
One of the most successful approaches to tackle dynamic 

environments is multi-population methods. For multi-
population algorithms it is usually desired to divide the 
particles into sub-swarms some designed to converge to the 
best positions found while others designed to look for new 
optimum points. This becomes more useful when global 
optimum alters between local optimums. This method 
increases the odd that a sub-swarm would always be around 
the new global optimum after the change. Niching-PSO 
introduced by Brits [10] has performed well for many static 
multi-modal benchmarks though have not shown promise for 
dynamic environments. 

Lunge and Dumitrescu [11] use two collaborative 
populations with the same as a solution to avoid premature 
convergence and effectively track the optimum. One 
population is responsible for maintaining diversity using 
Crowding Differential Evolution algorithm while the other 
population tracks the optimum using PSO algorithm. The 
collaboration system is activated every time an environment 

change is detected or the best member of the second 
population is too close to the best solution found, that is the 
second population in reinitialized with the particles from the 
first population. 

In [12] Du and Li suggested that particles should be divided 
into two parts, one part uses the canonical PSO equipped with 
a local Gaussian search and the other uses a differential 
mutation to do the search around the first swarm in order to 
expand the search regions of the algorithm and reaching the 
moving peak. These two parts improve the convergence and 
local optima avoidance of the algorithm respectively. 

E. Hybrid 
Blackwell and Branke proposed an algorithm that combines 

the advantages of repulsion and multi-population methods. 
Inspired by multi-population methods, the algorithm divides 
the population into multiple sub-swarms. Similar to the atomic 
model each sub-swarm includes charged particles, and applies 
the repulsion method by employing repulsion and anti-
convergence operators. Charged particles maintain a suitable 
amount of diversity around found optimums. Repulsion 
operator tunes the mutual interaction between the swarms. If 
the distance between two swarms falls below a predetermined 
threshold, positions of the weaker swarm’s particles are 
reinitialized randomly. Repulsion operator on the other hand, 
helps the algorithm maintain diversity during the optimization 
process by avoiding over-convergence to one particular point. 
However, given the fact that the number of peaks may be 
larger than the number of swarms, it is necessary to put a 
number of particles in charge of finding new and better peaks. 
An anti-convergence operator is embedded in the algorithm to 
do this task. In [13] Blackwell and Branke introduced the basic 
version of the algorithm and later proposed the two self-
adaptive variants of the algorithm [14]. The first variant starts 
with one swarm and more swarms will be added based on the 
needs with regard to a predetermined number of particles. The 
second variant starts with a random number of swarms and 
slowly converges to a number of swarms desirable to cover the 
peaks. This method uses a prefixed number of particles and 
dynamically assigns particles to swarms.  

Hashemi and Meybodi [15] proposed an algorithm, named 
Cellular PSO, that combines the features from multi-
populations, information networks and randomization 
methods. Cellular PSO is based on the idea of partitioning the 
search space and mapping a Cellular Automata (CA) onto this 
divided space in a way that each cell is assigned to one part of 
the partitioned space. A threshold on the maximum number of 
particles in each cell is applied which prevents from the 
crowding of many particles on a single optimum. Extra 
particles are moved to random cells to explore other points of 
the search space. 

Noroozi et al. [16] also proposed another cellular based 
optimization algorithm named, CellularDE, which used the 
similar idea of space partitioning but instead of PSO it utilized 
Differential Evolution (DE) with a new proposed DE scheme 
suitable for dynamic optimization. They reported that 
CellularDE outperforms compared algorithms including 
Cellular PSO in most tested environments. 



III. PARTICLE SWARM OPTIMIZATION 
Particle Swarm Optimization (PSO) algorithm was first 

introduced by Eberhart and Kennedy [17] which is based on the 
social behavior of self-organizing swarms. In PSO, a potential 
solution for a problem is considered as a bird without quality 
and volume, which is called a particle. This so called bird flies 
through a d-dimensional space, adjusts its position in search 
space according to its own experience and its neighbors. A set 
of particles is called swarm. 

Each particle in the d-dimensional space is represented as 
pi= (pi1, pi2, …,pid), where pi is the ith particle. The velocity of 
the ith particle is represented as vi = (vi1, vi2, …,viD) that is in the 
range of (0,Vmax), where Vmax is a parameter set by the user. At 
each time step, particles calculate their new velocities from (1) 
and update their position using (2). 

