
Two Phased Cellular PSO: A New Collaborative
Cellular Algorithm for Optimization in Dynamic

Environments

Ali Sharifi, Vahid Noroozi, Masoud Bashiri, Ali Hashemi, Mohammad Reza Meybodi
Department of Computer Engineering and Information Technology

Amirkabir University of Technology
Tehran, Iran

E-mails: alish@aut.ac.ir, vnoroozi@aut.ac.ir, ashkan_bashiri@aut.ac.ir, a_hashemi@aut.ac.ir, mmeybodi@aut.ac.ir

Abstract— Many real world optimization problems are dynamic
in which the landscape is time dependent and the optimums may
change over time such as dynamic economic modeling, dynamic
resource scheduling and dynamic vehicle routing. These
problems challenge traditional optimization methods as well as
conventional evolutionary optimization algorithms. In these
environments, optimization algorithms must not just find the
optima but also closely track the optima’s trajectory. In this
paper we propose a two phased and collaborative version of
Cellular PSO, named Two Phased Cellular PSO (TP-CPSO),
which introduces two search phases in order to create a more
efficient balance between the exploration and exploitation of the
optimums. We address the weaknesses of Cellular PSO and
propose some modifications and ideas to tackle them including a
modified PSO update rule and an efficient local search.
Moreover, the cell capacity threshold which is a key parameter of
Cellular PSO is eliminated due to these modifications. To
demonstrate the performance and robustness of the proposed
algorithm, Moving Peaks Benchmark (MPB) has been adopted.
For all the experimented dynamic environments, TP-CPSO
outperformed all compared evolutionary algorithms including
Cellular PSO.

Keywords-Particle Swarm Optimizer (PSO); Dynamic
Environment; Cellular Automata; Space Partotioning; Cellular
PSO; TP-CPSO

I. INTRODUCTION
In dynamic environments, the fitness function changes over

time and consequently the optimum points may change. Hence
the optimization algorithm has to track the changes in the
environment and find the new optimums quickly. The dynamic
optimization problems have challenged traditional optimization
algorithms which were designed for non-stationary problems.
These algorithms converge to the fixed global optimum, which
results in losing diversity and decreasing the algorithm’s ability
to search for the new optimum after the environment changes.

Many nature-inspired algorithms have been proposed for
optimization in dynamic environments. Particle Swarm
Optimization (PSO) algorithm is considered as one of the
major algorithms that is widely used for optimization in
stationary environments, yet it still needs some modifications
to better cope with dynamic environments.

The disadvantages of PSO in dynamic environments come
from two major sources: the outdated memory or experiences
of particles after the changes due to the dynamism of
environment; and loss of diversity due to convergence. The
outdated memory problem occur when the optima move(s)
and/or optimum value changes. Particle memory which
conveys the best place visited and its relevant fitness may not
be valid after the change which leads to a misdirected search.
The outdated memory problem can be solved either by clearing
or by re-evaluating all the memories. The loss of diversity
problem is rather serious. The time spent for swarm
convergence and re-diversification, finding the moved
optimums and re-convergence lead to severe decrease in the
performance of the algorithm.

In this paper, a two phased version of Cellular PSO (TP-
CPSO) is proposed for optimization in dynamic environments.
The proposed algorithm addresses the disadvantages of
Cellular PSO algorithm and introduces solutions to these
issues. Two different phases of exploration and exploitation
are defined for each cell which leads to eliminating the cell
capacity threshold which is a key parameter of Cellular PSO.
A powerful local search (Naïve Direct Search) is also
introduced in order to follow the moving peaks more
efficiently.

The rest of this paper is organized as follows. Next section
provides an overview of previous state of the art PSO
approaches proposed for dynamic optimization problems.
Sections 3 and 4 provide brief introductions to Particle Swarm
Optimization and Cellular Automata as the foundations of our
approach followed by a detailed explanation of the proposed
algorithm in section 5. Section 6 provides the experimental
results of the proposed model. Finally, Section 7 concludes the
paper with some suggestions on relevant future works.

II. PREVIOUS WORKS
All the PSO based optimization algorithms for dynamic

environments can be divided into five categories: 1)
Randomization, 2) Mutual Repulsion, 3) Dynamic Information
Networks, 4) Multi-Population and 5) Hybrid.