 
( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 2 21 ii k i i iv t wv t c r t p p t c r t lBesB tt te ps+ = + − + − (1) 
( ) ( )1 ( 1)i i ip t p t v t+ = + +  (2) 
 
In above equations, w < 1 is the constriction  factor which 

slows down the particles. c1 and c2 are positive constants 
known as acceleration constants that determine the amount of 
contribution that social and cognitional factors make to the 
particle’s navigation. r1 and r2 are d-dimensional vectors filled 
with values generated from a random uniform distribution over 
[0,1]. pBesti is the best so far place that the ith particle visited 
and lBesti is the best visited place by particles that are 
considered as the ith particle’s neighbors. The term (pBesti – 
pi(t)) is the cognitive component of the ith particle’s velocity, 
and the term (lBesti - pi(t)) conveys the social component of the 
particle’s velocity. In other words, the particle tends to move 
based on two attractors: its own best memory and the best 
memory of its neighbors. The coefficient w is the inertial 
weight that indicates the importance of the particle’s past 
velocity to the particle. 

IV. CELLULAR AUTOMATA 
Cellular Automata (CA) are mathematical models for 

systems consisting of large number of simple identical 
components with local interactions in which space and time 
are discrete. It is called cellular because it is made up of cells 
like points of a lattice or squares of checker boards, and it is 
called automata because each cell follows a simple rule [18]. 
Informally, a d-dimensional CA consists of a d-dimensional 
lattice of identical cells. The simple components act together 
to produce complicated patterns of behavior. Each cell can 
assume a state from a finite set of states. The cells update their 
states synchronously on discrete steps according to a local 
rule. The new state of each cell depends on the previous states 
of a set of cells, including the cell itself, and constitutes its 
neighborhood. Moore and Von Newman are the two common 
neighborhood styles which are illustrated in  Figure 1. for a 2-
dimensional space with the neighborhood size of one. 

V. PROPOSED ALGORITHM 
The proposed algorithm is based on the idea of partitioning 

the search space into finer areas then performing the search in 
each of them locally. A CA is mapped into the partitioned 

space where each cell is responsible to control the search 
process in its corresponding partition. Particles are initialized 
randomly and assigned to their corresponding cells according 
to their locations. These particles are considered as a part of 
the state of their cells. Each cell performs the search process 
within its predetermined region using a new version of PSO 
that we name it Mutative PSO (MPSO). This structure 
implicitly distributes particles into sub-swarms wherein 
particles are responsible for finding the most promising 
optimum in the neighborhood of their corresponding cells. All 
the procedures of the proposed algorithm such as controlling 
the search process, interaction between neighboring cells and 
controlling swarm diversity are defined as rules of the CA. 

A. Initialization  
If the search landscape is a d-dimensional space and each 

dimension is partitioned equally into Np segments, then each 
cell in a d-dimensional CA belongs to cells collection 
C={celli|1≤ i ≤ (Np)d}.  Figure 2. illustrates a 2-dimensional 
search space where each dimension is partitioned into four 
equal segments and a CA of the same size is embedded into 
the partitioned space. The functionΨ , which calculates the d-
dimensional location of the cellk, is defined as in (3), where zi 
can be calculated by (4) and (5). 

1 1{ } ( , , , )k dcell z z zΨ = L (3) 
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In the proposed algorithm, Moore neighborhood is used as 
the neighborhood relation. If the size of the neighborhood is to 
be notated by SN, then the neighbor cell collection of 

1 2, , , dz z zcell L
is calculated by (3). 
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Figure 1.  Neighborhood in a 2-D cellular automaton: (a) Moore, (b) von 
Neumann Neighborhood. 

 
Figure 2.   Embedding a CA in a two-dimensional space which is partitioned 
into four equal sections. 



Initially, a swarm of M particles, P= {p1, p2, …,pM} are 
randomly generated and each particle is assigned to its 
corresponding cell. The ith particle (pi) is assigned to 
the

1 2, , , dz z zcell L
where zi is calculated by (7). 