A. Randomization
One of the simplest approaches to address dynamic

problems by PSO is reinitializing. Hu and Eberhart used re-
diversification of the population after the change [1]. Their
proposed method included randomly relocating all or part of
the memories by calculating the fitness in one or more points of
particles’ memories after detecting the environment change.
Since randomization leads to missing information, there is a
chance that a large amount of information goes missing as if
the algorithm runs from scratch with no previous memory.
Also, lack of randomization may decrease diversity to an extent
which is not enough to track the optimum.

B. Mutual Repulsion
Applying mutual repulsion between particles, swarms or

extracted optimums can maintain a desirable amount of
diversity during the search process. For instance, Vesterstrom
and Krink [2] studied particles with limited size to avoid
premature convergence. Parsopoulos and Vrahatis [3]
introduced a repulsive operator inside a found optimum point
to repel the swarm from that point which allows the swarm to
extract other unfound peaks. The atomic model [4-7] is another
example of using repulsion for dynamic problems. This model
defines a swarm of particles as two sub-swarms of charged and
neutral particles. Atomic model can be pictured as a cloud of
charged particles orbiting around a neutral nucleus. Charged
particles increase the diversity around the converging neutral
sub-swarm (nucleus).

C. Dynamic Information Networks
Another approach is applying modifications to the topology

of information sharing between the particles of the swarm. This
can lead to a temporal decrease in tendency to move towards
the best found positions which maintains the diversity. Li and
Dum [8] proposed a neighborhood model with a four-cell grid
structure and Johnson and Middendorf [9] studied a
hierarchical structure and reported improvements in compare to
canonical PSO algorithm.

D. Multi-Population
One of the most successful approaches to tackle dynamic

environments is multi-population methods. For multi-
population algorithms it is usually desired to divide the
particles into sub-swarms some designed to converge to the
best positions found while others designed to look for new
optimum points. This becomes more useful when global
optimum alters between local optimums. This method
increases the odd that a sub-swarm would always be around
the new global optimum after the change. Niching-PSO
introduced by Brits [10] has performed well for many static
multi-modal benchmarks though have not shown promise for
dynamic environments.

Lunge and Dumitrescu [11] use two collaborative
populations with the same as a solution to avoid premature
convergence and effectively track the optimum. One
population is responsible for maintaining diversity using
Crowding Differential Evolution algorithm while the other
population tracks the optimum using PSO algorithm. The
collaboration system is activated every time an environment

change is detected or the best member of the second
population is too close to the best solution found, that is the
second population in reinitialized with the particles from the
first population.

In [12] Du and Li suggested that particles should be divided
into two parts, one part uses the canonical PSO equipped with
a local Gaussian search and the other uses a differential
mutation to do the search around the first swarm in order to
expand the search regions of the algorithm and reaching the
moving peak. These two parts improve the convergence and
local optima avoidance of the algorithm respectively.

E. Hybrid
Blackwell and Branke proposed an algorithm that combines

the advantages of repulsion and multi-population methods.
Inspired by multi-population methods, the algorithm divides
the population into multiple sub-swarms. Similar to the atomic
model each sub-swarm includes charged particles, and applies
the repulsion method by employing repulsion and anti-
convergence operators. Charged particles maintain a suitable
amount of diversity around found optimums. Repulsion
operator tunes the mutual interaction between the swarms. If
the distance between two swarms falls below a predetermined
threshold, positions of the weaker swarm’s particles are
reinitialized randomly. Repulsion operator on the other hand,
helps the algorithm maintain diversity during the optimization
process by avoiding over-convergence to one particular point.
However, given the fact that the number of peaks may be
larger than the number of swarms, it is necessary to put a
number of particles in charge of finding new and better peaks.
An anti-convergence operator is embedded in the algorithm to
do this task. In [13] Blackwell and Branke introduced the basic
version of the algorithm and later proposed the two self-
adaptive variants of the algorithm [14]. The first variant starts
with one swarm and more swarms will be added based on the
needs with regard to a predetermined number of particles. The
second variant starts with a random number of swarms and
slowly converges to a number of swarms desirable to cover the
peaks. This method uses a prefixed number of particles and
dynamically assigns particles to swarms.

Hashemi and Meybodi [15] proposed an algorithm, named
Cellular PSO, that combines the features from multi-
populations, information networks and randomization
methods. Cellular PSO is based on the idea of partitioning the
search space and mapping a Cellular Automata (CA) onto this
divided space in a way that each cell is assigned to one part of
the partitioned space. A threshold on the maximum number of
particles in each cell is applied which prevents from the
crowding of many particles on a single optimum. Extra
particles are moved to random cells to explore other points of
the search space.