1i ki pz x N⎢ ⎥= +⎣ ⎦  
(7) 

B. Cell Memory 
To reduce unnecessary searches in the regions which are 

already searched and also to use the results of previous 
searches, a memory, Memi is defined for each celli as in (8) 
which memorizes the best individual found in the cell from the 
time of the last change up to the time step t. These cell 
memories are used to calculate the best visited place in each 
cell and its neighborhood from the last change until the current 
iteration. Equation (9) shows this calculation where f is the 
fitness function of the optimization problem. LBi(t), is 
considered as the global best experience, lBest, for all the 
particles in celli. 
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C. Evolution by Mutative PSO 
In Cellular PSO, the conventional version of PSO is used 

to update the particles, but it causes stagnation or premature 
convergence for small sized swarms which may constantly 
occur in the proposed framework. This is due to the fact that in 
small-sized swarms, most particles may come too close to 
their attractors before convergence which drastically slows 
down their progress toward the local optima. In order to tackle 
the aforementioned problem, a modified PSO algorithm is 
proposed that uses a new velocity updating equation. A 
mutation term is introduced that adds a random vector to the 
velocity vector which increases the diversity of velocities. The 
proposed velocity update equation for the particle pi, which is 
now located in cellj, is showed in (10) where the mutation term 
(Ni) is calculated by (11) and (12). 
( ) ( ) ( ) ( )( )
( ) ( )( )

1 1

2 2
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i ji i ip pBest Ls p Bd = −+− (12) 

Note that for all particles in cellj, LBj is used as their lBest. 
The proposed update equation eliminates the stagnation 
problem or premature convergence to points other than the 
actual local optima, but when a sub-swarm in a cell is located 
to the local optima, the added mutation term slows down the 
convergence of particles which is unnecessary. In addition, 
when the particles in a cell are converged to the local optima, 
any further searching would have a little influence on the 
performance and only force many futile fitness evaluations to 
the algorithm. The proposed PSO algorithm is able to explore 
the search space though lacks necessary exploitation abilities, 

so it’s necessary to use another search method after the 
convergence in order to perform exploitation appropriately. 

D. Exploration and Exploitation Phases 
In contrast to Cellular PSO where all the search process is 

always conducted by PSO, the proposed method defines two 
phase of exploration, exploitation for each cell. Each cell has 
an operational status variable that determines which phase the 
cell is functioning in. At first, all cells are in exploration phase 
in which the search is performed by the proposed PSO 
algorithm until a convergence to local optima is detected. 

If a cell includes some particles for more than k 
consecutive fitness evaluations and the best position found in 
the cell is the same as the best position in the neighborhood of 
the cell, then the cell goes to the exploitation state. When a 
cell enters the exploitation state, all the particles other than the 
best one will be reinitialized to random cells. In the cells 
which are in exploitation phase, the search process is 
conducted by a proposed local search with a high capability of 
exploitation instead of PSO that we name it Naïve Direct 
Search (NDS).The NDS algorithm is based on directed 
movements in all dimensions with a defined step size. The step 
size is reduced if no improvement is achieved in any 
dimension by the current step size. 

For celli which is in exploitation state, a step size ssi is 
defined that specifies the absolute amplitude of movements 
and is initialized by a defined value ssinit. A direction vector 
diri=(diri

1, diri
2, …, diri

d) is defined which defines the current 
direction of movement in each dimension. Direction in each 
dimension may be up or down and are initially assigned 
randomly. At each iteration, the current LBi(t) is considered as 
the base point of the local search and a consequent move is 
done on all the dimensions of the base point one by one. At 
each dimension, a directed move is applied by the amplitude 
of the current step size ssi in the current direction of that 
dimension and the new position is evaluated. If the resulted 
position had a better fitness, the base point is updated to the 
new position; otherwise the direction in that dimension is 
flipped to the opposite direction. The obtained movements are 
preserved to be used in the next iteration. In case of a 
movement failure, if there has been at least one success in the 
current direction for the current step size, movement stops for 
its relative particle, otherwise it tries the reverse direction for 
the next movement. A counter sni is also defined. When the 
search is stopped in all dimensions, the search process starts 
again in all dimensions and the counter is increased by one. At 
each iteration, the step size of movement (ssi) is defined by 
(13), where the discount factor (b) defines the speed of 
reduction. All the failure counters are reset to their initial 
values after any change detection in the environment. 

isn
i initss ss b= × (13) 
Since the proposed local search method is able to perform 

exploitation using only one particle, cell capacity is set to one 
during the exploitation state. Until the cell is in this state, if 
any particle enters the cell in the next iterations, all particles 
other than best one are reinitialized to random cells. As a 
result, a number of particles that were previously converged to 



these cells will be free and ready to help explore the search 
space. To put it differently, PSO is in charge of exploring the 
search space then the proposed local search is assigned to 
exploit the converged region. A cell would remain in the state 
of exploitation until the base point of local search exceeds the 
cell bounds. Afterwards the cell would go back to the 
exploration state. 