Noroozi et al. [16] also proposed another cellular based
optimization algorithm named, CellularDE, which used the
similar idea of space partitioning but instead of PSO it utilized
Differential Evolution (DE) with a new proposed DE scheme
suitable for dynamic optimization. They reported that
CellularDE outperforms compared algorithms including
Cellular PSO in most tested environments.

III. PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization (PSO) algorithm was first

introduced by Eberhart and Kennedy [17] which is based on the
social behavior of self-organizing swarms. In PSO, a potential
solution for a problem is considered as a bird without quality
and volume, which is called a particle. This so called bird flies
through a d-dimensional space, adjusts its position in search
space according to its own experience and its neighbors. A set
of particles is called swarm.

Each particle in the d-dimensional space is represented as
pi= (pi1, pi2, …,pid), where pi is the ith particle. The velocity of
the ith particle is represented as vi = (vi1, vi2, …,viD) that is in the
range of (0,Vmax), where Vmax is a parameter set by the user. At
each time step, particles calculate their new velocities from (1)
and update their position using (2).

() () () ()() () ()()1 1 2 21 ii k i i iv t wv t c r t p p t c r t lBesB tt te ps+ = + − + − (1)
() ()1 (1)i i ip t p t v t+ = + + (2)

In above equations, w < 1 is the constriction factor which

slows down the particles. c1 and c2 are positive constants
known as acceleration constants that determine the amount of
contribution that social and cognitional factors make to the
particle’s navigation. r1 and r2 are d-dimensional vectors filled
with values generated from a random uniform distribution over
[0,1]. pBesti is the best so far place that the ith particle visited
and lBesti is the best visited place by particles that are
considered as the ith particle’s neighbors. The term (pBesti –
pi(t)) is the cognitive component of the ith particle’s velocity,
and the term (lBesti - pi(t)) conveys the social component of the
particle’s velocity. In other words, the particle tends to move
based on two attractors: its own best memory and the best
memory of its neighbors. The coefficient w is the inertial
weight that indicates the importance of the particle’s past
velocity to the particle.

IV. CELLULAR AUTOMATA
Cellular Automata (CA) are mathematical models for

systems consisting of large number of simple identical
components with local interactions in which space and time
are discrete. It is called cellular because it is made up of cells
like points of a lattice or squares of checker boards, and it is
called automata because each cell follows a simple rule [18].
Informally, a d-dimensional CA consists of a d-dimensional
lattice of identical cells. The simple components act together
to produce complicated patterns of behavior. Each cell can
assume a state from a finite set of states. The cells update their
states synchronously on discrete steps according to a local
rule. The new state of each cell depends on the previous states
of a set of cells, including the cell itself, and constitutes its
neighborhood. Moore and Von Newman are the two common
neighborhood styles which are illustrated in Figure 1. for a 2-
dimensional space with the neighborhood size of one.

V. PROPOSED ALGORITHM
The proposed algorithm is based on the idea of partitioning

the search space into finer areas then performing the search in
each of them locally. A CA is mapped into the partitioned

space where each cell is responsible to control the search
process in its corresponding partition. Particles are initialized
randomly and assigned to their corresponding cells according
to their locations. These particles are considered as a part of
the state of their cells. Each cell performs the search process
within its predetermined region using a new version of PSO
that we name it Mutative PSO (MPSO). This structure
implicitly distributes particles into sub-swarms wherein
particles are responsible for finding the most promising
optimum in the neighborhood of their corresponding cells. All
the procedures of the proposed algorithm such as controlling
the search process, interaction between neighboring cells and
controlling swarm diversity are defined as rules of the CA.

A. Initialization
If the search landscape is a d-dimensional space and each

dimension is partitioned equally into Np segments, then each
cell in a d-dimensional CA belongs to cells collection
C={celli|1≤ i ≤ (Np)d}. Figure 2. illustrates a 2-dimensional
search space where each dimension is partitioned into four
equal segments and a CA of the same size is embedded into
the partitioned space. The functionΨ , which calculates the d-
dimensional location of the cellk, is defined as in (3), where zi
can be calculated by (4) and (5).

1 1{ } (, , ,)k dcell z z zΨ = L (3)
1

1 ()d
pz k N −⎢ ⎥= ⎣ ⎦ (4)

1 (1)
1

()
()

d ji
j p

i d i
j p

z N
z k

N

−

+ − +
=

⎢ ⎥∗
= −⎢ ⎥
⎢ ⎥⎣ ⎦

∑ (5)

In the proposed algorithm, Moore neighborhood is used as
the neighborhood relation. If the size of the neighborhood is to
be notated by SN, then the neighbor cell collection of

1 2, , , dz z zcell L
is calculated by (3).