In Cellular PSO, a threshold on the maximum number of 
allowed particles in each cell is defined which is so dependent 
and sensitive to the environment. Selection of an appropriate 
value for this threshold has a great influence on the result of 
the algorithm. But in the proposed algorithm, capacity 
threshold is defined unlimited for cells in exploration state and 
one in exploitation state. In some way, there is no need to 
define capacity threshold according to the environment. It’s 
resulted from the definition of two separate phases for the cells 
which is considered as one of the main advantages of the 
proposed algorithm in compare to Cellular PSO. 

Decreasing the swarm size leads to severe decrease in 
performance for Cellular PSO. The reason is that when using 
small swarms, canonical PSO suffers from premature 
convergence problem. In Proposed algorithm due to 
employing proposed PSO which can avoid stagnation and 
unlimited cell capacity in exploration phase and then using the 
proposed local search algorithm which provides necessary 
exploitation capabilities only with one particle for the 
algorithm. 

E. Particle’s movement in CA 
Due to the limit of access to other cells, which is originated 

from the locality of CA rules, it is not possible to move the 
particles freely between cells. A propagation mechanism is 
used to move particles between different cells. Particles which 
are marked to move are made inactive and will not participate 
in the search process. A counter, Hopj, is defined for each 
inactive particle, pj, which is initialized to the distance of the 
source,

1 2, , , ds s scell L
, and destination cell, 

1 2, , , dq q qcell L
, as in 

(14). At each iteration, all cells copy the inactive particles with 
non-zero counters which are in their neighborhood cells. Their 
counters are decreased by one and the ones with zero counters 
are checked to have the same destination as the current cell. 
Inactive particles which reach their destination become active 
again in order to participate in the search process. 
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F. Dealing with Change 
Each time a change is detected in the environment, all 

particle memories are re-evaluated and cell memories are 
cleared. Also the failure counters for the local search are reset 
to their initial values. As a result of utilizing the combination 
of this local search and the proposed PSO, in contrast with 
Cellular PSO, there is no need to perform any other additional 
local search for tracking moving optima after any change 
detection in the environment. 

VI. EXPERIMENTS 

A. Moving Peaks Benchmark 
Moving Peaks Benchmark (MPB) [19] is adopted for 

experiments. MPB has been widely used in the literature to 
study the performance of optimization algorithms in dynamic 
environments. MPB generates functions in multidimensional 
landscapes consisting of several peaks where the height, the 
width and the position of the peaks are altered every time a 
change in the environment occurs. The MPB function with m 
peaks in an n-dimensional environment. 

1...
( , ) max( ( ), max ( , ( ), ( ), ( )))i i ii m

F x t B x P x h t w t p t
=

=
rr r r

(15) 
Where ( )B xr  is a time-invariant basis landscape, P is a 

function defining a peak shape, hi(t), wi(t), and pi(t) are the 
height, width, and position of the respective peaks respectively 
and are defined as: 

(0,1)σ ∈Ν  
( ) ( 1) _ .i ih t h t height severity σ= − +  (16) 
( ) ( 1) _ .i iw t w t width serverity σ= − +  (17) 
( ) ( 1) ( )i i ip t p t v t= − +

r r r
(18) 

In above equations, hs and ws are the maximum amount 
with which the width and height of peaks can change and ( )iv tr  
is the amount of peak movement defined in (18). 

( ) ((1 ) ( 1))
( 1)i i

i

sv t r v t
r v t

λ λ= − + −
+ −

rr r
r r

 
(19) 

Where rr  is a random vector, s controls the severity of the 
shift, and  is the degree of correlation to previous shifts.  

TABLE I.  THE DEFAULT PARAMETERS OF MPB FOR SCENARIO II 

Parameter Value 
Number of peaks (m) 10 
Change frequency (f) 5000 
Height severity (hs) 0.7 
Width severity (ws) 0.1 

Peak shape Cone 
Shift length (s) 1.0 

Number of dimensions (d) 5 
A [0, 100] 
H [30, 70] 
W [1, 12] 
I 50 

 
We consider the parameters from a well-known scenario 

known as Scenario II as default values in our experiments. The 
settings defined in Scenario II are represented in  TABLE I. . 
Shift length s is the radius of peak movement after 
environment changes. m is the number of peaks. f is the 
frequency of the changes in environment as number of fitness 
evaluations. H and W denote range of the height and width of 
peaks which change by height severity (hs) and width severity 
(ws), respectively. I is the initial height of the peaks. Parameter 
A denotes the range of the search space for all dimensions. 

B. Evaluation Criterion 
Since there are no specific constant optimums for dynamic 

optimization problems, the goal is not just to find the 



optimums, but to track the trajectories of optimum points in 
the search space. A common method for illustrating an 
algorithm’s prominence over others is to demonstrate 
convergence diagrams for best or average fitness and visually 
comparing them. The most common measurement criterion in 
dynamic optimization problems is offline-error which can be 
calculated by (20). 

'

1

1 T

t
t

offline error e
T =

− = ∑  (20) 

In above equation T is the total number of fitness 
evaluations, '

1min{ , , , }t te e e eτ τ += … and τ represents the 
last time step at which the last change in the environment 
occurred. 

C. Experimental setting 
For all experiments the default values for parameters of 

Two Phased Cellular PSO are set according to Table 2. The 
search space is partitioned into 125 cells, i.e. each dimension is 
divided into 12 partitions. Moreover, in the cellular automata, 
the Moore neighborhood with radius of two cells is used, 
which is large enough to handle the exploration of the sub-
populations in a neighborhood and is small enough to prevent 
the convergence of the population to a local optimum. Initial 
step size (ssinit), discount factor (b) and NDS are empirically 
set to 0.5 and 0.4, respectively. The number of local search 
iterations (LSnum) and the radius of the local search (LSr) are 
empirically set to 3 and 1.0, respectively. 

D. Experiment: Comparison with other algorithms 
The results of the proposed algorithm are compared with 

Cellular PSO [18, 19], CellularDE [16], HmSO [20], and 
Adaptive mQSO [14]. To the best of our knowledge, Adaptive 
mQSO and HmSO are two of the best-performing PSO-based 
optimization algorithms introduced for dynamic environments. 
Cellular PSO [18, 19] and CellularDE share the idea of 
embedding a cellular automaton in the search space. 

For all experiments, parameters of Cellular PSO, 
CellularDE, HmSO, and Adaptive mQSO are set to the values 

reported in [21], [16], [20], and [14], respectively. All 
experiments were performed for 100 changes in environment. 
The average offline errors of the algorithms in 100 runs with 
95% confidence interval for various dynamic environments are 
depicted in  TABLE II. to  TABLE V. . For each environment, 
student t-tests with a significance level of 0.05 have been 
applied and the result of the best performing algorithm(s) is 
printed in bold. When the offline errors of the best performing 
algorithms are not significantly different, all are printed in 
bold.  

The results of the experiments show that Two Phased 
Cellular PSO outperforms all other compared algorithms, for 
most of the tested dynamic environments. As depicted 
in  Figure 3. for an environment with 50 peaks, TP-CPSO can 
find better solutions with a higher speed of convergence 
compared to Cellular PSO. This is due to the fact that TP-
CPSO, takes advantage of two separate phases which impose 
an efficient balance between exploration and exploitation in the 
search process. Moreover the local search capability of NDS 
results in powerful exploitation, and eliminating of cell 
threshold capacity leads to impose no limit on particle 
absorption for cells in exploration phase. 

VII. CONCLUSION 
In this paper, we proposed a two phased version of Cellular 

PSO algorithm, designed to tackle dynamic optimization 
problems. In TP-CPSO the disadvantages of Cellular PSO 
were addressed and some strategies were proposed as 
solutions to these issues. Extensive experiments in various 
dynamic environments modeled by the moving peaks 
benchmark were conducted. The results show significant 
prominence of the proposed algorithm over the best PSO-
based algorithms known in the literature. 

Moreover, the proposed algorithm eliminates the cell 
capacity threshold which is a key parameter of Cellular PSO 
and the performance of Cellular PSO is sensitive to its value.  