1 2 1 2, , , , , , 1() { ,

1 ... , , }
d dz z z m m m k

N N

ce ll ce ll m z g

k d S g S g

Ζ = = ±

= − ≤ ≤ ∈ Ζ
L L (6)

(a) (b)

Figure 1. Neighborhood in a 2-D cellular automaton: (a) Moore, (b) von
Neumann Neighborhood.

Figure 2. Embedding a CA in a two-dimensional space which is partitioned
into four equal sections.

Initially, a swarm of M particles, P= {p1, p2, …,pM} are
randomly generated and each particle is assigned to its
corresponding cell. The ith particle (pi) is assigned to
the

1 2, , , dz z zcell L
where zi is calculated by (7).

1i ki pz x N⎢ ⎥= +⎣ ⎦
(7)

B. Cell Memory
To reduce unnecessary searches in the regions which are

already searched and also to use the results of previous
searches, a memory, Memi is defined for each celli as in (8)
which memorizes the best individual found in the cell from the
time of the last change up to the time step t. These cell
memories are used to calculate the best visited place in each
cell and its neighborhood from the last change until the current
iteration. Equation (9) shows this calculation where f is the
fitness function of the optimization problem. LBi(t), is
considered as the global best experience, lBest, for all the
particles in celli.

() (){ }
, particle is in

() (, 1)
k i

i k i
k p cell

Mem argmax f p f M mt te
∀

−←

(8)

, is a neighbo r of

() { ((1)), ((1))}
j i

i i j
j cell cell

LB t argmax f Mem t f Mem t
∀

← − − (9)

C. Evolution by Mutative PSO
In Cellular PSO, the conventional version of PSO is used

to update the particles, but it causes stagnation or premature
convergence for small sized swarms which may constantly
occur in the proposed framework. This is due to the fact that in
small-sized swarms, most particles may come too close to
their attractors before convergence which drastically slows
down their progress toward the local optima. In order to tackle
the aforementioned problem, a modified PSO algorithm is
proposed that uses a new velocity updating equation. A
mutation term is introduced that adds a random vector to the
velocity vector which increases the diversity of velocities. The
proposed velocity update equation for the particle pi, which is
now located in cellj, is showed in (10) where the mutation term
(Ni) is calculated by (11) and (12).
() () () ()()
() ()()

1 1

2 2

1

(0,1)
i k i i

j i i

v t wv t c r t pBest p t

c r t LB p t Nσ

+ = + − +

− +
 (10)

2
1

i

i

ds

i ds

e
e

σ
−

−=
+

 (11)

i ji i ip pBest Ls p Bd = −+− (12)

Note that for all particles in cellj, LBj is used as their lBest.
The proposed update equation eliminates the stagnation
problem or premature convergence to points other than the
actual local optima, but when a sub-swarm in a cell is located
to the local optima, the added mutation term slows down the
convergence of particles which is unnecessary. In addition,
when the particles in a cell are converged to the local optima,
any further searching would have a little influence on the
performance and only force many futile fitness evaluations to
the algorithm. The proposed PSO algorithm is able to explore
the search space though lacks necessary exploitation abilities,

so it’s necessary to use another search method after the
convergence in order to perform exploitation appropriately.

D. Exploration and Exploitation Phases
In contrast to Cellular PSO where all the search process is

always conducted by PSO, the proposed method defines two
phase of exploration, exploitation for each cell. Each cell has
an operational status variable that determines which phase the
cell is functioning in. At first, all cells are in exploration phase
in which the search is performed by the proposed PSO
algorithm until a convergence to local optima is detected.

If a cell includes some particles for more than k
consecutive fitness evaluations and the best position found in
the cell is the same as the best position in the neighborhood of
the cell, then the cell goes to the exploitation state. When a
cell enters the exploitation state, all the particles other than the
best one will be reinitialized to random cells. In the cells
which are in exploitation phase, the search process is
conducted by a proposed local search with a high capability of
exploitation instead of PSO that we name it Naïve Direct
Search (NDS).The NDS algorithm is based on directed
movements in all dimensions with a defined step size. The step
size is reduced if no improvement is achieved in any
dimension by the current step size.

For celli which is in exploitation state, a step size ssi is
defined that specifies the absolute amplitude of movements
and is initialized by a defined value ssinit. A direction vector
diri=(diri

1, diri
2, …, diri

d) is defined which defines the current
direction of movement in each dimension. Direction in each
dimension may be up or down and are initially assigned
randomly. At each iteration, the current LBi(t) is considered as
the base point of the local search and a consequent move is
done on all the dimensions of the base point one by one. At
each dimension, a directed move is applied by the amplitude
of the current step size ssi in the current direction of that
dimension and the new position is evaluated. If the resulted
position had a better fitness, the base point is updated to the
new position; otherwise the direction in that dimension is
flipped to the opposite direction. The obtained movements are
preserved to be used in the next iteration. In case of a
movement failure, if there has been at least one success in the
current direction for the current step size, movement stops for
its relative particle, otherwise it tries the reverse direction for
the next movement. A counter sni is also defined. When the
search is stopped in all dimensions, the search process starts
again in all dimensions and the counter is increased by one. At
each iteration, the step size of movement (ssi) is defined by
(13), where the discount factor (b) defines the speed of
reduction. All the failure counters are reset to their initial
values after any change detection in the environment.

isn
i initss ss b= × (13)
Since the proposed local search method is able to perform

exploitation using only one particle, cell capacity is set to one
during the exploitation state. Until the cell is in this state, if
any particle enters the cell in the next iterations, all particles
other than best one are reinitialized to random cells. As a
result, a number of particles that were previously converged to

these cells will be free and ready to help explore the search
space. To put it differently, PSO is in charge of exploring the
search space then the proposed local search is assigned to
exploit the converged region. A cell would remain in the state
of exploitation until the base point of local search exceeds the
cell bounds. Afterwards the cell would go back to the
exploration state.

In Cellular PSO, a threshold on the maximum number of
allowed particles in each cell is defined which is so dependent
and sensitive to the environment. Selection of an appropriate
value for this threshold has a great influence on the result of
the algorithm. But in the proposed algorithm, capacity
threshold is defined unlimited for cells in exploration state and
one in exploitation state. In some way, there is no need to
define capacity threshold according to the environment. It’s
resulted from the definition of two separate phases for the cells
which is considered as one of the main advantages of the
proposed algorithm in compare to Cellular PSO.

Decreasing the swarm size leads to severe decrease in
performance for Cellular PSO. The reason is that when using
small swarms, canonical PSO suffers from premature
convergence problem. In Proposed algorithm due to
employing proposed PSO which can avoid stagnation and
unlimited cell capacity in exploration phase and then using the
proposed local search algorithm which provides necessary
exploitation capabilities only with one particle for the
algorithm.

E. Particle’s movement in CA
Due to the limit of access to other cells, which is originated

from the locality of CA rules, it is not possible to move the
particles freely between cells. A propagation mechanism is
used to move particles between different cells. Particles which
are marked to move are made inactive and will not participate
in the search process. A counter, Hopj, is defined for each
inactive particle, pj, which is initialized to the distance of the
source,

1 2, , , ds s scell L
, and destination cell,

1 2, , , dq q qcell L
, as in

(14). At each iteration, all cells copy the inactive particles with
non-zero counters which are in their neighborhood cells. Their
counters are decreased by one and the ones with zero counters
are checked to have the same destination as the current cell.
Inactive particles which reach their destination become active
again in order to participate in the search process.

{ }
1

/
d

j k k Nk
Hop Max q s S

=
= −

(14)

F. Dealing with Change
Each time a change is detected in the environment, all

particle memories are re-evaluated and cell memories are
cleared. Also the failure counters for the local search are reset
to their initial values. As a result of utilizing the combination
of this local search and the proposed PSO, in contrast with
Cellular PSO, there is no need to perform any other additional
local search for tracking moving optima after any change
detection in the environment.

VI. EXPERIMENTS

A. Moving Peaks Benchmark
Moving Peaks Benchmark (MPB) [19] is adopted for

experiments. MPB has been widely used in the literature to
study the performance of optimization algorithms in dynamic
environments. MPB generates functions in multidimensional
landscapes consisting of several peaks where the height, the
width and the position of the peaks are altered every time a
change in the environment occurs. The MPB function with m
peaks in an n-dimensional environment.

1...
(,) max((), max (, (), (), ()))i i ii m

F x t B x P x h t w t p t
=

=
rr r r

(15)
Where ()B xr is a time-invariant basis landscape, P is a

function defining a peak shape, hi(t), wi(t), and pi(t) are the
height, width, and position of the respective peaks respectively
and are defined as:

(0,1)σ ∈Ν
() (1) _ .i ih t h t height severity σ= − + (16)
() (1) _ .i iw t w t width serverity σ= − + (17)
() (1) ()i i ip t p t v t= − +

r r r
(18)

In above equations, hs and ws are the maximum amount
with which the width and height of peaks can change and ()iv tr
is the amount of peak movement defined in (18).