 

TABLE II.  OFFLINE ERRORS FOR DIFFERENT NUMBER OF PEAKS (F = 500) 

m Two Phased Cellular 
PSO CellularDE Cellular PSO HmSO Adaptive mQSO 

1 5.96±0.22 8.20±0.19 11.62±0.77 8.53±0.49 5.08±0.27 
5 5.12±0.11 6.06±0.05 8.59±0.36 7.40±0.31 5.14±0.09 
10 5.56±0.11 5.93±0.04 8.78±0.28 7.56±0.27 6.20±0.11 
20 5.67±0.10 5.60±0.03 8.67±0.25 7.81±0.20 6.94±0.18 
30 5.59±0.08 5.56±0.03 8.24±0.22 8.33±0.18 7.23±0.16 
40 5.53±0.07 5.48±0.02 8.50±0.20 8.45±0.18 7.43±0.17 
50 5.57±0.08 5.47±0.02 8.37±0.20 8.83±0.17 7.49±0.09 

100 5.36±0.06 5.29±0.02 7.91±0.18 8.85±0.16 7.29±0.15 
200 5.33±0.05 5.07±0.02 7.71±0.14 8.85±0.16 6.82±0.14 

 

 



TABLE III.  OFFLINE ERRORS FOR DIFFERENT NUMBER OF PEAKS (F = 1000) 

m 
Two Phased Cellular 

PSO CellularDE Cellular PSO HmSO Adaptive mQSO 

1 2.66±0.08 4.98±0.35 5.86±0.42 4.46±0.26 2.68±0.14 
5 2.67±0.09 3.96±0.04 5.26±0.26 4.27±0.08 3.22±0.07 
10 3.17±0.06 3.98±0.03 5.75±0.23 4.61±0.07 4.11±0.08 
20 3.33±0.06 4.53±0.02 5.74±0.19 4.66±0.12 4.75±0.14 
30 3.45±0.06 4.77±0.02 5.84±0.16 4.83±0.09 4.98±0.10 
40 3.58±0.05 4.87±0.02 5.84±0.17 4.82±0.09 5.10±0.11 
50 3.57±0.05 4.87±0.02 5.84±0.14 4.96±0.03 5.12±0.05 

100 3.52±0.04 4.85±0.02 5.73±0.11 5.14±0.08 5.03±0.09 
200 3.51±0.04 4.46±0.01 5.48±0.11 5.25±0.08 4.65±0.09 

TABLE IV.  OFFLINE ERRORS FOR DIFFERENT NUMBER OF PEAKS (F = 2500) 

m Two Phased Cellular 
PSO 

CellularDE Cellular PSO HmSO Adaptive mQSO 

1 0.92±0.03 2.38±0.78 3.78±0.25 1.75±0.10 1.09±0.06 
5 1.17±0.05 2.12±0.02 2.91±0.14 1.92±0.11 1.58±0.13 
10 1.59±0.06 2.42±0.02 3.18±0.16 2.39±0.16 2.33±0.11 
20 1.82±0.04 3.05±0.04 3.65±0.13 2.46±0.09 2.84±0.09 
30 1.99±0.04 3.29±0.03 3.90±0.11 2.57±0.05 3.13±0.09 
40 1.96±0.03 3.43±0.03 4.20±0.13 2.56±0.06 3.23±0.08 
50 2.01±0.03 3.44±0.02 4.08±0.11 2.65±0.05 3.24±0.07 

100 2.09±0.03 3.36±0.01 4.23±0.09 2.72±0.04 3.20±0.06 
200 2.06±0.02 3.13±0.01 4.09±0.10 2.81±0.04 3.00±0.05 

TABLE V.  OFFLINE ERRORS FOR DIFFERENT NUMBER OF PEAKS (F = 5000) 

m Two Phased Cellular 
PSO 

CellularDE Cellular PSO HmSO Adaptive mQSO 

1 0.40±0.01 1.53±0.07 2.79±0.18 0.87±0.05 0.55±0.02 
5 0.75±0.07 1.50±0.04 2.03±0.17 1.18±0.04 1.00±0.04 
10 0.96±0.05 1.64±0.03 2.06±0.12 1.42±0.04 1.43±0.04 
20 1.18±0.03 2.46±0.05 2.99±0.13 1.50±0.06 1.95±0.05 
30 1.32±0.03 2.62±0.05 3.21±0.11 1.65±0.04 2.15±0.05 
40 1.36±0.03 2.76±0.05 3.35±0.11 1.65±0.05 2.28±0.04 
50 1.40±0.03 2.75±0.05 3.37±0.12 1.66±0.02 2.28±0.02 

100 1.50±0.02 2.73±0.03 3.35±0.10 1.68±0.03 2.31±0.03 
200 1.56±0.02 2.61±0.02 3.32±0.09 1.71±0.02 2.11±0.03 

 
 

 
Figure 3.   The current error and the offline error for a dynamic environment with 50 peaks and f=5000. 
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