() ((1) (1))
(1)i i

i

sv t r v t
r v t

λ λ= − + −
+ −

rr r
r r

(19)

Where rr is a random vector, s controls the severity of the
shift, and is the degree of correlation to previous shifts.

TABLE I. THE DEFAULT PARAMETERS OF MPB FOR SCENARIO II

Parameter Value
Number of peaks (m) 10
Change frequency (f) 5000
Height severity (hs) 0.7
Width severity (ws) 0.1

Peak shape Cone
Shift length (s) 1.0

Number of dimensions (d) 5
A [0, 100]
H [30, 70]
W [1, 12]
I 50

We consider the parameters from a well-known scenario

known as Scenario II as default values in our experiments. The
settings defined in Scenario II are represented in TABLE I. .
Shift length s is the radius of peak movement after
environment changes. m is the number of peaks. f is the
frequency of the changes in environment as number of fitness
evaluations. H and W denote range of the height and width of
peaks which change by height severity (hs) and width severity
(ws), respectively. I is the initial height of the peaks. Parameter
A denotes the range of the search space for all dimensions.

B. Evaluation Criterion
Since there are no specific constant optimums for dynamic

optimization problems, the goal is not just to find the

optimums, but to track the trajectories of optimum points in
the search space. A common method for illustrating an
algorithm’s prominence over others is to demonstrate
convergence diagrams for best or average fitness and visually
comparing them. The most common measurement criterion in
dynamic optimization problems is offline-error which can be
calculated by (20).

'

1

1 T

t
t

offline error e
T =

− = ∑ (20)

In above equation T is the total number of fitness
evaluations, '

1min{ , , , }t te e e eτ τ += … and τ represents the
last time step at which the last change in the environment
occurred.

C. Experimental setting
For all experiments the default values for parameters of

Two Phased Cellular PSO are set according to Table 2. The
search space is partitioned into 125 cells, i.e. each dimension is
divided into 12 partitions. Moreover, in the cellular automata,
the Moore neighborhood with radius of two cells is used,
which is large enough to handle the exploration of the sub-
populations in a neighborhood and is small enough to prevent
the convergence of the population to a local optimum. Initial
step size (ssinit), discount factor (b) and NDS are empirically
set to 0.5 and 0.4, respectively. The number of local search
iterations (LSnum) and the radius of the local search (LSr) are
empirically set to 3 and 1.0, respectively.

D. Experiment: Comparison with other algorithms
The results of the proposed algorithm are compared with

Cellular PSO [18, 19], CellularDE [16], HmSO [20], and
Adaptive mQSO [14]. To the best of our knowledge, Adaptive
mQSO and HmSO are two of the best-performing PSO-based
optimization algorithms introduced for dynamic environments.
Cellular PSO [18, 19] and CellularDE share the idea of
embedding a cellular automaton in the search space.

For all experiments, parameters of Cellular PSO,
CellularDE, HmSO, and Adaptive mQSO are set to the values

reported in [21], [16], [20], and [14], respectively. All
experiments were performed for 100 changes in environment.
The average offline errors of the algorithms in 100 runs with
95% confidence interval for various dynamic environments are
depicted in TABLE II. to TABLE V. . For each environment,
student t-tests with a significance level of 0.05 have been
applied and the result of the best performing algorithm(s) is
printed in bold. When the offline errors of the best performing
algorithms are not significantly different, all are printed in
bold.

The results of the experiments show that Two Phased
Cellular PSO outperforms all other compared algorithms, for
most of the tested dynamic environments. As depicted
in Figure 3. for an environment with 50 peaks, TP-CPSO can
find better solutions with a higher speed of convergence
compared to Cellular PSO. This is due to the fact that TP-
CPSO, takes advantage of two separate phases which impose
an efficient balance between exploration and exploitation in the
search process. Moreover the local search capability of NDS
results in powerful exploitation, and eliminating of cell
threshold capacity leads to impose no limit on particle
absorption for cells in exploration phase.

VII. CONCLUSION
In this paper, we proposed a two phased version of Cellular

PSO algorithm, designed to tackle dynamic optimization
problems. In TP-CPSO the disadvantages of Cellular PSO
were addressed and some strategies were proposed as
solutions to these issues. Extensive experiments in various
dynamic environments modeled by the moving peaks
benchmark were conducted. The results show significant
prominence of the proposed algorithm over the best PSO-
based algorithms known in the literature.

Moreover, the proposed algorithm eliminates the cell
capacity threshold which is a key parameter of Cellular PSO
and the performance of Cellular PSO is sensitive to its value.

TABLE II. OFFLINE ERRORS FOR DIFFERENT NUMBER OF PEAKS (F = 500)

m Two Phased Cellular
PSO CellularDE Cellular PSO HmSO Adaptive mQSO

1 5.96±0.22 8.20±0.19 11.62±0.77 8.53±0.49 5.08±0.27
5 5.12±0.11 6.06±0.05 8.59±0.36 7.40±0.31 5.14±0.09
10 5.56±0.11 5.93±0.04 8.78±0.28 7.56±0.27 6.20±0.11
20 5.67±0.10 5.60±0.03 8.67±0.25 7.81±0.20 6.94±0.18
30 5.59±0.08 5.56±0.03 8.24±0.22 8.33±0.18 7.23±0.16
40 5.53±0.07 5.48±0.02 8.50±0.20 8.45±0.18 7.43±0.17
50 5.57±0.08 5.47±0.02 8.37±0.20 8.83±0.17 7.49±0.09

100 5.36±0.06 5.29±0.02 7.91±0.18 8.85±0.16 7.29±0.15
200 5.33±0.05 5.07±0.02 7.71±0.14 8.85±0.16 6.82±0.14

TABLE III. OFFLINE ERRORS FOR DIFFERENT NUMBER OF PEAKS (F = 1000)

m
Two Phased Cellular

PSO CellularDE Cellular PSO HmSO Adaptive mQSO

1 2.66±0.08 4.98±0.35 5.86±0.42 4.46±0.26 2.68±0.14
5 2.67±0.09 3.96±0.04 5.26±0.26 4.27±0.08 3.22±0.07
10 3.17±0.06 3.98±0.03 5.75±0.23 4.61±0.07 4.11±0.08
20 3.33±0.06 4.53±0.02 5.74±0.19 4.66±0.12 4.75±0.14
30 3.45±0.06 4.77±0.02 5.84±0.16 4.83±0.09 4.98±0.10
40 3.58±0.05 4.87±0.02 5.84±0.17 4.82±0.09 5.10±0.11
50 3.57±0.05 4.87±0.02 5.84±0.14 4.96±0.03 5.12±0.05

100 3.52±0.04 4.85±0.02 5.73±0.11 5.14±0.08 5.03±0.09
200 3.51±0.04 4.46±0.01 5.48±0.11 5.25±0.08 4.65±0.09

TABLE IV. OFFLINE ERRORS FOR DIFFERENT NUMBER OF PEAKS (F = 2500)

m Two Phased Cellular
PSO

CellularDE Cellular PSO HmSO Adaptive mQSO

1 0.92±0.03 2.38±0.78 3.78±0.25 1.75±0.10 1.09±0.06
5 1.17±0.05 2.12±0.02 2.91±0.14 1.92±0.11 1.58±0.13
10 1.59±0.06 2.42±0.02 3.18±0.16 2.39±0.16 2.33±0.11
20 1.82±0.04 3.05±0.04 3.65±0.13 2.46±0.09 2.84±0.09
30 1.99±0.04 3.29±0.03 3.90±0.11 2.57±0.05 3.13±0.09
40 1.96±0.03 3.43±0.03 4.20±0.13 2.56±0.06 3.23±0.08
50 2.01±0.03 3.44±0.02 4.08±0.11 2.65±0.05 3.24±0.07

100 2.09±0.03 3.36±0.01 4.23±0.09 2.72±0.04 3.20±0.06
200 2.06±0.02 3.13±0.01 4.09±0.10 2.81±0.04 3.00±0.05

TABLE V. OFFLINE ERRORS FOR DIFFERENT NUMBER OF PEAKS (F = 5000)

m Two Phased Cellular
PSO

CellularDE Cellular PSO HmSO Adaptive mQSO

1 0.40±0.01 1.53±0.07 2.79±0.18 0.87±0.05 0.55±0.02
5 0.75±0.07 1.50±0.04 2.03±0.17 1.18±0.04 1.00±0.04
10 0.96±0.05 1.64±0.03 2.06±0.12 1.42±0.04 1.43±0.04
20 1.18±0.03 2.46±0.05 2.99±0.13 1.50±0.06 1.95±0.05
30 1.32±0.03 2.62±0.05 3.21±0.11 1.65±0.04 2.15±0.05
40 1.36±0.03 2.76±0.05 3.35±0.11 1.65±0.05 2.28±0.04
50 1.40±0.03 2.75±0.05 3.37±0.12 1.66±0.02 2.28±0.02

100 1.50±0.02 2.73±0.03 3.35±0.10 1.68±0.03 2.31±0.03
200 1.56±0.02 2.61±0.02 3.32±0.09 1.71±0.02 2.11±0.03

Figure 3. The current error and the offline error for a dynamic environment with 50 peaks and f=5000.

REFERENCES
[1] X. Hu and R. C. Eberhart, "Adaptive particle swarm optimisation:

detection and response to dynamic systems," presented at the Congress
on Evolutionary Computation, 2002.

[2] J. Vesterstrom, T. Krink, and J. Riget, "Particle swarm optimisation
with spatial particle extension," presented at the Congress on
Evolutionary Computation, 2002.

[3] K. E. Parsopoulos and M. N. Vrahatis, "Particle swarm optimizer in
noisy and continuously changing environments," in IASTED
International Conference on Artificial Intelligence and Soft Computing,
Cancun, Mexico, 2001, pp. 289-294.

[4] T. M. Blackwell and P.Bentley, "Don't Push me! collesion avoiding
swarms," 2002.

[5] T. M. Blackwell and J. Branke, "Dynamic search with charged
swarms," presented at the Genetic and Evolutionary Computation
Conference, 2002.

[6] T. M. Blackwell and J. Brank, "Multi-swarm optimization in dynamic
ennvironments," presented at the Application of Evolutionary
Computing, 2004.

[7] T. M. Blackwell, "Swarms in dynamiic environments," presented at the
Genetic and Evolotionary Computation Conference, 2003.

[8] X. Li and K. H. Dam, "Comparing particle swarm for tracking exterma
in dynamic environments," 2003.

[9] S. Janson and M. Middendorf, "A hierachical particle swarm optimizer
for dynamic optimization problems," presented at the Applications of
evolutionary computating, 2004.

[10] R. Brits, A. P. Engelbrecht, and F. v. d. Bergh, "A niching particle
swarm optimizer," in In Fourth Asia-Pacific conference on simulated
evolution and learning, 2002, pp. 692-696.

[11] R. I. Lung and D. Dumitrescu, "A Collaborative Model for Tracking
Optima in Dynamic Environments," presented at the IEEE Congress on
Evolutionary Computation, 2007.

[12] W. Du and B. Li, "Multi-Strategy Ensemble Particle Swarm
Optimization for Dynamic Optimization," Information Sciences: an
International Journal, vol. 178, pp. 3096-3109, 2008.

[13] T. M. Blackwell and J. Branke, "Multi-swarm, exlusion and anti-
convergence in dynamic environments," IEEE transactions on
Evolutionary Computation, 2004.

[14] T. Blackwell, "Particle Swarm Optimization in Dynamic
Environments," in Evolutionary Computation in Dynamic and
Uncertain Environments. vol. 51, ed: Springer Berlin, 2007, pp. 29-49.

[15] A. B. Hashemi and M. R. Meybodi, "Cellular PSO: A PSO for
Dynamic Environments," Advances in Computation and Intelligence,
pp. 422-433, 2009.

[16] V. Noroozi, A. B. Hashemi, and M. R. Meybodi, "CellularDE: A
Cellular Based Deifferential Evolution for Dynamic Optimization
Problems," presented at the Adaptive and Natural Computing
Algorithms, Lecture Notes in Computer Science, 2011.

[17] J. Kennedy and R. C. Eberhart, "Particle Swarm Optimization," in
Proceeding of IEEE International Conference of Neural Networks,
1995, pp. 1942-1948.

[18] E. Fredkin, "Digital Mechanics: An Information Process Based on
Reversible Universal Cellular Automata," Physica, vol. D45, pp. 254-
270, 1990.

[19] J. Branke, "Memory enhanced evolutionary algorethms for changing
optimization problems," presented at the Congress on Evolutionary
Computation CEC99, 1999.

[20] M. Kamosi, A. B. Hashemi, and M. Meybodi, "A hibernating multi-
swarm optimization algorithm for dynamic environments," in
Proceeding of the Second World Congress on Nature and Biologically
Inspired Computing(NaBIC), 2010, pp. 363-369.

[21] M. R. Meybodi and A. B. Hashemi, "A Multi-role cellular PSO for
dynamic environments," presented at the 14th International CSI
Computer Conference, Tehran, Iran, 2009.

